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PREFACE

This book is written primarily for those who have the maturity and
training to be expected of a college graduate in a modern curriculum in

physics, physical chemistry and chemical physics, chemistry, or metal-

lurgy.* The purpose of the book is to put such a person in possession

of enough knowledge of the theory and technique of crystal analysis

to enable him to read the literature intelligently and to do independent

experimental work. The book does not attempt to be an encyclopedia

of the theory of crystal analysis, nor is it a summary of the data to be

found in the literature. Both of these needs have already been taken

care of excellently by others. On the other hand, it presupposes a

knowledge of the physics of x-rays and of x-ray equipment such as is

reviewed in the first few chapters of G. L. Clarkes ^'Applied X-rays.^'

The text, in its present form, is primarily the result of over fourteen

semesters of classes of my own in crystal analysis at The Pennsylvania

State College. The topics chosen for discussion, the order of presenta-

tion, and the specific illustrations used are those found by experience

to meet the purpose of the book as stated above. The references given

to the literature are not intended to be complete, but are intended to

enable the reader to find easily those articles which fit the purpose of

the book either because of content or because of the method of presenta-

tion, irrespective of the date of publication. In order to carry out the

aim of the book the subject matter is made to fall under three main

heads :
^

Necessary preliminary information about diffraction, crystal structure, etc.

Methods of crystal analysis.

Applications in physics, chemistry, and metallurgy of some of the information

gained from studies in crystal structure.

In so far as possible, each chapter has been written in such a way as

to require only an elementary knowledge of the content of the preceding

chapters. The three main divisions of the book may therefore be taken

up for serious study in any order that may best fit the needs of the

individual reader, and in most cases the order of chapters within a division

may be altered at will to suit the individual needs of students with highly

specialized training.

* The text may be adapted to the needs of college seniors by omitting the follow-

ing: (a) that portion of Chap. Ill Which deals with the general equation for interplanar

spacings; (b) the mathematical portion of the discussion of projection diagrams in

Chap. IV; (c) Chaps. VII to X, XIV, and XV; (d) the last portion of Chap. XVI,
which deals with diffraction effects in gases.



VI PREFACE

The first two main portions of the book are intended to enable the

student to go into the laboratory and actually do experimental work

on the structure of crystals, using well-recognized, standard methods of

procedure. The third portion of the book is intended to point the way
toward the use of crystal structure technique as a tool in still other fields

of knowledge, and to aid the student in reading the growing body of

literature written in the language of crystal structure. It is not to be

expected that the reader with highly specialized training in some field

of work will be entirely satisfied with that portion of the third part which

deals with his specialty. Either he will find that the treatment of his

own field is too elementary, or that it is too fragmentary or too one-sided.

I hope, however, that this third portion is complete enough to fit in

with the aim of the book and that it will help the student to find that

body of information and to acquire those (sometimes unorthodox)

viewpoints which will aid him in reading and in assaying the literarure.

Wheelku P. Davey.
State College, Pa.

Juncy 1934 .
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A STUDY OF

CKYSTAL STRUCTURE AND
ITS APPLICATIONS

CHAPTER I

THE THEORY OF DIFFRACTION OF X-RAYS BY A CRYSTAL

Practically all rigid solids except the glasses and possibly certain

waxes are composed of crystals. It is known to every metallurgist that

metals and their alloys exist in the form of crystals, and the crystalline

state of most chemical compounds is universally accepted. Even cellu-

lose, of which wood and cotton are largely corflposed, shows real evi-

dence of crystallinity. It is therefore evident that any study of the

properties of materials will be very largely a study of the crystalline state

of matter. There is the same difference between crystalline and non-

crystalline substances that there is between an army and a mob, for a

crystal represents an organized array of atoms all arranged in definite

rows with regular spacings between rows, while the atoms in a noncrystal-

line substance have a chaotic, hit-and-miss placing.

It has long been known that the mechanical and chemical properties

of crystals depend markedly upon the direction in the crystal in which

these properties are measured. It was early taken for granted that this

was caused by the various rows of atoms acting as units so that the effect

of one atom was added to that of its neighbor in a perfectly systematic

way. For a long time this picture was necessarily rather hazy, for no

means were at hand to measure the distances between the atoms in the

various rows and the distances between rows. These distances are so

minute that if an ordinary pinhead were magnified until its diameter

became 100 miles, the distance between centers of adjacent atoms would

be about one inch. Such measurements can now be made easily to within

1 part in 1,000 by means of the diffraction of x-rays. In other words,

x-rays furnish us with a micrometer by which we can measure without

difficulty a distance of 10”® cm. with an accuracy of Ko per cent.

A micrometer of this sort differs from an ordinary micrometer not

only in the exceedingly small distances which it measures but also in

the fact that these distances lie hidden in the body of the crystal itself.

As is the case with other micrometers, the measurement of a small

1



2 CRYSTAL STRUCTURE .

distance is accomplished by measuring a relatively large distance (in

this case, several centimeters) which is related to the desired distance

by some known law. It will therefore be necessary to consider in detail

the law of diffraction of x-rays and how this law may be made to relate

large, easily measurable distances to the distances between atoms in

crystals. In short, we must first study the theory of our micrometer.

Such a study must be combined with other information on the spatial

relationships which are possible inside a crystal. This will then enable

us to see how the interatomic distances in a crystal may be used to

determine the arrangement in space of the atoms of which the crystal

is composed. The knowledge, thus gained, of the structure of crystals

is the starting point for a rapidly growing body of information which is

of considerable theoretical and practical importance. From a knowledge

of the structure of crystals it is possible to obtain information as to the

sizes and shapes of atoms and ions, and to find valuable hints as to the

mechanism of chemical combinations. Evidence is found leading to

fundamental ideas in the theory of solid solutions and the inner structure

of alloys, so that a more rational explanation may be made of certain

metallurgical phenomefta. h]vidcnce may also be obtained of the effect

of mechanical working on the orientation of crystals in metals, so that

we may hope some time in the future to roll and draw metal better than

we can today. This short r4sum6 shows that a study of crystal struc-

ture is not only of interest to the so-called ‘^pure scientist'^ working in

physics, chemistry, and physical chemistry, but that it gives much
promise of practical results to the metallographer and through him to

almost every branch of industry.

DIFFRACTION OF X-RAYS

It was stated in the foregoing that the micrometer’^ used in measur-

ing interatomic distances is based upon the diffraction of x-rays. When
x-rays of a given wave length strike a substance, part of the radiation

is scattered so that it appears at every possible angle to the incident

beam. If the scattering substance is a crystal, the scattered radiation

is much more intense at certain angles than at others, t.6., the x-rays

are diffracted through definite angles. These angles depend upon the

wave length of the x-rays employed and upon the arrangement and

spacing of the atoms in the crystal. The distances measured in deter-

mining these angles and the relative intensities of the x-ray beams at

these angles form the basis of study in x-ray crystallography.

Bragg’s Law.—It is shown in elementary texts on physics that ordi-

nary light can be diffracted from a plane grating. A crystal acts toward

x-rays like a family of plane gratings placed one above the other. The
introduction of height in addition to width between lines changes the final

form of the diffraction law*'considerably. It may be shown experi-
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nientaliy that this changes the diffraction law from the form found in

texts on physical optics to the form known as Bragg^s law:

wX = 2d sin 6 (1)

where X is the wave length of the x-rays and B is the grazing angle of

incidence between the x-ray beam and the diffracting family of atomic

planes in the crystal. The experimental fact of the diffraction of x-rays

according to Bragg’s law may be explained either on the basis of the classi-

cal spreading-wave theory or on the basis of the quantum theory.®*'*

A consideration of the two types of explanation shows that they give

identical results.

Diffraction of a Spreading Wave.—According to the spreading-wave

theory, x-rays and ordinary light an* both thought of as being trains of

electromagnetic waves which tend to spread out in all directions from

their source, i.e., they tend to advance on a spherical wave front. The

difference between ordinary light and x-rays is, according to this theory,

merely a matter of wave length. The distance ‘‘from crest to crest”

of an x-ray is supposed to be about one ten-thousandth as great as the

corresponding distance for visible light.

Let the network of dots in Fig. 1 represent the atoms of a crystal,

and let the crystal receive x-rays from a source sufficiently distant so

that the wave fronts may be considered to be planes. Let the arrows

1, 2, 3 . . . represent normals to these wave fronts, and let the arrows

(1), (2), (3) . . . represent the corresponding normals for the first order

of the diffracted beam. Experimentally, it is found that the grazing

angles of incidence and emergence are equal, ?\e., that DAE = BEA.
Let AG be drawn perpendicular to FH, The path of the beam 5 to



4 CRYSTAL STRUCTURE

the point G is equal in length to the path of the beam 1 to the point A .

The difference in path length between the beam 1 at ^4 and the beam 5

diffracted from f to il is GH^ since FH is equal to FA. GH is equal

to AH sin GAH. But the angle GAH is equal to the grazing angle of

incidence DAE. Since AH is twice AI, i.e., it is twice the interplanar

distance d of the crystal, and since DAE is the grazing angle 6, we know
the waves diffracted along (1) from incident beams 1 and 5 will meet in

phase if

n\ = 2d sin 6 (1)

where n is any whole number and X is the wave length of the x-rays

employed. The integer represented by n is called the “ order of diffrac-

tion and is the number of wave lengths difference in the two paths.

Similar beams such as (2), (3), (4) . . . will be in phase with beam

(1); for let ED and AB be perpendicular respectively to 1 and (2).

Then, since BEA = DAE, we have the two right triangles with an

acute angle and hypotenuse of one equal to an acute angle and hypotenuse

of the other. Therefore, the path EB equals the path DA, which is

the condition for beams (1) and (2) being in phase with each other.

In a similar manner it' may be shown that (1) and (3), (1) and (4), etc.,

are all in phase.

It is therefore possible to have a whole wave front of diffracted x-rays

emerging from a crystal at an angle equal to the angle of incidence,

provided this angle is related to the wave length of the x-rays and the

interplanar distance of the crystal in the manner shown by Eq. (1).

It may be shown that, if the crystal were infinitely thick and offered

no absorption to the x-rays, there could be no first-order diffracted beam
at any other angle; for no matter what other angle we choose for diffrac-

tion from a given point in the crystal, there will be some other point

which can send out a wave in the same direction which will meet the

first wave a half wave length out of phase. Experimentally, it is found

that it is sufficient if the crystal is about 10® molecules thick.

If the crystals are too thin, the diffracted beam tends to widen because

of incomplete interference at angles other than that which is equal

to the angle of incidence.

The diffraction of x-rays by a crystal may be shown analytically as

follows. The three-dimensional diffraction grating of a crystal may be

regarded as composed of three sets of unidimensional gratings, each one

of which consists of a row of atoms parallel to one of the three axes of

the crystal. Let the interatomic distances along the three axes be Xi, yi,

and Zi. Let the directions of the incident and diffracted beams be

expressed by their direction cosines ai, Pi, yi and
1
^2 , 72 ,

respectively.

Then the conditions for diffraction along these three sets of linear gratings

are
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Xi(a2 — ai) = eX

yi(p2 - ^i) = A (2)

21(72 — 7 i) = gx

where e, /, and g are integers representing the order of the diffracted

beam from each of the gratings.* In the simplest case, that of a cubic

crystal, iCi = = 2 i = a, the edge of the unit-cube. Remembering
that

0£l® + + 7l^ ~ + ^2
^ + 72^ = 1

we have by squaring and adding

2 - 2(a,a2 + /?A + 7172) = +P + g^)

Vv
But, since, by a well-known theorem in trigonometry,

oe^ai + fiiP-i + 7i72 = COS <l>

where </> is the angle between the incident and the diffracted beams, and

since

• 2(1 — cos <A) = 4 sin*
^

we have

2 sin
I
= e* -1- /* -f ff* (3)

We may therefore calculate the angle of deviation </> from the wave length

X, the grating space xi, and the orders of the diffraction patterns of the

three sets of linear gratings.

* To arrive at the equation for diffraction by one of these three sets of linear grat-

ings, consider a series of diffraction centers equally spaced along the line XX'. On
striking the diffraction center A', the beam A will be diffracted in the direction A'A".

In the same way the beam B will be diffracted in the direction B'B". Now, the path

AA" is longer than the path BB". Diffraction can occur only

if the difference in path length is equal to a whole number of wave
lengths. To obtain a value for this path difference, drop the per-

pendiculars A'G and B'H. The difference in the path lengths of

AA" and BB" is given by (A'H - GB'). But A'H is A'B' cos

B'A'H and GB' is A'B' cos A'B'G. Cos B'A'H is, by definition,

the direction cosine, aa. Cos A'B'G is, by definition, the direction cosine, ai. The
distance A'B' is the interatomic distance Zi. We may therefore write as the condi-

tion for diffraction along the X-axis

Xi(a2 — ai) = e\

where e is an integer. Similarly for diffraction by the linear gratings along the

F- and Z-axes,

yiifii — /3i) ==A
21(72 — Ti) = g>^
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Equation (3), derived in this way, may be regarded as typical of

the viewpoint of Laue at the time of his discovery of x-ray diffraction.

It may be expressed in terms of the more useful Bragg viewpoint as

follows: A plane of atoms in a crystal is^most commonly defined by its

“Miller indices,”* which are the reciprocals of the intercepts of the plane

upon, the Z-, F-, and -^-axes, respectively. For instance, the (100)
plane cuts the X-axis at unit distance and is parallel to the other two
axes; it is the edge of a cube or of some other symmetrical figure. The
(3 21) plane cuts the X-axis at 3^^, the F-axis at 3^, and the 2/-axis at

unity. It is customary to express these reciprocal intercepts in terms

of their lowest prime numbers, so that, if the reciprocal intercepts are

given as h, k, Z, the actual reciprocal intercepts will be nh, nk, and nly

where n is any integer. If, ‘therefore, we choose such a plane of atoms

that

e nh

f = nk

g = nl

we may regard the diffracted beam of Eq. (3) to be a diffracted beam
of the nth order from the plane (hkl).^ Equation (3) m^y therefore

be written

or

2 sin ~ + k^ + P
2

n\ = 2—^ • sin ~

+ p 2
(4)

It will be shown in Chap. Ill that Xify/Jp + IP + P is the distance

between successive (hkl) planes. It is the d of Eq. (1).

The grazing angle of incidence (or the angle of diffraction) is <^)/2

and is the 6 of Eq. (1). It is therefore evident^hat Eqs. (4) and (1)

are identical. If, instead of confining ourselves to the cubic system,

we had taken any other crystal system, we should have arrived at a

new expression in the denominator of Eq. (4) which would represent

* Miller indices are treated at greater length in the next chapter,

t It should be noted that this substitution of nhj nky ajid nl for e, /, and g, is only

done as a matter of convenience in the study of crystal structure. A tiny crystallite

may be so small that it does not contain representatives of many of the atomic planes

found in laiger crystals of the same substance yet it is theoretically capable of giving

a diffraction pattern corresponding to every linear grating in the crystal. The changes

to be made in Eq. (4) in such cases will be obvious. In the case of the crystallite,

there will be a very rapid falling off in the sharpness and intensity of the diffracted

beams with increasing angle of diffraction. For most practical purposes the effect

is therefore somewhat the same as we should have had if diffraction had occurred only

from individual families of planes which were actually present in the crystal.
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the distance d between successive planes for that crystal system. Equa-
tion (1) is therefore perfectly general and applies to all types of crystals.

Diffraction of a Quantum.—In the preceding section on Diffraction

of a Spreading Wave we have regarded an x-ray as a train of spherical

waves of short wave length spreading out from a point source. The
picture of an x-ray from the standpoint of the quantum theor}^ may be

given sufficiently well for our present purpose by regarding it as a wave
train of very small cross-section (possibly of the order of 10“^*^ sq. cm.)

proceeding out in a straight line from its source.® Any x-ray beam with

which we ordinarily deal is supposed to contain an enormous number
of these quanta coming out in all directions from the focal spot’^

on the anode of an x-ray tube. In many ways, the whole bundle of

quanta ac\s much like a train of spreading spherical waves, but the

mechanism by which diffiaction must be explained is quite different

for qua^^ita from that for spreading spherical waves.

According to the quantum theory, it is a characteristic of a quantum

that its energy E determip(^s the frequency of its waves, i.e.,

p. ^hv = ^ (5)

where v is the frequency, X the wave length, c the velocity of light, and

h is a proportionality constant known as ^‘Planck^s constant.’^ If for

any reason a quantum loses a portion of its energy, it must decrease

the frequency of its waves until the new frequency multiplied by Planck^s

constant gives a product equal to the energy still remaining in the

quantum. Since the wave has energy and has a definite velocity c

it may be said (at least figuratively ) to have mass and therefore momen-
tum. It may be shown that the momentum of a quantum is*

M = ^ = J (6)
c X

The ordinary law of conservation of momentum which holds for the

impact of material bodies is assumed to hold for the impact of quanta

on atoms and electrons. It is further assumed that a quantum can

give up momentum to an atom or electron in definite units. Since h

has the dimensions of a momentum multiplied by a length, t it is assumed

that the quantum unit of momentum is h/l where I is any length which

may be shown to have a physical meaning in the diffracting substance.

* The kinetic energy of the electrostatic vector of the quantum is The

kinetic energy of the electromagnetic vector of the quantum is also The total

kinetic energy E of the x-ray quantum is therefore, rnc^. Its momentum 3/, is, by

definition, me. Evidently, then, M = E/c — hv/c.

t h has the dimensions . = ML^T-^. Momentum has the dimensions
‘ frequency

mass X velocity = MLT’'^.
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Let a quantum of x-rays fall upon a crystal as shown in Fig. 2, so

as to make a grazing angle Bi, At some point in its path it may hit an

electron belonging to one of the atoms of the crystal and be deflected

so that it emerges at an angle ^2 . The momentum transferred to the

crystal in a direction parallel to the X-axis is

—(cos Bi — cos ^2) = (7)
C X\

where the interatomic distance Xi is the only length in the X-direction

which has any physical meaning, and where ni is any positive integer

including zero. Similarly, the momentum transferred in the F-direction

is

—(sin — sin B^ = (8)
c y\

Fig. 2.—Diffraction of a quantum by a crystal.

If Ui and 712 are both zero, there is no transfer of momentum and no

change in direction, so that the quantum passes on through until it

hits an electron in some other atom. If Ui is zero and is not zero,

then cos Bi equals cos B2 but sin Bi does not equal sin B2 . This means

that sin Bi must be equal to —sin ^2 . Equation (8) therefore becomes

2hv . « /o\— sin Bi = 712— (y)
c yi

or

n2X = 2yi sin Bi (10)

which is identical with Eq. (1) for diffraction from the X-Z planes.

Similarly, if n2 is zero but rii is not zero,

riiX
=’‘

2x 1 sin (90® — ^ 1) (11 )



THE THEORY OF DIFFRACTION OF X-RAYS BY A CRYSTAL 9

which represents diffraction from the Y~Z planes. Equations (10)

and (11) may therefore be written in the form of Eq. (1)

n\ = 2d sin 6 (1)

If ni and are both integers other than zero, Eqs. (7) and (8) give

the same law of diffraction for still other families of planes in the crystal.

Exceptions to the Simple Form of Bragg’s Law.—Equation (1) does

not correlate all the known facts on the diffraction of x-rays. It is

therefore necessary to extend the simple theories on which Eqs. (1),

(10), and (11) were founded. It is found experimentally that, for a

given crystal, Eq. (1) gives slightly higher values for wave lengths when
n is small (1 or 2) than when n is larger. In the same way, if the wave
length is assumed t o be known, the first few lines in the diffraction pattern

appear to be caused by interplanar spacings in the crystal which are

slightly larger than those calculated from the second order of these

same lines. This effect is explained as being caused by certain electrons ’

in the atom having natural periods of vibration close to that of the *

incident beam of x-rays, thus giving the effect of a refractive index less

than unity.®

Davis and v. Nardroff^ have determined the refractive index of pyrites

for four wave lengths and have compared their results with calculations

based on the Lorentz dispersion formula

1 (
ni 712 + . . .

2T'n\v^ — vi^

where ^ is the index of refraction, v is the frequency of the incident beam,

and ni, n2 ,
. . . are the number of electrons per unit of volume having

natural frequencies vij V2 j
• • • ,

and e and m, as usual, represent the

charge and mass of an electron. Their calculated and experimental

values are compared in Table I.

When the planes of atoms from which the rays are diffracted are

parallel to the surface of the crystal (as is the case when a cleavage face

Table I.—Index of Refraction op Pyrites Crystal for X-ratb

X
1 —

experimental

1 -

calculated

2.82 X 10”» 2.64 X 10-«

3.33 3.29

1.389 13.2 13.6

1.537 17.6 17.6

is used), the error caused by refraction is very small. For instance, the

bending is only about three seconds of arc for the Ka rays of Mo from
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a cleavage face of calcite. This bending increases as the angle between

the atomic planes and the crystal surface is increased. It is greater the

shorter the wave length of x-rays employed. This is illustrated by the

data of Table II from Davis and v. Nardroff for pyrites. Additional

data on glass, tin, silver, selenium, and zinc have been published by Doan®

Table II.—Effect of Angle and Wave Length on the Angle of Bending of

X-ItAYS

X

Angle betwenm crystal

surface and atomic

I)laiics

Angle of

bending

of x-rays

1 — Ml

experimental

Weighted

mean
1 -M

0.7078A. 0° O' 0" 3.6" 4.6 X 10-«

6° 3T 57.5" 39 " 3.26 X
7° 18' 39" 159 " 3.37 X 10-'> 3.33 X 10'

«

o.esiiA. 0° 0' 0" 3
" 3.87 X Bv)"*'**

fr 31' 57.5" 160 " 2.82 X 10-'^ 2.82 X 10-«

and by Edwards,® and on aluminum by Davis and Slack. For further

details see a review of the subject by Bergen Davis in the Journal of the

Franklin Institute, ^ ^

Because of the refraction of the rays, Bragg^s law must be applied

not to the original direction of the incident beam but to the direction of

the refracted beam inside the crystal. It is hardly necessary to make this

correction in the determination of the configuration of atoms in a crystal,

since it affects only the exact size of the unit-crystal. Where the exact

size of the unit-crystal is important (see Chap. VI), the experimental

technique ijaay be made such as to make the correction unnecessary.

PRIMARY AND SECONDARY STANDARDS FOR THE DETERMINATION OF d
IN EQ. (1)

Equation (1) gives the relation between the wave length of x-rays and

the interplanar spacing for diffraction at a given grazing angle. In

order to determine one of these quantities by means of this equation it is

necessary to know the other. Using the method of W. H. and W. L.

Bragg^^ we may determine the dimensions of the unit-crystal* of NaCl
as follows: A study of the diffraction patterns of NaCl and KCT shows

that these patterns may be accounted for if these salts crystallize as

simple cubes of ion^, with the alkali and halogen ions occupying alternate

* The unit-crystal is the smallest crystal which can show the symmetry characteris-

tics of the crystal. When the symmetry is cubic, the unit-crystal is called the unit-

cuhe; when it is rhombohedral it is called the unit-rhomhohedrony etc. The term

‘‘unit-crystaL* is also sometimes applied loosely, as here, to represent the smallest

portion of the crystal capable of showing the configuration of atoms.



THE THEORY OF DIFFRACTION OF X-RAYS BY A CRYSTAL 11

corDers of the cubes. * Since this is the simplest structure which accounts

for the experimental facts, it will be adopted as the structure of NaCl.

Each corner of one of the elementary cubes (unit-cubes) of the crystal

contributes atom to the cube. The mass of the unit-cube of NaCl
is therefore

[:^'8^Na + + ^Cl]^

where Ane = atomic weight of Na = 22.997.

A Cl = atomic weight of Cl = 35.458.

m = mass in grams associated with one unit of atomic weight.

The factor m is most easily found as e/F, where e is the charge on the

electron and F is the Faraday constant in electrolysis. Millikan^"* gives

e as 4.774 X 10”^® absolute electrostatic unit (abs. e.s.u.) of charge or

1.591 X 10”^® absolute coulomb. The maximum error is about 0.1

per cent. Vinal and Bates^^ give F as 96,500 absolute coulombs with a

maximum error of 0.01 per cent. The factor m is therefore 1.649 X 10~^^

gram (g.).t This makes tlie mass of the unit-cube of NaCl equal to

4.820 X 10“^"^ g. If we divide the mass of the unit-cube of NaCl by the

density, we obtain the volume of the unit-cube. From this we can

calculate at once the length of the edge of the unit-cube.

Many values for the density of NaCl may be found in the literature.

These differ among themselves considerably, partly due to impurities in

the salt used by some of the workers and partly due to the difficulty of

growing large crystal aggregates of NaCl free from voids or to the equally

great difficulty of growing large single crystals of NaCl free from strains

which, by reason of the dislocation of the atoms, tend to lower the effec-

tive density. The density of NaCl is given twice in the “International

Oitical Tables. In Vol. I it is given as = 2.163. In Vol. Ill

it is given as

^4^0 = 2.1680(1 - 20 X 11.2 X 10-^ - 400 X 0.5 X 10-^)

= 2.1631

This second value considers the work of the most careful workers up to

the end of 1925, and we shall accept it as being the most* reliable value

obtainable by direct experiment. If we consider it to be in error by as

much as 0.004, i.e,^ 0.2 p^r cent, it has the largest percentage error of

any of the items which enter into our calculations of volume. Even
if the error in the value of m happens to affect the final result in the same

direction as the error in the value of d, our value for the volume of the

unit-cube of NaCl can be in error only by 0.3 per cent. This would give

an uncertainty of only 0.1 per cent in our value for the edge of the

See Fig. 7, Chap. V.

t This factor is given by R. T. Birge, Phys. Rev. Supplementj Vol. 1, No. 1 (1929)

as 1.64898 ± 0.0016 X 10-24.
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unit-cube. Denoting the length of the edge of the unit-cube by ao, we
would therefore have

®/4.820 ± 0.005 X 10-*^

yj 2.163 + 0.004
2.814 + 0.002 X 10-* cm.

It is, however, hardly possible that the above value of the density can

be in error by more than ±0.001, so that we may narrow down our

value to

an = 2.814 ± 0.001 X lO”® cm.

This agrees, within the precision of the underlying data, with the value

2.814 X 10“® cm. used by Duane in his Bulletin of the National Research

Council (November, 1920).

The density of calcite can be measured with greater accuracy than

the density of NaCl since calcite can be obtained in large single crystals

which are quite free from strains. For this reason, in the uiiit-rhombo-

hedron of calcite whose faces are parallel to the cleavage planes, the

distance between successive atomic planes which are parallel to the faces*

is taken as the primary standard of length in all crystal-analysis work.

The true value of the edge of the unit-cube of NaCl is determined from

this as a secondary standard.^^*^®'^^ Optically clear calcite may contain

Mn or Mg. Since both MnCOs and MgCOa have higher densities than

those listed for calcite, it is clear that the lower the value reported in

the literature, the more likely it is that the calcite was of high purity.

Birge^® gives as the best experimental value for the density of calcite,

^20 = 2.7102 ± 0.0004 g. per cubic centimeter. The interaxial angle of

the cleavage rhombohedron of calcite is 101° 55', so that the volume of

the unit-rfiombohedron is 1.09630 ± 0.00007 X where ®

is the grating space of calcite. The molecular weight of CaCOs is‘^®

40.075 ± 0.005

12.003 ± 0.001

48.000 ± 0.000

100.078 ±0.006

* As was pointed out by Wyckoff [Amer. Jour. Sci., 60, 317 (1920)] this is not the

true theoretical unit of structure. It does, however, afford an easy way of visualizing

the spacing between successive cleavage planes of calcite, i.e., the crystal analyst's

fundamental unit of length. It is, perhaps, only fair to say that crystal analysts

practically never actually use calcite as a comparison standard (see Chap. VI) in

measurements of interplanar spacings. Either they use NaCl (ao = 2.814A.) or

they arbitrarily adopt some measured wave length which they find in the litera-

ture or in some book such as Siegbahn^s. The discrepancies introduced are usually

of only academic interest.
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It will be shown in a later chapter that a unit-rhombohedron, which

for our present purposes may be considered as the unit of structure of

calcite, contains one-half a molecule. Therefore

rf
_ o 7100 _ X 100.078 X 1.64898 X lO'**

1.09630ao*

so that at 20°C.,

= 3.0283 + 0.0010 X lO-* cm. (12)

This is the primary standard of length used in all crystal-structure work.

Diffraction experiments, of which those of Siegbahn are probably

the most accurate, show that the ratio

Grating space of calcite ^
Grating space of NaCI

(= log“^ 0.0319806). This requires us to adopt for the true grating

space of NaCl at 20'^C. the value

a.
^
= 2.8135 ± 0.0010 X lO^^ cm.

Natl

This value again agrees, within the precision of the underlying data,

with the value 2.8140 X 10“^ cm. proposed by Duane.^^ Since a large

fraction of the published data is given in terms of Duane^s value, it has

become customary to consider the secondary standard of distance for

crystal-structure work as

= 2.8140 ± 0.0010 X 10-« cm. (13)

CdO crystallizes with the same type of structure as NaCl, but the

crystals are more perfect and yield unusually sharp maxima in the diffrac-

tion pattern. For the same exposure time a much wider range of

diffracted beams can be photographed from CdO than from NaCl.

CdO has therefore been suggested^^ as a tertiary standard for practical

laboratory work.

Both for spectroscopically pure CdO and for the ‘‘commercially

pure^’ CdO containing traces of CO2 and ZnO,

aocdo
= 4.681 ± 0.002 X lO'® cm. (14)

It will be shown in a later chapter that it is sometimes convenient

to have a standard of length in terms of the grating space of some element

of higher atomic weight. For this reason the edges of the unit-cubes

of Cu, W, and Au have been s6t up as additional tertiary standards,

with the following values at room temperature (approximately 20®C.)

:
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ao^ = 3.608 ± 0.002 X 10“® cm. (15)

ao^ = 3.155 ± 0.001 X lO"* cm. (16)

Oo, = 4.065 + 0.004 X lO"* cm.
Au (17)

Perhaps the best justification for the simple crystal structures

assumed in the foregoing is the fact that wave lengths of x-rays, deter-

mined from Eq. (1) with the aid of these values of ao, agree, within

one quarter of a per cent, with the results of calculations based on the quan-

tum theory^® and with the results of diffraction of x-rays by a slit2«.29,3o

and by a ruled grating. Altogether the evidence forms a wonder-

fully coordinated body of experimental facts.

THE INTENSITY OF THE DIFFRACTED BEAM

The intensity of the diffracted beam will depend upon (1) the tem-

perature, (2) the absorption of x-rays in the diffracting crystal, {?,)

the absorption of x-rays by non-diffracting material in the path of die

beam, (4) the perfection of the crystal, (5) the wave length of the x-rays

which are diffracted, (6) the distribution of electrons in the atoms
of which the crystal is composed, and (7) the angle of diffraction.

1. The higher the temperature of a crystal, the less efficient it will

be as a diffractor of x-rays. This is not surprising, for, although the heat

motion will not alter the configuration of the mean positions of the atoms

in the crystal, it will alter the fraction of the total number of atoms which

at any one instant are arranged in a truly orderly array. The atoms

which, at a given instant, are not in their mean positions do not diffract

the x-rays with the correct phase. The resultant diffracted beam is

therefore weaker than it would have been at absolute zero. This effect

was predicted by Debye'**'' and has since been studied by several workers.

Theory and experiment agree that the effect of temperature may be

accounted for by inserting into some formula for the intensity of a

diffracted beam a factor of the form

D = (18)

where B is, as always, the angle between the incident beam of x-rays

and the diffracting planes of atoms in the crystal. The quantity B
has been a subject for debate. It can be determined experimentally for

any given substance over a definite temperature range (for instance,

at room temperatuie it is 6.44 for NaCP^), but the theoretical expression

for B depends upon the assumptions adopted in building up a theory of

heat motions.*

* If we assume the Maxwell-Boltzmann equation, then

^ “ A*
in which X is the wave length of x-rays used, / is the force per unit displacement on the

atom, T is the absolute temperature, and k is the Boltzmann constant. If we assume
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2. By the absorption of x-rays in the diffracting crystal is meant here

the absorption which would be present even if the atoms of the crystal

could be caused to take up chaotic (truly amorphous) positions which

would prevent diffraction. For any one wave length, this simple sort of

absorption follows the ordinary optical law

I =

in which I is the intensity of x-rays after absorption by a thickness

Xj /o is the intensity of the incident x-rays, and e is the base of natural

logarithms; jj, is called the “coefficient of absorption.

Consider two crystals of tlie same material which are made to diffract

x-rays of the same wa\^e length from the same type of atomic planes.

It is evident that Ixith crystals will have the same grazing angle of

incidence between the x-ray beam and the diffracting plane. But if

both crystals do not Iim.v^ precisely the same exterior shape, it is

possible that one will offer a longer path to the x-rays than the other,

and the additional absorption along the longer path will cause it to give

off a weaker diffracted beam. This effect was found by B. Davis and

his coworkers to be important In their study of the refraction effects

noted earlier in this chapter.

In the Lauc method of crystal analysis, which will be discussed in

Chap. IV, different wave lengths of x-rays are used simultaneously,

and each diffracts at a different angle. In such a case the intensity

of the diffracted beam depends not only upon the coefficient of absorption

of the crystal for each wave length used but also upon the length of

the path through the crystal for each of the diffracted beams.

3. In all experimental work in crystal structure great care is taken

to have as little extraneous absorbing material as possible in the path

of the x-rays. This extraneous material ordinarily includes the walls of

the x-ray tube, the air in the path of the beam, and either the window
of an ionizing chamber or the light-tight envelope of a photographic

film. In the case of the powder method of crystal analysis, which will

be discussed in Chap. VI, it also includes (1) those crystal fragments

Debye^s theory of specific heat, as modified by Born and Kannan, and assume the

absence of energy at absolute zero,

B = Qh^T /0 \

where h is Planck’s constant, T is the absolute temperature, /* is the mass of an atom,

k is Boltzmann’s constant, \ is the wave length of the x-rays, 0 is a temperature which
is characteristic of the crystal, and <t>{0/T) is some function of (0/T).

If we assume the existence of a zero-point energy,

j. _ w a <i>(e/T)i
^ o/T )
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which do not happen to be oriented at the correct angle to diffract the

x-ray beam from the atomic plane under consideration and (2) usually

also some container (such as a glass or celluloid tube) for the powdered

crystal.

4. Consider a perfect crystal in the path of a ^'monochromatic^'

x-ray beam, and let it be so oriented that no atomic planes are at the

correct angle for diffraction. Its coefficient of absorption for the x-ray

beam will then be the same as if the material had been amorphous
instead of crystalline. If now we orient the crystal so that some one

family of atomic planes diffracts the x-ray beam, the energy of the incident

beam in the interior will be decreased by the energy diffracted by the

surface planes of atoms.- The result is the same as if the coefficient of

absorption of the crystal had been suddenly increased when the correct

orientation for diffraction had been reached. This effect is called

"primary extinction. It is evident that, if the crystal is made ap

of atoms of any but the very lightest elements, and if x-rays of ordinary

wave length are used, the combined effect of absorption and of primary

extinction will cause most of the diffracted wave to come from a relatively

thin layer near the surface. Primary extinction, then, has to do with

the effect of the diffracting process on the amplitude of a single diffracted

wave coming from a perfect crystal. It is the loss in energy of an x-ray

beam as it progresses through a perfect crystal caused by the diffraction

of the energy by that crystal.

Now consider an imperfect crystal made up of a mosaic of very

tiny crystals whose orientations, although not identical, are so nearly

the same that the aggregate looks like a single crystal even under the

microscope.* If a beam of monochromatic rays strikes such a crystal

at the correct angle for diffraction for some of the tiny crystals, it will

also strike adjacent tiny crystals which, by reason of their slightly

different orientation, cannot diffract the rays but will permit them to

pass through freely subject only to the ordinary laws of absorption.

The interior of such an imperfect crystal is therefore able to receive and

diffract x-rays some of which would never have reached it except for

the imperfections of the crystal. The diffracted beam therefore repre-

sents the resultant of a multitude of diffracted beams, all practically

in phase with each other, each originating from its own tiny crystal.

The intensity of this resultant diffracted wave is not so great as would

be expected on the basis of the ordinary laws of absorption, for the

incident beam will be weakened by the primary extinction of those tiny

crystals near the surface which happen to be at the correct orientation

to diffract the wave length present in the beam. This loss in intensity

of the incident beam is called "secondary extinction."®® It is the loss

in energy of an x-ray beam* as it progresses through an imperfect crystal

* It will be shown in Chap. XII that imperfection is the natural state of a crystal.
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and is caused by the summation of the primary extinctions in all the tiny

perfect crystals which contribute toward the diffracted beam from the

aggregate which we have called an imperfect crystal.

Theoretical formulas for the intensity of the diffracted beam have

been derived for the two extreme cases: (a) an ideally perfect crystal,

and (6) an ideally imperfect crystal. Experiment shows that all crystals

belong somewhere between these two ideal states, for the intensities

of their diffracting beams lie between the two intensities calculated for

(a) and (6). The subject of imperfections in crystals will be taken

up more fully in a later chapter. P will be sufficient to point out here

that very few crystals have been found wh^ch even begin to approach

ideal perfection. Nearly all crystals approach more or less closely the

state of ideal imperfection. Probably the three most perfect crystals

known are the crystals of ealcite examined by B. Davis and W. M.
Stempel-^^ and B. Davis and H. Purks,®® and the diamond examined by
H. Mar)c.‘^»

5. The theoretical formula*® for the amplitude of the wave diffracted

by an ideally perfect crystal includes in the numerator the square of the

wave length. The corresponding formula for the intensity of the wave

diffracted by an ideally imperfect crystal*® includes in the numerator

the cube of the wave length. We may therefore assume that the effi-

ciency of diffraction for most crystals varies approximately as the cube

of the wave length of x-rays used, but that in exceptional cases (as in

the case of some calcite or diamond) it will vary approximately as the

square of the wave length.

6. It is assumed that, when x-rays are diffracted, the actual diffracting

centers are the electrons which compose the extranuclear portion of the

atoms in the crystal. Whether we assume these electrons to be sta-

tionary (static-atom theory) or whether we assume them to be in motion

around the nucleus (Bohr-Sommerfeld theory, etc.), it is hard to escape

the conclusion that the x-rays diffracted from one electron must be some-

what out of phase with the x-rays diffracted by some other electron

in the same atom. The total intensity of any beam of x-rays diffracted

by a crystal would be expected to depend upon the distribution of elec-

trons in the atoms of which the crystal is composed. In a later chapter

we shall discuss the use of intensities in the determination of crystal

structure and the attempt to use this as a tool in the investigation of

atomic structure.

SUMMARY

The outstanding experimental facts of the diffraction of x-rays may
be accounted for by Bragg^s law on the basis of either the spreading-

wave or the quantum theory of x-rays, and the apparent exceptions

to the law may be satisfactorily explained. In terms of the densities
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and the structures of certain crystals it is possible to set up trustworthy

standards of length for use with Bragg^s law. The factors have been

discussed which affect the intensities of diffracted x-ray beams.

We must now study the different systems of crystals and the calcula-

tion of their various interplanar spacings so that we may have at our

disposal all of the information necessary for a preliminary investigation

of crystal structure.
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CHAPTER II

CRYSTAL LATTICES

THE SIX SYSTEMS OF CRYSTALS

*If a crystal such as rock salt (NaCl) is crushed, it is found that the

fragments have the same angles between their faces that the original

crystal had. Other crystals such as calcite (CaCOs) give fragments

which, although having angles between the faces different from the

original, are all alike in shape and show the same symmetry character-

istics as the original crystal. When these crystal fragments are again

crushed the resulting particles all have the same shape as the original

Fiq, 1,—A space lattice.

fragments, and measurement shows that the angles between their faces

are identical with the angles between the corresponding faces of the

original fragments. Experiments of this sort indicate that the external

form of a crystal results from a systematic arrangement of the atoms
of which it is composed: As a result of studies on x-ray diffraction

patterns of crystals, this assumption is now universally accepted. A
large portion of the work of a crystal analyst consists in the determination

of these systematic arrangements of the atoms in crystals. Only rarely,

however, is such work an end in itself. It is usually a tool which aids

in the attainment of some other end, such as a study of the nature

of chemical combinations, the^construction of temperature-constitution

20
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diagrams, a study of the nature of alloys, the identification of materials,

or the correlation of crystal structure with physical properties.

As an aid in visualizing the configuration of atoms in a crystal let

us consider a three-dimensional lattice-work, such as is shown in Fig. 1,

built up of imaginary straight lines in such a way that they outline a
group of imaginary symmetrical prisms (for instance, cubes, hexagonal

prisms, or rhombohedra), all of equal size and all in close contact with

their neighbors. In the simplest cases (which are the only ones treated

in this chapter) we may imagine atoms placed at each of the intersections

of the lattice lines, or placed at some position (such as the body-center

of a cube) which may be easily defined by reference to the lattice inter-

sections. In more complicated cases (si^e Chap. VIII) whole groups of

atoms may be placed so that some reference point in each group lies at a

lattice point.

A three-dimensional lattice-work of imaginary lines such as we have

described is callcjd a space-Lattice.'^ Only 14 types of space-lattices are

possible. They fall into six systems, called the triclinic, monoclinic,

orthorhombic, tetragonal, cubic, and hexagonal systems. A space-

lattice must have its imaginc.ry lines parallel, respectively, to each of

three definite directions corresponding more or less roughly to the direc-

tions of length, width, and height. Three of these lines which meet at

a common point are chosen as reference lines, and are called the X-axis,

F-axis, and Z-axis, respectively. The distance between successive

intersections of the lines of the space-lattice along the X-axis is called a.

The corresponding distances along the F- and the Z-axes are called b

and c, respectively. If the angles between the F- and Z-axes, X- and
Z-axes, and X- and F-axes are called X, /x, and v, respectively, we ma3^

define the six systems of space-lattices as follows:

Triclinic system:

\ 9^ fl tA V

a ^ b ^ c

Monoclinic t system:

X = = 90°

y 120
°

a ^ b ^ c

Orthorhombic system:

X = ^ = 90°

Q 9^ b ^ C

* The terms point-group and space-group are defined in Chap. VIII.

t Crystallographers ordinarily use the convention that \ — v ^ 90®. In crystal-

structure work the departure from convention is justified because,, if X « « 90°,

the hexagonal system becomes a special case of the monoclinic system, thus facilitating

the derivation of the equation for interplanar spacings in the hexagonal syi^m*
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Tetragonal system:

\ = ji = V = 90°

a = b 7^ c

Cubic system:

X = /; == ^ = 90°

a = b = c

Hexagonal system:

X = = 90°

= 120°

a = b ^ c

Axial Ratio.—When a, 6, and c are not all equal, it is customary to

take the value of b as the basis of measurement, expressing a and c in

terms of b by means of the ratios A{ = a/b) and C( = c/6), respectively.

These ratios are called the axial ratios’^ of the crystal. A crystal

belonging to the triclinic, monoclinic, or orthorhombic system would

have two axial ratios, namely, A and C. A crystal belonging to the

tetragonal or hexagonal system would have only one designated axial

ratio, namely, C, since A = 1. A
cubic crystal obviously has no desig-

nated axial ratio, since for a cubic

crystal A = C = 1 by definition.

Cubic Lattices.—Since the cubic

lattices are the easiest to visualize,

we shall describe them in some detail

as an introduction to a more general
^

—r If 11 I li I I IM \ }
discussion of space-lattices. Thesim-

1 I plest possible cubic lattice is illustrat-

ed in Fig. 2. It is called a “simple

^ cubic lattice.'' A chemical element
Fia. 2.—Simple cubic lattice.

. ,,
crystallizing on such a lattice would

have to have one atom at each of the lattice intersections.

Actually there are no elements which are simple cubic, but certain

compounds such as KCl give all the x-ray diffraction effects of a simple

cubic element. The K+ and Cl“ ions occupy alternate intersections

of a simple cubic lattice and both have the same number of electrons (18)

outside the nucleus so that their diffracting powers are practically

identical. From an x-ray diffraction standpoint, therefore, KCl simu-

lates a simple cubic chemical element.

A simple cubic crystal may be thought of as being built up of unit-

cubes so placed together that each one shares its corners, edges, and
faces with its neighbors. It iS"at once evident that this structure requires
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each atom in the interior of the crystal to belong equally to eight cubes

at once so that, if the lattice were of infinite extent, it would require

an average of one atom per unit-cube.

Not all cubic crystafs have this simple structure. Additional atoms

may be placed in symmetrical positions in the lattice to give more or

less complicated structures which still retain many of the cubic char-

acteristics of the simple cubic crystal. For instance, an additional

atom may be placed at the center of each unit-cube. Such a unit-cube,

shown in Fig. 3, is called a ‘^body-centered cube.'^ It is evident that,

if this lattice were of infinite extent, it would require two atoms per

unit-cube. A body-centered cubic lattice .may be thought of as composed

of two interpenetrating simple cubic lattices so placed with respect

to each other that the corners of the unit-cubes of one lattice lie at the

centers of the unit-cubes » f the other lattice.

A more complicated form is the “ face-centered cubic lattice shown

in Fig. 4. The unit-cube has an atom at each corner as in the simple

cube and, in addition, has an atom at the center of each face. As
before, the eight atoms at the comers contribute a total of one atom

to the. unit-cube. The atoms at the centers of the faces each belong

to two unit-cubes, so that these six atoms contribute a total of three

atoms to the unit-cube. The face-centered cubic lattice therefore has

a grand total of four atoms per unit-cube. Such a lattice may be thought

of as composed of four interpenetrating simple cubic lattices.

A still more complicated structure is the ‘‘diamond^' cubic structure

—

so called because it represents the arrangement of the carbon atoms

in the diamond. This structure is most easily described as composed
of two interpenetrating face-centered cubic lattices of equal size, placed

so that the corners of the unit-cubes of one lattice lie on the body-

diagonals of the other lattice, at a distance from the end of the diagonal

equal to one-fourth the length of the diagonal. The effect is that of
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putting four additional atoms inside a face-centered cube. These

additional atoms are shown in Fig. 5, but for the sake of clearness only

the corners of the unit face-centered cube are shown. The complete

unit diamond cube is shown in Fig. 6, which is a superposition of Figs.

4 and 5.

All dimensions of a cubic crystal are expressed in terms of the length

of the edge of its unit-cube. The origin of coordinates is put at the center

of one atom, and the coordinate axes are chosen so as to pass along the

edges of the unit-cubes. If we start at the origin and travel along the

X-axis of a simple cubic lattice, every time we go a distance equal to

the edge of the unit-cube, or an exact integral multiple of that distance,

we shall reach the center of an atom. In other words, we shall come to

Fig. 6.—Structure of the interior

of the unit-cube of a diamond cubic

structure.

Fig. 6.—A unit-cube of a diamond cubic
structure.

the center of an atom every time we have traversed an exact number
of the units of length which are characteristic of that particular simple

cubic lattice. Similar statements might be made in connection with

the F- and the -Z-axes. All this may be expressed in very convenient

form by means of a system of generalized coordinates. Let m be any
integer (including zero) used to express distances along the X-axis in

terms of the edge of the unit-cube. Obviously m may be either positive

or negative. Similarly, let n and p be corresponding integers used to

express distances along the F- and ^-axes, respectively. Then the posi-

tion of any atom in a simple cubic lattice is given by the generalized

coordinates

m, n, p

The corresponding generalized coordinates for the atoms of a body-

centered cube are:

^ V
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For a face-centered cube they are:

m, n, p
m + ^ + }4y V
^ P + M
m, ^ P + )^

For a diamond cube they are:

m, n, p
•

m M, n + yiy V •

w P + 3^-

p + M •

m + 3^, /A + p + 3i •

m 4- 'Ky + Hy V + H '

rn + n + }4, P + M •

w 4 ^ w + %y V + 'K •

It is a fundamental characteristic of a space-lattice that, no matter

what atom of the crystal we start with, the same system of motions of

translation will lead us to its immediate neighbors. For instance,

let us choose any atom on a simple cubic lattice as a starting point.

Then a motion of translation along the X-axis of one unit of length

(t.6., the edge of the unit-cube) and similar motions along the F- and

2'-axes will bring us to the three atoms of the simple cube which lie

closest to our starting point. Starting now with any one of these three

newly located atoms, we may repeat our system of three motions of

translation, and we shall at once find three other atoms. This process

may be repeated indefinitely. If the repetition is carried out systemati-

cally, using each newly found atom as a starting point, we shall eventually

reach every atom in the crystal. If we represent the motions of transla-

tion along the edges of the unit-cube parallel to the X-, F-, and Z-axes

by 2t*, 2Tyj and 2r«, we may completely describe a simple cubic lattice

by the three primitive translations

2rx; 2Ty; 2r*

for, by starting from a single point in space, we can reconstruct the whole

crystal.*

Similarly, the four primitive translations

2tx] 2ry\ 2r,; r*, Ty, t,

completely describe a body-centered cubic lattice. The first three

translations lead us to the atoms at the three nearest corners of the unit-

* It is evident from the above that we can start from any one atom of a simple

cube and proceed directly to any other atom by motions of translation of m(2rx);

n(2Tv); 7)(2t*).
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cube, and the three components of translation, r*, ry, r*, taken as a single

operation, lead us to the atom at the body-center of the unit-cube.

If we repeat these four characteristic translations, starting with any

of the four newly located atoms, we at once find four other atoms, and

the process may be repeated indefinitely. It is a consequence of the

possibility of starting with any atom, that it rests only with the point of

view of the observer whether a given atom lies at the corner or at the

body-center of a unit-cube. This is illustrated in two dimensions in

A T T A T A A A A
B B B B B B B B

A A A A A A A A A
B B B B B B B B

A A A A A A A A A
B B B B B B B B

A A A A A A A A A
B B B B B B B B

A A A A A A A A A
Fig. 7.—The corners of the acjuares may bo at either A or B.

Fig. 7. It is evident that we may consider the figure to be made up of

squares with A at the corners and B at the centers, or we may consider

equally well that the squares all have B at the corners and A at the centers.

A face-centered cube may be defined in terms of the three translations

TzT xj y

If we start with an atom at the corner of a unit-cube, these three primi-

tive translations lead us to the atoms at the centers of three adjacent

faces. Starting with any of these atoms, a repetition of the three primi-

tive translations will lead us to one atom at one of the corners of the unit-

cube and to two others which lie on centers of the faces of the unit-cube.

It is a consequence of this picture that one observer may choose one

atom as being at the corner of a unit-cube and a second observer may
choose his origin of coordinates so that that same atom lies at the center

of one of the faces of his unit-cube. If the configuration of atoms in

space had not been such as to permit this absolutely random choice of

starting point, then our three-dimensional framework of imaginary

lines would not have been entitled to the designation ‘‘space-lattice.^^

Considerations of this sort were responsible for the use of the word

structure instead of lattice in giving the generalized coordinates of a

diamond cube. Trial shows that it is not possible to write primitive

translations for a diamond cube such that any atom may be picked at

random as an origin of coordinates. The best we can do is to consider

the diamond cube as being made up of two separate interpenetrating
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face-centered cubic lattices. Any atom may be picked at random as a

starting point for finding the location of all the other atoms on its own
lattice^ but the translations for one face-centered cubic lattice will never

lead us to any of the atoms of the other face-centered cubic lattice. To
reach these remaining atoms, we must make a fresh start with one of

the atoms on the second lattice. In this connection it will be noted

that the eight generalized coordinates given for the diamond cube include

the four which were previously given for a face-centered cube. The
remaining four are the coordinates of a second face-centered cube and

differ from the first four in that their origin of coordinates has been

shifted to the point K) H*
The Fourteen Space-lattices.—So far we have discussed only the

cubic space-lattices. I'ach of the six systems of crystals has one or

more space-lattices. Theii primitive translations are all listed in Table I,

along with the customary code symbol for each lattice.^ The triclinic

Table I.—The Fourteen Space-lattices

^Serial No.
1

j

Symbol Primitive translations

Triclinic system:

1. Simple I\r 2rxJ ^^yj 2Tjt

Monoclinic system

:

2. Simple Yrn 2rxJ 2TyJ 2tz

3. Side-centered r«/ 2TxJ Ty, TyJ Ty, “T**

Orthorhoinbi(5 system

:

4. Simple Vo 2tx; 2ry; 2tx

5(o). Base-centered r/(a) Tx, TyJ Txf TyJ 2t«

6(6) . Side-centered iV(b) 2TxJ Ty, Tgf Tyj Tj

6. Face-centered r„" yt Txf Txf Ty

7. Bodv-centered To'" 2TxI 2ryJ 2rx^ Txj Tyj T»

Tetragonal system

:

8(a). Simple re(a) 2tx\ 2Tyj 2r*

8(6). Base-centered rd6)
9(a). Face-centered r/(a) "^Zy r*, TxJ Txy Ty

9(6). Body-centered r/(6) 2txJ 2TyJ 2Tx^ T<xy Tyy T*

Cubic system:

10. Simple Tc 2TxJ 2TyJ 2Tx

11. Face-centered r/ Ty, Tzy Ty, Txy TXy Ty

12. Body-centered To" 2TxJ 2TyJ 2Tzy Txy Ty, Ty

Hexagonal system

:

13. Rhombohedral Vrh 2t*; 2Ty; 2t* (rhombohedral axes)

14. Hexagonal n 2tx; 2Ty; 2Ty (hexagonal axes)

By Ty, r« is meant a translation ry along the F-axis followed by one of length r< along the Z-axie.

The translation ry, —n is similar except that r* is here taken in the — ^-direction. These are written

by Schoenflies as ry + and ry — rr, respectively (see reference 1).

system has only the simple lattice Fir. The monoclinic system has the

simple and the side-centered r,„' lattices. The orthorhombic system
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has the simple To, the base-centered To' (a), the side-centered ro'(6)

(which is the same thing as a base-centered orthorhombic lattice turned

over on its side), the face-centered To", and the body-centered To'"

lattices. The tetragonal system has the simple r^(a) and the face-

centered r/(a) lattices. It also has what appears at first sight to be

a base-centered lattice r<(6). This is really the simple tetragonal lattice

with the X- and F-axes rotated 45° about the Z-axis. In the ortho-

rhombic system the simple lattice and the base-centered lattices were

different from each other because of the different units of length along

the X- and the F-axes. Since these two units of length are equal in

the tetragonal system, the simple lattice and the base-centered lattice

become indistinguishable except in terms of the point of view of the

observer. Similarly, the only distinction between the face-centered

lattice r/(a) and the body-centered lattice r/(6) lies in the observer's

choice of axes. The cubic system has three lattices, the simple 1%,

the face-centered F/, and the body-centered Fc". The hexagonal system

has two simple lattices, Trh, called the ‘‘rhombohedral lattice," and F^,

called the ‘^simple triangular lattice," which are referred to rhombohedral

(triclinic with all three angles equal and with all three units of measure

equal, i.e,, a kind of distorted cubic) axes and to hexagonal axes, respec-

tively. The reader will undoubtedly feel that still other space-lattices

should be possible. Trial shows, however, that every such additional

lattice becomes one of the 14 listed in Table I if only the lattice is looked

at from some different direction or if some other three rows of atoms are

picked for the principal crystallographic axes. Such duplicates as are

given in Table I [such as 5(a), 5(6)] will be found useful in Chap. VIII.*

We have already seen in the case of the cubic system that space-

lattices may be put together to form still more complicated structures;

for instance, the diamond cube was found to be composed of two face-

centered cubic lattices. Similar illustrations may be found in other

crystal systems. For instance, two simple triangular lattices may be

put together to form a hexagonal close-packed structure whose generalized

coordinates areif

m, n, pC

+ Hf ^ (p + /4)C

* In any crystal system the shape of the unit-prism is determined by the JT-, F-,

and Z-axes and by the axial ratios. Thus, in the cubic system, the unit of structure

is a cube; in the tetragonal system it is a tetragonal prism; in the orthorhombic

system it is an orthorhombic prism. The unit-prism in the hexagonal system has for

its base a rhombus whose sides make an angle of 120®, i.c., the base may be thought

of as being made up of two equilateral triangles having a common side. The altitude

of the unit-prism is the distance between adjacent atoms on the Z-axis.

t The axial ratio C appears in the coordinates for the Z-axis in order to reduce all

the spacings to a common linear unit of measure.
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Three simple triangular lattices may be put together to form a

rhombohedral structure which is identical with the rhombohedral lattice.

From this point of view the generalized coordinates of a rhombohedron

would be

m,

m +
'fn + K,

n +
n + } 3 ,

pc

(p + y3)c

(P + %)C

From the point of view of the rhombohedral lattice (Fr*), the generalized

coordinates would be

rn, n.

NAMES Of THE ATOMIC PLANES

A glance at Fig. 1 showp^ that the atoms of which a crystal is composed
must lie in layers, or planes. It is possible to have a large number of

such planes all parallel to each other. For instance, let us start with

the atomic plane in Fig. 1 which passes through the origin of coordinates

and which contains both the F- and .Z-axes. There will be as many
other atomic planes parallel to this

as may be permitted by the size of

the crystal. The number of such

parallel planes may easily run into

the millions. But we might just as

well have started with an atomic

plane passing through the origin and

containing the X- and Z-axes, or the

X- and F-axes. It is evident that

here again we may have an enor-

mous number of planes, all parallel

to each other. But these planes are

clearly different in both direction

and spacing from those which are

parallel to the F- and Z-axes. Each
of these groups of parallel planes

constitutes a ‘^family.'' Figure 8 shows by means of a two-dimensional

analogy that there must be a large number of families of planes in any

crystal, and that any given atom lies in some one member of each family

of planes. Conversely, every family of planes contains every atom

in the crystal. Since the number of atoms involved is the total number
in the crystal irrespective of the* particular family of planes under con-

sideration, we have the general rule that in a given crystal, the atomic

Fig. 8.—Two-dimensional analogy
showing various families of planes.
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population per unit area of a plane is directly proportional to the inter-

planar distance,"^

The oldest and, at first sight, most logical method of naming planes

is the method devised by C. E. Weiss, formerly a professor in the Uni-

versity of Berlin. According to this scheme, each plane is named in

terms of its intercepts on the X-, F-, and Z-axes, ^.e., in terms of the dis-

tance which it cuts off on each of the three axes. The unit of length

along each of the three axes is the distance between adjacent atoms

along that axis. In other words, the units of measure along the X-,

7-, and Z-axes are the distances called a, 6, and c in the discussions of

crystal systems and axial ratios at the beginning of this chapter. It is

inherent in the nature of a space-lattice that each of the successive planes

in the same family will have an intercept along a given axis which is a

multiple or a submultiple of the same pmall integer, t The smallest

three integers which serve the purpose constitute the name of the family

of planes according to the Weiss system. Although the Weiss system

has all the advantage of clearness of visualization, it has the fatal disf

advantage of not being well suited to some of the calculations which

every crystal analyst has to make. ^

It will be shown in Chap. Ill that all ordinary calculations of the

distances between adjacent planes of the same family require the use of

numbers which are proportional to the reciprocals of the Weiss intercepts.

This has resulted in the almost universal adoption of a nomenclature

first used by Grassmaunf of Stettin, Germany, and used in 1839 by
Prof. W. H. Miller of Cambridge University. This nomenclature

employs integers which are proportional to the reciprocals of the three

Weiss intercepts. The work of Miller attracted such attention that the

reciprocal designations are universally known among crystallographers as

Miller indices.'' If the three actual intercepts of a given family of

planes, expressed in ordinary units of measure such as centimeters,

are x, y, and z, then the Miller indices hy k, I are the three smallest integers

which are proportional to a/x, b/y, and c/z, respectively, where a^ 6, and c

are the distances between adjacent atoms along the X-, F-, and Z-axes.

These quantities, a, 6, and c, are, as before, identical with the units of

measure mentioned in the discussions of crystal systems and axial ratio

at the beginning of this chapter. The use of a, 6, and c, along with the

* This rule applies rigorously in the case of all elements and binary compounds.

In the case of compounds containing radicals and in the case of most organic com-

pounds, certain exceptions must be made which will be self-evident in the light of

Chap. VIII and Appendix III.

t This law was first stated in somewhat different language by the Abbe Ren4 Hauy
in 1782 as a result of a brilliant study of the exterior forms of crystals.

t Apparently these symbols were invented independently by Pliicker in 1828.

When applied to three dimensions they are called by mathematicians “nonhomo-
geneous space coordinates.”
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values of the ^‘actual’’ intercepts, means that the Miller indices are

the three smallest integers which are proportional to the reciprocals

of the Weiss intercepts of a plane.

For purposes of illustration, let us confine ourselves to the cubic

system, so that a = 6 = c = 1. Consider the family of parallel planes

whose intercepts are

1
,

^
2

, %
3, 1,

4 Vi

The smallest integers which are proportional to the reciprocals of these

numbers are 1, 3, 5 The planes are, therefore, all said to belong to the

(13 5) family.

The parentheses around the Miller indices make them apply to a

whole family of parallel planes rather than just to some one individual

plane. Thns the (100), (0 1 0), and (001) planes in a cube are the three

families of planes which are paT’allel to the cube faces. When an index

is taken in a negative direction along an axis, a minus sign is placed

over the index. It is evident that the (1 0 0) planes of a cube are parallel

to the (100) planes and are a part of the (100) family. Similarly,

the (01 0) and (OOT) planes belong to the (010) and the (001) families.

In general, two sets of Miller indices refer to the same family of planes

if each of the indices of one set has the opposite sign to the corresponding

index of the other set.

In the case of a cubic lattice, the (1 0 0), (010), and (0 0 1) planes may
be given the common designation of {100} since they cannot be dis-

tinguished from each other. Such a group of families of planes is called

a “form.” In a tetragonal space-lattice the plane-families (100) and

(010) are indistinguishable and belong to the form {100} because

a = h. Since the unit of measure, c, along the Z-axis is different from

a and 6, the family (001) cannot be a member of the form {100}. In

an orthorhombic space-lattice, (100), (010), and (001) are all different,

since a 9̂ b jA c. They cannot be given a common designation and

there can be no common form. The eight types of octohedral planes

of a cube are (111), (Til), (iTl), (llT), (TTl), (TlT), (iTT)^ and

(111). These are representatives of the four families (111), (111),

(1 T 1), (1 1 T), which constitute the form {111}.

Zone Axes.—Since the planes of a space-lattice are planes of atoms,

it follows that the intersections of the planes must be rows of atoms.

Conversely, every row of atoms must be the line of intersection for

two or more atomic planes. A row of atoms, considered from this view-

point, is called a “zone axis.” The larger the number of planes of
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small Miller indices which intersect at a given zone axis, the more impor-

tant is that zone axis. In a cubic lattice, the most important zone axes

are those parallel to the X-, F-, and -ZT-axes. For instance, any row of

atoms parallel to the Z-axis belongs equally to some member of each

of the (100), (110), (210), (320), etc., families of planes. For this

reason, the X-, F-, and Z-axes are often called the “principal axes.''

Consider a plane on a cubic space-lattice and let its Miller indices

be h. If some plane parallel to this plane passes through the

origin of coordinates, the position of any atom lying in the plane and

having coordinates x, y, z is subject to the equation of the plane:

hix + kiy + hz = 0

If h2k2l2 is some other plane intersecting the plane hjcili and also con-

taining the atom xyZj we have the additional equation

h2X + k2y + hz = 0

The equation of the line which represents the intersection of these two

planes, and which passes through the atom xyz, is therefore

_x
kih — lik2

y
— A 1Z2 hik2 — kih2

The three denominators are called the “indices of the zone" and are

usually written [uvw] where

u = kih — lik2

V = lih2 — hih

w = hik2 — k\h2

.For an orthorhombic crystal:

u = ic hk
C ^

h
c

^ * A A
’hi

A
h
c

h\f ,
h2

w —

The Miller indices of a plane containing two zone axes [uiViWi] and
[u2 V2W^ are:

h = V1W2 — W1V2

k = W 1U2 — ^11^2

I = U1V2 — V1U2

In the cubic system, the indices of a given zone axis are numerically

the same as the indices of the family of planes which is perpendicular to
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that zone axis. For instance: in a cube, the [100] axis is perpendicular

to the_^(100) plane; the [010] axis is perpendicular to the (010) plane;

the [1 1 1] axis is perpendicular to the (1 1 1) plane; etc.

Indices in the Hexagonal System.—We have defined a hexagonal

space-lattice as having two axes at an angle of 120° to each other and a

third axis perpendicular to the plane of the other two. When considered

from the standpoint of external symmetry, crystals having hexagonal

lattices must be assigned a total of four axes, the first three of which

are mutually 120° apart. These lie in a plane which is perpendicular

to the fourth axis. From this standpoint the atomic planes would have

four indices of the Miller type, called the Bravais-Miller indices. The
third index is always equal to — + fc). Since it does not enter into

the calculations of interplanar spacings it is often discarded by crystal

analysts,^ and its place is taken by a dot, thus: (1 0 * 0).

A rh^anbohedron may be considered as being made up of three

interpenetrating hexagonal space-

lattices, or it may be considered

to be a distorted cube for which the

three interaxial angles X, /x, i are

equal. The indices of the atomic

planes in a rhombohedron may there-

fore be referred either to the Bravais-

Miller indices of the hexagonal space

lattice Fa or to the true Miller indi-

ces of a distorted cubic lattice Trh-

The Bravais-Miller indices (HK -L)

are related to the Miller indices (hkl) by the following equations:

h^2H + K-\-L
k = K - H + L
I = -2K - H +L
H = h-k
K = k-l
L = h + k + l

When a rhombohedron is considered as being a distorted cube, a

second set of rhombohedral axes may be used which have the directions

of the face-diagonals of the original rhombohedron. This is shown in

Fig. 9. Indices A', Jk', V for the new rhombohedral axes may be calculated

from the indices for the original rhombohedral axes by means of the

formulas:

^k + l

V = h
= A “H fc
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Interrelations between Lattices.—There are certain crystal forms of

especial interest in that they may be regarded as belonging to either of

two crystal systems. For instance, if a model of a face-centered cube is

held so that one of its body-diagonals is vertical, a triangular arrange-

ment of the atoms'' is at once evident, and it is seen that the structure

may be regarded as a rhombohedron whose axial ratio, referred to hexa-

gonal axes, is 2.45. Similarly, a simple cube is a rhombohedron of axial

ratio 1.225, and a body-centered cube is a rhombohedron of axial ratio

0.612. A body-centered cube is a face-centered tetragonal prism of

axial ratio l/\/2, and a face-centered cube is a body-centered tetragonal

prism of axial ratio y/2. Any body-centered tetragonal prism of axial

Fig. 10.— (a) Hexagonal axes; (6) orthohexagonal axes.

ratio C may be considered as being a face-centered tetragonal prism of

axial ratio Cly/2] or a face-centered tetragonal prism of axial ratio C
may be called a body-centered tetragonal prism of axial ratio C\/2. A
simple triangular lattice of axial ratio C may be regarded as an ortho-

rhombic lattice of a special sort whose axial ratios are \/3 and C. A
large number of crystals have their axial ratios at or near these critical

values

It is sometimes convenient to consider a hexagonal structure in terms

of orthohexagonal axes of reference instead of in terms of the customary
hexagonal axes. The relation between these axes is shown in Fig. 10.

If the Bravais-Miller hexagonal indices are {HKL) and if the ortho-

hexagonal indices are (pgr), then

p = if + 2H H =

q = K K = q
r = L L = r

Similarly the orthohexagonal indices (pqr) may be transformed into
the regular Miller indices (hkl) of a rhombohedron by the equations
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A = 2p + 2r p = 2h — k — I

k = —p + 3g + 2r q =z k — I

I = —p — 3q + 2r r h + k + I

DENSITIES OF CRYSTALS

Since the determinations of the standard grating spaces of calcite and

rock salt are made in terms of the densities of single crystals and the mass
in grams of the unit of structure, it is evident that a density for crystalline

materials may be calculated in terms of the dimensions of the unit of

crystal structure as determined by x-raj" . methods. Such calculated

values are subject to whatever errors there hiay be in the determination

of the standard substances. This error seems to be considerably greater

than is usually supposed, not because of an inability to make more refined

x-ray measurements, but because the crystals of the same substance do

not exactly duplicate each other, due to the effect of traces of impurities

on the interplanar distances and due to fragmentation of the crystal.

Measurements of the size of the unit of structure may be easily duplicated

for the crystals of most materials to within per cent, using different

crystals of the same substance from different sources. This gives a

limit of duplicatability to density measurements from x-ray data of

Ho per cent. Densities calculated in this way agree in a general way
with those found by direct measurement. They rarely agree exactly,

even when both density measurements are made on the same sample of

material. This is probably because the material used for direct measure-

ment contains a small amount of intercrystalline material whose density

can hardly be expected to be that of the crystals. The extreme limits

of accuracy are illustrated by the case of Csl as measured by Clark and

Duane.® The salt was of atomic-weight purity. The density of one of

the crystals, as calculated from x-ray measurements was 4.513, while

the density of the whole sample was found by Baxter and Wallace^ to

be 4.509.

The density of a crystal may be calculated from the equation:

Density ==
weight

volume

The weight is the product of the atomic or molecular weight of the

chemical unit of which the crystal is composed, times the number of such

units per unit-crystal, times the factor 1.649 X 10“^^ which changes

units of atomic weight into grams. The volume is the volume of the

unit-crystal.

In the cubic system the density of the crystal is, therefore,

M X 1.649 X 10-2^
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where M *= mass of the chemical unit of which the crystal is composed,

i.e.y of the “molecule,’’ expressed in units of atomic

weight.

Oo = edge of the unit-cube in centimeters.

n = number of points associated with a unit-cube in the crystal

lattice, n is 1 for a simple cube, 2 for a body-centered

cube, 4 for a face-centered cube, and 8 for a diamond cube.

It was stated in Chap. I that crystals like NaCl could be pictured as

being simple cubes with positive and negative ions occupying alternate

corners of the cubes. Such a picture gives for NaCl a value for ao of

2.814 X 10"“® cm. and requires that the weight of the unit-cell be calcu-

lated in terms of the average weight of the Na and Cl; i.e., M is

^^(23.000 + 35.458) = 29.229 and n is unity. According to the theory

of space-groups (Chap. VIII), these structures should be thought of as

being face-centered cubic with one positive ion and one negative ion

both associated with a position on the face-centered cubic lattice. TLis

would give for NaCl a value for Uo of 5.628 X 10“® cm. insteul of

2.814 X 10”® cm.; would require M to be 23.000 + 35.458 = 58.458;

and would make n = 4. Obviously the two sets of calculations yield

identical answers.

In the tetragonal system the density is obviously

P == n
M X 1.649 X 10”24

Cao® (2)

In the hexagonal system the density is

M X 1 .649 X 10-"^

“ MV3Cao’
(3)

where ao = edge of the rhombus which serves as the base of the unit

prism.

n = 1 for a simple triangular lattice, 2 for a hexagonal close-

packed structure (see page 28), and 3 for a rhombohedral

lattice referred to hexagonal axes.

The value of ao in Eq. (3) is most easily found as 2d/\/3 for the (10-0)

planes or as 2d for the (11-0) planes.

SUMMARY

The six crystal systems and the 14 space-lattices have been described,

and the method of naming the atomic planes has been explained. The
interrelationships between certain crystal structures have been discussed

briefly, and the calculations of the densities of crystals have been touched
upon. We must now take up the calculation of the interplanar spacings
of various types of crystals, so that we may be in possession of the mini-
mum information necessary to a solution of the simpler crystal structures.
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CHAPTER III

THE CALCULATION OF INTERPLANAR SPACINGS

Reference has already been made to the importance of the calculation

of the distance between adjacent atomic planes belonging to the same

plane-family. The formula used in making these calculations is derived^

by a simple mathematical device composed of three steps as follows:

(1) A well-known theorem in solid analytic geometry gives us the per-

pendicular distance from any point to a plane. (2) In terms of (1)

we can calculate at once the perpendicular distance from an atom situated

at the point XiyiZi in one plane of the {hkl) family to some other {h kl)

plane which is used as a reference plane; a similar calculation gi\es us

the perpendicular distance between the reference plane and some other

atom at the point (3) If, now, the two atoms x^yiZi and X2y2Z2

lie in parallel (A fc 1) planes, then the difference between the two calculated

distances is the interplanar spacing of those two (A k 1) planes. P'or the

triclinic system of cr>^stals, the formula is quite complex. It becomes

successively simpler for the monoclinic, hexagonal, orthorhombic,

tetragonal, and cubic systems. Because of the simplicity of the formula

for the cubic system it will be derived first, and its application will be

shown for the various ordinary types of cubic crystals. The general

formula for the triclinic system will then be derived, and it will be shown

that the simpler formulas for the other crystal systems may be regarded

as special cases of the general triclinic formula.

INTERPLANAR SPACINGS IN A CUBIC CRYSTAL

Let ABC in Fig. 1 be a plane in a cubic crystal, and let its intercepts

be OA = 1/A, OB = 1/fc, and OC = 1/1 Let R be the center cf the

atom at the point XiyiZiy and let RP be a perpendicular dropped from

the point R to the plane. RP is therefore the distance di which we must
determine in step 1 of our calculations. Let the point 0 be chosen as

the origin of coordinates, and let the line OH be a perpendicular to the

plane from the point 0.

• Step 1. If we start from the point R and travel by any route so

as to return again to R, then the projections of the various portions

of the path on some one straight line must add up to zero. We then
choose as our path the route RP + PO + OE + ED + DR because it

includes the coordinates of the point R, namely Xi = OE, yi = ED,
Z\ = DR, We shall take our projections on the line OH, which is parallel

38
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to RP\ the projection of RP on an extension of OH is therefore RP itself,

Z.6., it is the distance di whose value we wish to find in step 2.

Step 2. If the arrows in Fig. 1 are taken to indicate the direction of

positive quantities along the three axes, we have

0 = — — projection of PO on OH + projection of OE on OH +
projection of ED on OH + projection of DR on OH.

The projection of PO on OH is OH itself, because P and H both lie

in the plane ABCj and the plane ABC is perpendicular to OH.
The projection of OE on OH is OE X OH/OA = OH • hxi.

The projection of ED on OH is ED X OH/OB = OH • kyi.

The projection of DR on OH is DR X OH/OC = OH • Izi.

Fig. 1.—Calculation of interplanar spacings in a cubic lattice.

Therefore,

di = — OZf + OH • hxi + OH • kyi + OH • Izi = (hxi + kyi + Izi — 1)07/

In order that di may be expressed completely in terms of only the

coordinates of the point R and the Miller indices of the plane ABC,
we must express OH in terms of h, k, and 1. This can be done by taking

advantage of the faci^ that the sum of the squares of the three direction

cosines of a line is equal to unity.

iOHnh^ + A;* + P) = 1

v/A* + A* +
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Therefore,

hxi + kyi + hi — 1

+ k^ + l^

(1 )

Similarly, the distance from the point XtytZt to the plane is

d. = + fcya + fea - 1

' Vh^ +
^ ^

Step 3. If the two points XiyiZi and are so chosen that they

lie in two planes of the same family as the plane ABC, then the interplanar

spacing for those two planes is

where

d — di — c?2

8

v^+ fc* + p
(3)

8 = (hxi + kyi + hi — 1) — ihx2 + fct/2 + ^2 — 1)

= hixi - X2) + k(yi - yi) + l(zi - 22)

The two planes are properly chosen for the calculation of interplanar

spacings when s is the smallest increment in the numerator of Eq. (1)

which regularly repeats itself. The numerator s is called the “periodic-

ity'' of the plane-family (hkl). For any given crystal, the calculation

of the interplanar spacings involves a study of the periodicities of the

planes.

In a simple cubic lattice, the generalized atomic coordinates have

been shown in Chap. II to be

m n p

This means that for a simple cube, the quantities Xi, z/i, Zi of Eq. (1) are

all integers. By properly choosing these integers, the numerator of

Eq. (1) can be made equal to any integer, either positive or negative,

including zero; that is, the numerators of Eq. (1) are members of the

series

-3, -2, -1, 0, 1, 2, 3,

This is illustrated for the (874) planes in Table I. The periodicity is

evidently unity, and so we have the following rule:

For a simple cubic lattice the value of s in Eq, (3) is always unity.

In a body-centered cubic lattice, the generalized atomic coordinates /

have been shown in Chap. II to be

m, n, p
m + n + p + H

This means that we may have two sorts of numerators for Eq. (1). The
first sort will be composed only of integers as in the case of the simple
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cube. The second sort of numerator will be the sum, diminished by
unity, of three products

him + j4)

kin + H)
Up + H)

Table I.

—

Tabulation of Successive Numerators of Eq. (1) for the (874)
Planes op a Simple Cubic Lattice (hkl) = (874)

Table II.

—

Calculations of Periodicity for a Body-centered Cubic Lattice

Generalized atomic coordinates

Numerator of Eq. (1) (i = integer)

Indices

all odd
Indices

all even

One odd
index

One even

index

m, n, p % i i i

w + K, n + K, P + H i + H i i

Number of integers 1 2 1 2

Number of integers + 1 0 1 0

Periodicity =* « •M 1 H 1
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If h, k, and I are all odd numbers,* or if only one of them is odd, the

numerators of the second sort will all be integers plus Since the two

sorts of integers must occur with equal frequency we can, by properly

choosing the integers w, n, and p, show that the numerators of Eq. (1)

are members of a series

- 2
, -m, - 1

,
0

,
1

, \y, 2
,

The periodicity is evidently and the value of s in Eq. (3) is therefore

If h, k, and I are all even numbers, or if only one of them is even,

the numerators of the second sort will all be integers and the periodicity s

must be unity. We therefore have the following rule:

For a body-centered cubic lattice, if all the indices of a family of planes

are odd, or if only one of them is odd, s — Yy, otherwise s = 1.

The generalized atomic coordinates for a face-centered cubic lattice

show that there will be four sorts of numerators for Eq. (1) and that

these four sorts will occur with equal frequency. The numerators of

the first sort are like those of the simple cube. The remaining three

sets of numerators are each the sum, diminished by unity, of three

products:

im + Y)
{k{n + yi)

(ip

(him + y)
<kn

(Kp + H)

i

hm
kin + H)
Up + H)

If only one index is odd, or if only two indices are odd, two of the three

last sorts of numerators will each give a sum which is an integer plus Y-
The other numerator will be like the numerator of the first sort, for it

will be an integer. We therefore have integers and integers plus Y
occurring with equal frequency as numerators in Eq. (1). By properly

choosing the integers m, n, and p, we have the series

-2, -ly, -1, -y, 0, 1, IK, 2,

The periodicity is evidently that is, s in Eq. (3) is A similar

discussion for all indices odd, or all indices even, shows that for such

cases s in Eq. (3) is unity. We have, therefore, the following rule:

* Zero is an even number.
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For a face-centered cubic lattice if only one or two indices are odd,

s = otherwise s = 1.

For a diamond cube, if only one index is odd, s = if only two indices

are odd, or if the indices are even but not divisible by A, s ^
\
otherwise

s = 1.*

Table III.

—

Calculations of Pekiodioity for a Face-centered Cubic Lattice

Numerator of Eq. (1) (i = integei)

Generalized atomic coordinates i

1

Indices

all odd
Indices

all even

One odd
index,

say h

One even

index,

say h

m, n, p i i i i

w* + » + Hi P i i i “h Vi i + H
n» + H, »1 P + H i i i +
m, « + Hi P + H i i i i

Number of integers 4 4 2 2

Number of integers + 0 0 2 2

Periodicity = s 1 1

It has been stated that the interplanar distance could be found by

studying the periodicity in the numerator of Eq. (3). This is well

illustrated in the case of the (111) plane in the diamond cube (see

Figs 5 and 6 of Chap. II). If the indices of a family of planes are all

multiplied by 2, so as to give indices 2h, 2k, 21, then Eq. (3) gives a

spacing of half that found for the planes {hkl). The interplanar spacing

of planes {h k 1) would give, therefore, with a given wave length of x-rays, a

diffraction pattern of the second order at the same angle as the first-order

pattern of the {2h 2k 21) planes. The third-order pattern of {h k 1) is at

the same angle as the first order of (ShSkSl), etc. Planes whose indices

contain a common factor may or may not be present in a crystal. For

instance, the (2 0 0) plane is present in body-centered, face-centered, and
diamond cubes, but not in the simple cubic lattice. As was explained

in Chap. II, such a plane, when actually present, is commonly called by

the simpler indices; thus the (444) plane is called merely the (111)

plane except when for some reason it is necessary to distinguish between

the two.

It is evident from the generalized coordinates of the atoms in the

diamond cubic structure that the distances from a given atom to suc-

cessive (1 1 1) planes are

* A detailed list of values of a under various conditions of symmetry will be found

in Appendix III.



44 CRYSTAL STRUCTURE

0 % 1 1^ 2 2%
> -: .y > > > —_> • • •

-s/3 V3 V3 Vs V3
This means that (1 1 1) planes in a diamond cube show a periodicity such

that the spacings are alternately and Such a structure may

be thought of as being composed of two families of (1 1 1) planes, the

Table IV.—Calculations of Periodicity for a Diamond Cubic Structure

Numerator of Eq. (1) (i = integer)

Generalized atomic

coordinates Indices

all odd

Indices

all even

but not

divisible

by 4

Indices

all even

and

divisible

by 4

One odd

index,

say h

One even

index,

say h

m, n, p i i i i %

w ^ + Ml V i i i i + H t 4 M
H- Ml w, P 4- M i i i i + H

m, w + Ml P + M i i i i i

m 4- Ml ^ + Ml P + M i + H t + K i i4M i

w + Ml ^ + Ml p + i 4 H + K i i 4 M i4M
m + Ml n + Ml p 4 M i 4 M i + Vi i ^ 4 M i 4 M
w 4 Ml ^ + Ml p +• M t 4M i + Vi i i 4 M i

Number of integers 4 4 8 2 4

Number of integers 4 M 0 0 0 2 0

Number of integers 4 M 0 4 0 2 4

Number of integers 4 M 4 0 0 2 0

Periodicity — s 1 1 M M

members of each family having an interplanar distance of l/\/3. If

x-rays of a given wave length strike the (111) planes at the appropriate

angle of incidence, diffraction of the first order will occur from both

these two families of planes. The two diffracted beams will not be exactly

in phase with each other, but they will be nearly enough in phase to give

a resultant of considerable intensity. The rule for s as given for the

diamond cubic structure is therefore worded so that s = 1 for the (1 1 1)

plane.

In the case of the diffracted beam of the second order, the periodicity

of the (1 1 1) planes in the diamond cube is such as to present interesting

complications. The two families of (1 1 1) planes are so spaced with

respect to each other that the distance between adjacent members

of the two families is K(l/V3), thus giving the effect of a family of

(444) planes (see Fig. 2). The diffracted beam of the second order

from the (111) planes [first order from a fictitious family of (222)
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planes] is destroyed by interference with the first-order beam from these

(444) planes, so that this beam is absent from the diffraction pattern

of a diamond cube. The effect is the same as if the spacing of these

fictitious (222) planes had been made half as great. The rule for s is

therefore so worded as to make 5 = 3^^ for the (2 2 2) plane.

The denominators of the equations for the various space-lattices of

any one crystal system are all alike when expressed in terms of the

symbols h, k, and Z. In the cubic system these denominators are the

square roots of numbers’ each of which is the sum of three squares,

i.e,, + P, There are no denominators equal to the square roots

of 7, 15, 23, 28, 31, etc., because no three perfect squares will add up to

give these numbers.

Taking the edge of the unit-cube as unity, the interplanar spacings

for a simple cube, body-centered cube, face-centered cube, and diamond
cube are shown in Table V. It is strongly recommended that the

reader calculate these values himself; in no other way can he gain the

intimate familiarity with these calculations which is necessary to a good

working knowledge of the subject.

Tetragonal and Orthorhombic Lattices.—Just as the structure of a

crystal having cubic symmetry is accounted for by assuming that the

atoms lie on some sort of an imaginary cubic framework, in the same

way it is assumed that in crystals belonging to the tetragonal system

the atoms lie on an ima^nary tetragonal framework. The bases of

the prisms of which this framework is composed are squares. The
vertical sides (direction of the 2^-axis) may be either longer or shorter
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than the sides of the base, depending upon the material of which the

crystal is composed.

Table V.—Interplanar Spacings in Typical Cubic Crystals

Miller
indices

-h k^
for simple

Number
of fami-
lies of

planes

1

Interplanar spacings, including the fictitious spacings for various orders
of diffraction n =* 2, n «= 3, etc. (Edge of unit cube = 1.0000)

h, k, 1 cube
Simple cube Body-centered

cube
Face-centered

cube Diamond cube

100 1 3 1.0000
110 2 6 0.7071 0.7071
111 3 4 0.5774 0.5774 0.5774
100 4 3 (n = 2) 0.5000

0 4472
0.5000 0.5000

210 5 12
211 6 12 0.4082 0.4082
110
22111

8
9)

6
12 )

L(n = 2) 0.3536
0 3333 )

(n >= 2) 0.3536 0.3536 0.3536

100 [ 9) (n = 3) 0.3333 3

0.3162310 10^ 12
.
0.3162

311 11 12 0.3015 0.3015 0.3015
111 12 4 (n = 2) 0.2887

0.2773
0.2887 (n - 2) 0.2887

320 13 12
321 14 24 0.2673

(n = 4) 0.2500
0.2425)

0.2673
100
41011

16
17)

3
12)

(n * 2) 0.2500 (n = 2) 0.2500 0.2500

322][ 17) 12 3 0 2425)
41111 18) 12

)

0.2357 j 0 . 2357

)

llOJ[ 18 J 6) (n = 3) 0.2357}
0.2294

(n = 3) 0.2357}
331 19 12 0.2294 0.2294
210 20 12 (n = 2) 0.2236

0.2182
0 2132

0.2236 0.2236
421 21 24
332 22 12 0.2132
211
43011

24
25)

12
12 )

(n «= 2) 0.2041
0.2000)

(n » 2) 0.2041 0.2041 0.2041

100 1[ 25) 3 3 (n = 5) 0 . 2000 }
0.1961 )

0 1961 }

431 i 26) 24 i 0.1961 )

510) 26) 12 ^

12 )

0.1961 }

511 1 27) 0 1924 ) 0.1924 ) 0.1924 )

111 i 27

)

4 3 (n = 3) 0.1924 3

0.1857)
0.1857}
0.1826

(n « 4)0.1768

(n « 3) 0.1924 } (n * 3) 0.1924 }

520]1 29

)

12 )

432 j[ 29 ) 24 3521

'

30 24 b 1826
110
5301

32

34

6
12 )

(n = 4) 0.1768
0.1715)

(n = 2) 0.1708 (n * 2) 0.1768

433 j 12 3 0.1715}
531 35 24 0.1690 0.1690
10011 3 ) (n « 3) 0.1667)

0.1667}
(n = 3) 0.1667)

0.1667 }221 j1

36
12 3

611 i1

38 12 ) 0 1622)
532 24 3 0.1622 }

310
541

40
42

12
24

(n - 2) 0.1581
^

0.1543
0.1581 0.1581

533 43 12 0.1525 0.1525
311 44 12 0,1508 (n * 2) 0.1508
631 46 24 0.1474
111
110)
710[

48 4
6 )

(n = 2) 0.1443
(n - 5) 0.1414)

0 1414 )•

(n » 4) 0.1443 (n = 4) 0.1443

50 12 !
54311 24) 0.1414)
71111

51
12 ) 0.1400) 0.1400)

551 1 12 3 0 . 1400 } 0.1400}
320 52 12 0 1387 0.1387
211)1 12) (n - 3)0.1361)

0 1361V552) 54 12>
721)1 24) 0.1361)
321'
730

56
58

59

24
12

(n - 2) 0.1336
0.1313

0.1336 0.1336

553) 12

)

0.1302) 0.1302)
731 ( 24 3 0 . 1302 } 0.1302}
7321

62 24

)

0.1270)
651 <

[ 24 3 0.1270}
100
7411

64 3
24)

(n - 4) 0.1250
0.1231)

in * 4) 0.1250 (n - 2) 0.1250

811}* 66 V2> 0.1231V
554)

1

12>
12

0.1231)
73 3'

67 • 0.1222 0.1222
4101
322

12)
12)

0.1213 ) 0.1213)
[

68 0 . 1213 } 0 . 1213 }-
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It was stated in Chap. II that the dimensions of a tetragonal crystal

are ordinarily expressed in terms of the lengths of the edges of the unit

tetragonal prism. If the edges of the base of the unit-prism are called

a and 6, and if the altitude is c, then a - b c. The unit of length

along the -Z-axis is therefore different from the unit of length along the

X- and F-axes. The ratio of these two units of length c/a = C is called

the axial ratio'' (see Chap. II). The advantage in using an axial ratio

is that it permits the use of equations for calculating interplanar distances

which closely resemble those used in the cubic lattices. Corresponding

to Eq. (1) for a cubic lattice, we have for the distance from any atom

to the plane (hkl):

d + izi - I

Similarly, Eq. (3) is replaced by

Vh^ + + {i/cy

Crystals belonging to the orthorhombic system are assumed to have

their atoms arranged on an imaginary framework such that the unit-

prism has rectangles for bases and sides. The edges of this unit-prism

along the X-, 7-, and Z-axes are a, 6, and c, respectively, and a 9̂ b 9̂ c.

Such crystals have two axial ratios, a/b = A and c/b = C, and Eqs. (1)

and (3) become

hxi + kyi + foi — 1

V{h/Ar + + (i/cy
(6)

s

\/(h/A)^ + + {i/cy
(7)

THE GENERAL EQUATION FOR THE INTERPLANAR SPACINGS OF
CRYSTALS

In the three crystal systems so far considered, the X-, F-, and Z-axes

were mutually perpendicular to each other. In crystals which, because

of the symmetry of their exteriors, are assigned to the hexagonal, mono-
clinic, or triclinic systems, this restriction no longer holds. If we call

the angles between the F-Z, X-Z, and X-F axes X, /i, and respectively,

then (see Chap. II)

;

In the hexagonal system, X = = 90®, v = 120®, and a — b ^ c

In the monoclinic system, X = /* = 90®, v may have any value except

90® or 120®, and a ^ b ^ c ^

In the triclinic system, \ 9̂ ^ ^ v and a ^ b ^ c
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We shall now derive the general equation for the distance from a point

to a plane and see how it may be applied to each of the six systems of

crystals.

Figure 1 may be used to represent the case of the triclinic system

if we imagine that the X-, F-, and 2-axes are not at right angles to each

other. The plane ABC represents any plane (hkl). The line OH is

still perpendicular to the plane (hkl). Its length may be represented

by p*
In deriving Eq. (1) for the cubic system we had the equivalent of the

expression

di = hxip + kyip + Izip - p (8a)

Since

h
-^p = cos Cl

kp = cos jS

I

-^p = cos 7

we may write this expression in a more general form which is better

suited to the triclinic system,

di = XiA cos a + 2/1 cos p + ZiC cos 7 — p (86)

Since a, jS, and 7 are now the angles between the line OH and the triclinic

axes, it remains to express cos a, cos i3, and cos 7 by means of functions of

X, py and Vy so that they may be made to relate directly to a triclinic

lattice. These new values must then be substituted into Eq. (86).

On the line which corresponds to OH of Fig. 1, take a point situated a

unit-distance from 0 and call its triclinic coordinates e, /, g. Projecting

the coordinates of this point on the triclinic Z-, F-, and 2-axes in succes-

sion, we obtain

— cos a + e + / cos + flf cos in = 0

— cos + e cos V + f + g cos X = 0

— cos 7 + « cos M + / cos X + ^ = 0

We then have

cos a =^ — e + f cos v + g cos p (9)

cos p = ftp = 6 cos cos X (10)

cos 7 = = e cos M + / cos X + gr (11)

* Care must be taken not to confuse this symbol with the generalized coordinate

of Chap. II.
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Equations (9), (10), and (11) may be readily solved for e, /, and g by the

method of determinants* with the following results:

h
cos V cos At

kp 1 cos X

-^p cos X 1

1 cos V cos p
cos V 1 cos X

cos II cos X 1

fl2)

g =

1 jp cos fl

cos V kp cos X

cos fl ^p 1

1 cos P cos At

cos V 1 cos X

cos fX cos X 1

1 cos V -jP

cos V 1 kp

. I

cos At cos X

1 cos V cos ^L

cos V 1 cos X

cos At cos X 1

(13)

(14)

Remembering that the point whose coordinates are c, /, g is at unit-

distance from the point 0
,
we have

e cos ot + f cos + g cos 7 — 1 (15)

Equation (15) may be written

+ /*P + = 1 (16)

* In the notation of determinants, the expression

a d g

b e h

c f i

is interpreted to mean (aei + bfg + cdh) — (ceg fha + »hd).
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Equation (16) may obviously be used to connect Eqs. (12), (13), and

(14) as follows:

aP

h
^p cos P cos fX

kp 1 cos X

^p cos.X 1

+ kp

1
k

1 -^P COS/Lt

cos p kp cosX

cos M 1

+ ^p

1
A

1 cos P jP

cos V 1 kp

^ 1
cos /H cos X

1 cos p cos /u

= 1

cos V 1 cos X

cos M cos X 1

This may be simplified to

h

^ cos V cos II

k 1

I

C

cos X

cos X 1

+V
1 2 COS /i

cos p k cos X

I
,cos /JL 1

+ cP^

1 COS P -rA
cos V 1 k

^ I
cos fA cos X ^

1 cos V cos /i|

cos P 1 cos X

cos /LI cos X 1

= 1

Solving for p:

p =
h
cos P cos /Li

A
1

k
1 ^ cos y.

1
k

1 cos P j
k 1 COS.X

^ cos X 1

+ k COS P k COS X

1 ,cos /Li 1

cos I' 1 k

cos H cos X ^

(17)

1 cos p cos /u

cos p 1 cos X

cos /u cos X 1

This value of p may then be substituted in Eq. (8a), which may be written

in the form

di = hxip + kyip + Izip — p
= {hxi + kyi + Izi — l)p (8a)

Our final value for di then becomes

hx\ fei ~ 1

h
A

h

2 cos P cos /Li

k 1 cos X

^ cos X 1

+ k

, k
1 cos fX

cos p k cos X

1 .
cos fX 1

1
k

1 cos V 2
cos pi k

^ 1
cos IX cos X ^

1 COS P cos /LI

(18)

cos p 1 cos X

cos /u cos X 1
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Application of the General Equation.—No simplification of Eq. (18)

is possible for the triclinic lattices, because \ 9̂ 9̂ v and a 9^ h 9̂ c.

Since, for the monoclinic lattices, X = /x = 90°, i.e., since

we have

=

cos X = cos /x = 0

hxi -f“ kyi "4" Izi — 1

///l\2 h. , /i

J{a)- 2a*»»' + ‘‘ + (( j
(1 — cos® P)

1

di= -

cos* P

hxi kyx + hi ~ 1

ay
(19)

2-
7k cos !» + A*
A

+©
sin^ V

For the orthorhombic lattices, \ = y = v = 90° so that

cos X = cos jLt = cos V = 0

and

ai —
hxi + kyi + Izi — 1

(20)
Vih/AY + fc *+ {l/CY

For the tetragonal lattices, \ — n = v = 90® and a = b cm that

^ _ fea:i + kyi + hi — I

' y/h^+ fc* + (J/CY
^ ’

For the cubic lattices, Eq, (18) evidently reduces to Eq. (1) for

\ = = V = 90° and a = 6 = c, and we have

hxi + kyi + Izi — 1
di

y/h^ + k^ + Y
(22)

For the hexagonal system, X = /t = 90°, p — 120°, a = b 9^ c, so

that we have

di =
hxi + kyi + fei — 1

(23 )

V%{h^ + hk + k^) + {i/cy

If a rhombohedron is considered as a distorted cube in which

\ fjL = V 9̂ 90° and a = & = c,

we have

d = (toi + kyi hi — l)\/l + 2 cos® X — 3 cos® X
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The complexity of Eq. (24) as compared with Eq. (23) accounts for

the tendency among crystal analysts when using the powder method
of analysis to calculate the interplanar spacings of rhombohedra on

the basis of the hexagonal system. The ^-axis of the hexagonal lattice

is the body-diagonal of the rhombohedron which passes through the

trihedral angle for which \ = jj, = v.

In the orthorhombic system of lattices it rests with the experimenter

which of the axes is picked as the Z-axis. He has nothing but his own
personal preference to guide him,* for the angles between the axes are

all identical. A similar situation is found in the case of a rhombohedron

considered as a distorted cube. It is to be expected, therefore, that the

rules for periodicity which we have derived for the cubic lattice will also

hold for these lattices. Otherwise the periodicity for a given plane would

depend upon the experimenter's accidental choice, and the interplanar

spacings in the crystal would change merely because some axis happened
to be called by a different name. Such an absurd result is impossible

if the same rules for periodicity apply to all crystal systems having

\ = V,

In the case of the triclinic system, all the axes are distinguishable

from each other since X At v, and the periodicity is necessarily

always unity.

For the hexagonal and monoclinic systems, the experimenter has

no choice as to which is the ^-axis; the matter is decided for him by
the angles between the axes. This means that for these two crystal

systems, the Z-axis is set apart as being crystallographically different,

i.e., distinguishable, from the other axes. This introduces certain

complications in the determination of s in Eqs. (19) and (23), for measure-

ments along this peculiar axis are to be regarded differently from measure-

ments along the X- and F-axes. This may be illustrated by considering

the case of the hexagonal close-packed structure, for which the generalized

atomic coordinates are

m, n, pC
w n + H, (p + }4)C

In Eq. (23) half the numerators will be of the form

hxi -f kyi -f- IziC — 1

and the other half will be of the form

h(xi -|- J'^) + k{yi + %) + l(zi -f- J'^)(7 — 1

Neglecting the — 1 which does not affect the value of s, each of the two

sorts of numerators of Eq. (23) may be considered to be composed of

* See Chap VIII for certain exceptions.
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two terms, one of which is the sum of two quantities that deal with

measurements along the X- and F-axes and the other of which deals

with measurements along the peculiar Z-axis. If the values of h and k

are such as to yield successive terms, which differ from each

other by unity, then the periodicity of the planes in the family {hkl)

will depend upon the successive values of YilC, Similarly, if y^lC yields

successive terms which differ from each other by unity, then the peri-

odicity of the planes will depend upon the successive values of

GaA + Hk).

The reader should make for himseii tables corresponding to Tables II,

III, and IV to aid in a thorough understandirg of the above.

A rhombohedron, considered fr(»m the standpoint of hexagonal axes,

has the generalized coordiu^' t es

w, n, pC
m + H, n + (p + }4)C

m. + %, n + }4, (p + %)C

In the case of a rhombohedror, the derivation of the rule for the value

of s in Eq. (23) is left as an exercise for the reader.

A consideration of the generalized atomic coordinates gives the

following rules for the value of s in Eq. (23)

:

Simple triangular lattice: s is always unity.

Hexagonal closed-packed structure: If the difference between h and k is

a multiple of 3, then if I is oddj s = 3"^; otherwise s = 1.

Rhombohedral structure referred to hexagonal axes {see Chap. II):

If the difference between h and k is a multiple of 3, then if I is a multiple

o/ 3, s = 1, but if I is not a multiple of S, s = if the difference between

h and k is not a multiple of 3, then if I is a multiple of 3, s = but if I is

not a multiple of 3, then s = 1.

In the application of these rules, it should be remembered that zero

is a multiple of 3.

SUMMARY

We have taken up the calculation of the interplanar spacings of

cubic crystals. Using this as an introduction, we have derived the

general formula for interplanar spacings of crystals, and we have shown

how the periodicity of the planes (which enters into our formulas for

interplanar spacings) may be determined for the various types of crystals.

We are now ready to take up the simplest cases of crystal analysis

by the Laue, Bragg, powder, and rotation methods. This will be done

in the next four chapters.

Reference

1. A. W. Hull, Phys. Rev., 10, 661 (1917).



CHAPTER IV
f'

THE LAUE METHOD OF CRYSTAL ANALYSIS

X-RAY SPECTRA AND THEIR APPLICATION TO CRYSTAL ANALYSIS

The beam of x-rays given off by an x-ray tube contains waves of

every possible wave length, from the longest x-rays which can emerge

from the glass of the. tube with appreciable intensity down to a limit

which is determined only by the voltage across the x-ray tube. This

limiting wave length Xo may be calculated at once from the peak voltage

across the tube by the “quantum equation,”

Xo
he

Eie
( 1 )

Fig. 1.—Spectrum of white x-rays. {Hull,)

where h = proportionality constant (Planck’s constant) = 6.65 X 10~”

erg sec.

c = velocity of light = 3 X 10*® cm. per second.

El = potential difference across the x-ray tube in absolute electro-

magnetic units = volts X 10®.

e = charge on the electron in absolute electromagnetic units =

1.591 X 10"®® e.m.u.

Since e, h, and c are all constants, Eq. (1) may be written

X7= 1.234 X lO-^Es"*

54

(2)
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where E2 is the potential difference across the x-ray tube in volts. By
analogy with visible light, a beam of x-rays which contains all possible

wave lengths within the limits given above is usually called a beam of

white x-rays. For every element there are groups of wave lengths

which are characteristic of that element. These groups are called the

Kf Lj My , . , series. The target of an x-rayJlibe emits all the wave
lengths of a given one of its characteristic series with relatively large

intensities when the voltage across the tube exceeds the quantum limit

for the shortest wave length of that series. The result is that these

Fig. 2.—Characteristic x-ray spectrum of tungsten superimposed on white spectrum.
(Hull,)

characteristic rays are superimposed on the white x-rays. X-ray

spectra are illustrated in Figs. 1 and 2, taken from articles by A.-W. Hull

in X-ray Studies of the Research Laboratory,” General Electric Com-
pany. The voltages calculated from Eq. (2) which are necessary to

produce characteristic rays from the various elements are given in

Table I.

These peculiarities of x-ray spectra have all been utilized by one or

another of the various methods of x-ray crystal analysis. The Laue
method uses the white rays. The Bragg and powder methods use one

of the characteristic wave lengths. Each of these methods has its own
advantages and disadvantages for various kinds of work. It will there-

fore be worth pur^hile to take up each in turn.
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Table I.—Potential Difference in Kilovolts across the X-ray Tube Required
TO Excite Spectral Lines Characteristic op Various Elements*

K L M N
1

i

i

K * L M N

92 U 115 21.7 5.54 1.44 47 Ag 25.5 3.79 0.72 0.10

90 Th 109 20.5 5.17 1.33 46 Pd 24.4 3.64 0.67 0.08

83 Bi 90.1 16.4 4.01 0.96 45 Rh 23.2 3.43 0.62 0.07
82 Pb 87.6 15.8 3.85 0.89 44 Ru 22.1 3.24 0.59 0.06
81 T1 85.2 15.3 3.71 0.86 42 Mo 20.0 2.87 0.51 0.06
80 Hg 82.9 14.8 3.57 0.82 41 Nb 19.0 2.68 0.48 0.05

79 Au 80.5 14.4 3.43 0.79 40 Zr 18.0 2.51 0.43 0.05
78 Pt 78.1 13.9 3.30 0.71 39 Yt 17.0 2.36

77 Ir 76.0 13.4 3.17 0.67 38 Sr 16.1 2.19

76 0s 73.8 13.0 ‘3.05 0.64 37 Rb 15.2 2.05

74 W 69.3 12.1 2.81 0.59 35 Br 13.5 1.77

73 Ta 67.4 11.7 2.71 0.57 34 Se 12.7 1.64

72 Hf 65.4 11.3 2.60 0.54 33 As 11.9 1.52

71 Lu 63.4 10.9 2.50 0.51 32 Ge 11.1 1.41

70 Yb 61.4 10.5 2.41 0.50 31 Ga 10.4 1.31

69 Tm 59.5 10.1 2.31 0.47 30 Zn 9.65 1.20

68 Er 57.5 9.73 2.22 0.45 29 Cu 8.86

67 Ho 55.8 9.38 2.13 0.43 28 Ni 8.29

66 Dy 53.8 9.03 2.04 0.42 27 Co 7.71

65 Tb 52.0 8.70 1.96 0,40 26 Fe 7.10

64 Gd 50.3 8.37 1.88 0.38 25 Mn 6.54

63 Eu 48.6 8 04 1.80 0.36 24 Cr 5.98

62 Sm 46.8 7.73 1.72 0.35 23 Va 5.45

60 Nd 43.6 7.12 JL.58 0.32 22 Ti 4.95

59 Pr 41.9 6.83 1.51 0.30 21 Sc 4.49

58 Ce 40.3 6.54 1.43 0.29 20 Ca 4.03
1

57 La 38.7 6.26 1,36 0.27 19 K 3.59

56 Ba 37.4 5.99 1.29 0.25 17 Cl 2.82

55 Cs 35.9 5.71 1.21 0.23 16 S 2.46

,53 I 33.2 5.18 1.08 0.19 15 P 2.14

52 Te 31.8 4.93 1.01 0.17 14 Si 1.83

51 Sb 30.4 4.69 0.94 0.15 13 A1 1.55

50 Sn 29.1 4.49 0.88 0.13 12 Mg 1.30

49 In 27.9 4.28 0.83 0.12 11 Na 1.07

48 Cd 26.7 4.07 0.77 0.11

* M. SiKGBAHN, “Spektroskopie der Rdentgenstrahlen,” Julius Springer, 1924.

THE LAUE DIFFRACTION PATTERN

If a crystal is placed in the path of white x-rays it will, in general,

diffract some of the x-rays, for, no matter what plane of atoms in the

crystal may be inclined to the beam, there will be some wave length

present which will require just that grazing angle of incidence for diffrac-

tion from that family of planes. In other words, for any values of d

and d in Eq. (1) of Chap. I there will be found in the beam some value

of X such that diffraction can occur, provided only that the voltage across
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the x-ray tube is high enough to produce that wave length. Since the

atoms of a crystal have an orderly arrangement in all three dimensions

in space, it follows that diffraction of x-rays will occur from many
families of atomic planes at once,

each family picking out the wave
length which it can diffract at the

angle at which it finds itself. This

is illustrated diagrammatically in

Fig. 3. The sort of diffraction

pattern obtained is illustrated in

Fig. 4 first published in the origi-

nal work of Friedrich, Knipping,

and Laue.^

When the primary beam passes Fig. 3.-—Diffraction of white x-rays by a

along an axis of symmetry of the
stationary crystal.

crystal, the Laue pattern consists of a series of “spots’’ whose loci are

ellipses which pass through the “central image” made by the primary

Fig. 4.—Laue diffraction pattern of zinc blende. The rays pass through the crystal parallel

to one of the cubic axes.

beam, and which are symmetrically placed around it. This is shown in

Fig. 5. W. L. Bragg’s explanation of the elliptical shape of these loci

is as follows.* Let the primary beam approach the crystal in the direo-
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tion of one of its axes, for instance, the Z-axis in Fig. 6. It will pass

through the crystal at 0 and strike the photographic plate at P, pro-

ducing the central image. If the line OQ is the direction of some row of

atoms in the crystal, i.c., if it is a zone axis, then OQ is necessarily the

intersection of several atomic planes. If one of these happens to lie

in the- YOQ plane, the diffracted beam will make a spot on the photo-

graphic plate at R, Other atomic planes passing through OQ will cause

diffracted beams whose locus is the surface of a cone whose altitude is

along OQ and whose generators lie along OR and OP. The intersection

of this cone with the photographic plate is an ellipvse.

Fia. 6.—Elliptical loci of spots of Lauc
pattern.

Fig. 6.—Bragg’s explanation of

elliptical loci.

PROJECTION DIAGRAMS

In the Laue method a crystal is used such that its faces, and therefore

its crystallographic axes, may be identified by ordinary crystallographic

methods. This implies that the type of crystal structure must be
assumed to be that found by the ordinary crystallographic measurements
of the angles between faces, for, if the faces of the specimen crystal are

wrongly identified, the simple procedure given in this chapter becomes
very much more complicated. We shall assume, therefore, that the

crystal is mounted so that one of its principal faces is perpendicular, or

nearly perpendicular, to the direction of the incident primary x-ray

beam.

The identification of the plane-families associated with the spots in

the Laue diffraction pattern is very laborious when a strictly analytical

method is used. Labor is lessened greatly by the use of graphical methods
in which each of the plane-families in the crystal is represented by a single

point in a plane called the plane of projection. Such a scheme permits
us to study the orientations of planes in a three-dimensional crystal by
graphical methods in two dimensions.
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Although, of course, there are many ways by which a point may be

made to represent a plane, the simplest and most common method is as

follows: Construct a sphere using as a center some point (i.e., atomic

center) in one of the planes of the crystal. From this central point erect

a perpendicular to the plane. This perpendicular acts like a pointer and

Fio. 7.—Proj^'ction of a point on a small circle.

its intersection with the surface of the sphere is a point which shows by

its position the orientation of the plane. By merely erecting the neces-

sary perpendiculars, we may have a separate point on the surface of the

sphere for each family of planes in the crystal; for instance, we may have

points for (100), ^010)^ (001), (110), (011), (101), (TlO), (OTl),

(1 0 1), (1 1 1), (1 1 1), (1 1 1), (1 1 1), etc. The number of points which

we place on the surface of the sphere will be limited only by the number of
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plane-families in the crystal whose orientations we may happen to wish

to show. We have, then, a method by which each plane in the crystal

can be represented by a single point. It remains to transfer all these

points systematically to a single plane so that our three-dimensional

crystal may be represented in two dimensions. This is done by (1)

setting up a plane called the ‘'plane of projection^' (see Fig. 7a), (2)

erecting a perpendicular OME to this plane through the center of the

sphere, (3) placing the eye at some specified place on this line OMEj and

(4) marking the points on the plane of projection where the eye “sees"

the various points on the surface of the sphere. The schemes of projec-

tion in common use among crystallographers differ among themselves

only in the location of the plane of projection and in the position of the

eye of the observer.

In order that we may understand how these variables affect the con-

figuration of points in the final projection, we shall take up first the general

equations for the projection of a point from the surface of the sphere to

the plane of projection. We shall then consider the application of the

general equations to the special cases of those projections, the gnomonic

and the stereographic, which are most used by crystal analysts. These-

and still other types of projection have been discussed in an article by

F. E. Wright^ to which the reader is referred for a complete mathematical

r6sum6 of the subject.

In the general case (see Fig. 7a) let MN and MO be the equatorial

radius and the polar radius, respectively, of the sphere whose center is

the pointM in the crystal plane. Both MN and MO lie in the plane of

the paper. Let MP be the perpendicular erected to the crystal plane

at M. The point P lies above the plane of the paper. MP makes an

angle p with the equatorial radius MN and an angle p' with the polar

radius MO, Let the plane of projection XT be perpendicular to the line

MO so that all lines in the plane passing through the point 0 are per-

pendicular to OM, Let the eye of the observer be at the point E on the

extension of the line Oilf, and let a be the distance from the eye to the

center M of the sphere. Let the line of sight EDP cut the equatorial

plane at D, making an angle pi with EMO, and let P' be the projection

on the plane XY along the line of sight of the point P. The coordinates of

P' in the plane of projection are x and y. Since the plane POP' makes an
angle 0 with MN, the line OP' will make an angle <!> with the F-axis as

shown in Fig. 7c,

The derivation of the general equations of projection may now be
considered in two parts: (1) the case where the point P lies on a small

circle of the sphere of projection such that the small circle is parallel to

OME of Fig. 7 and perpendicular to the equatorial diameter NN' and
to the F-axis of the plane of projection; (2) the case where the point P
lies on a great circle of the sphere of projection.
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Case 1 : P Lies on a Small Circle.—In Fig. 7a the plane of PMA is

perpendicular to the plane of AMN so that by imagining a great circle

drawn through P and A we would have a right spherical triangle PAN.
Then:

The spherical angle PAN = 90®

The central angle subtended hy AN = 4>

The central angle subtended by AP = 90° — p'

The central angle subtended by PN = p

and

cos p = cos ^ • cos (90° — p')

cos p = cos 4) • sin p' (3)

In the triangle EMP (see both Figs. 7a and 7b)

i^P == radius of the sphere = 1

ilfT? = distance from the eye to the center of the sphere = a

AMPE = ZPMO - APEM = p' - pi

]\^E _ sin (p^ — p i) _ a

MP ””
sin Pi

""
T

— sin (p^ — pi) _ sin p' cos pi — cos p^ sin pi
""

sin Pi sin pi

a = sin p' • cot pi — cos p' (4)

Since

OP' = (see Figs. 7a and 7c)

and since

OE = 1 + a (see Figs. 7a and 76)

we have

cos 0 =
y/x^ +

and

tan Pi
1 o

By combining Eqs. (3) and (4) we find that

cos p • cot Pi = a cos <f> + “s/cos* 0 — cos* p

for, if, from Eq. (3),

sin p' = cos p

C08 <t>

(5)

(6)
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then

and

cos ' — ll _ 0 -- CQS^ p
^ \ cos‘^ </} • cos

\/cos‘^ 0 — cos^ pa -f- cos = d "1“

cos
<l>

_ d cos
<t> + \/COS^ (j) — cos^ p

cos 0

But from (4),

so that

a + cos p' = sin p' • cot pi

, ,
d cos <6 + \/cos^ d>

— cos^ p
sin p' • cot Pi = ^

cos 0

But if (3) is multiplied by cot pi,

cos p • cot Pi = cos
<t>

• sin p' • cot pi

or

Therefore

sin p' • cot Pi
cos p cot Pi

cos
<t>

cos p cot Pi = d cos 0 + -y/^s^ <t>

— cos‘^ p (7)

By combining Eqs. (5), (6), and (7) we obtain the general equation

for the projection of a point lying on a small circle of the sphere. This

equation will involve only p, x, and y, for from (6) we have

cot Pi = —=

tan Pi

1 “h d

y/x^ +

and from (5) we have

cos </>

y

so that substitution in (7) gives

1 ^
COS p

ay
+ cos’® p

(1 + a) cos p = ay + y/y^ — (a:* + y^) cos* p (8)
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This is the general equation for the projection of a point lying on a

small circle of the sphere when the small circle is perpendicular to the

r-axis of the plane of projection.

Case 2: P Lies on a Great Circle.—The designation of points and
angles in Fig. 8 corresponds to that used in Fig. 7. Let us choose a

great circle whose diameter RR' (Fig. 8) is parallel to the X-axis of the

plane of projection. Then the plane of the great circle RPKR' is per-

pendicular to the plane of the great circle OKNN', In the right spherical

triangle POK,
The spherical angle PRO = 90°

The central angle subtended by OK = S

The central angle subtended by OP = p'

The angle POK is measured by the central angle <#> which is sub-

tended by AN
The cosine of an acute angle subtended by one leg of a right spherical

triangle in terms of functions of the angles subtended by the other

leg and by the hypotenuse is

cos <t>
= cot p' tan 6
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tan d — cos <l> tan p' (9)

In the plane triangle EMP (see both Figs. 7a and 7b) Eq. (4) still applies:

a == sin p' cot pi ~ cos p' (4)

By combining Eqs. (4) and (9) we may eliminate the functions of p'

thus:

^ , tan 0
tan p' = ;

cos 4>

sin p' _ tan 0

cos p cos

, tan 6 cos p'
sin p' = —

cos
<t>

Since, by a well-known theorem,

we have

cos p' =

cos p =

“f* tan^ p^

tan^ 6

cos® 0

cos 0

\/cos® 0 + tan® 6

so that

sin p' = tanj ^^ ^

cos 0 cos 0 V cos® 0 + tan® $

sin p' =
V cos® 0 + tan® d

Substituting these values of sin p' and cos p' in Eq. (4), we have

tan 6 ,
cos 0

y... COt Pl 7===========^=======

^cos® 0 + tan® ^ Vcos® 0 + tan® ^

a \/cos® 0 + tan® $ = tan 6 cot pi — cos 0

From Fig. 7c,

cos 0 =
y2
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and from Fig. 75,

so that

^ + y

1 +

a (
y'

\x^ + 2/2
+ tail2 ^ ^

\ CL

y/

y

\/x^ + 2/2

or

ay/2/2 + (x^ + y^) tan2 0 =- (1 + a/ tan B — y (10)

This is the general equation for the prc^jeciion of a point lying on a

great circle of the si -here when the great circle is parallel to the X-axis

of the plane of projection. Since the final form of the equation includes

no angles but ;md since tlie directions which we chose as the directions

of the A"- and Y-axes were entirely arbitrary, it follows that Eq. (10)

wili apply to the projection of any point lying on the upper half of any

given great circle of the sphere. By assigning definite positions to the

plane of projection along the line EO, and by assigning definite values to

a{^ME)y we may obtain the special equations for the various types of

projection in common use. Of the various projections (gnomonic,

stereographic, orthographic, and Wright) ordinarily used by mineralogists

and crystallographers the first two have found direct application in

crystal analysis. It will therefore be of interest to derive their special

equations as a means of studying the properties of their projected

figures.

GNOMONIC PROJECTION

In this projection (see Fig. 9a) the eye is considered to be at the center

of the sphere of projection, and the plane of projection is tangent to

the sphere at the pole 0. The points E and M therefore coincide, so

that a = 0, and p' = pi. Equation (8) for the point on the small circle

then becomes

cos2 p - y^ — + y^) cos

2/2(1 — C032 p) = (1 + x2
) c

y. = (1 +" 1 — cos* p

J/* = (1 + X*) cot* P (llo)

which is the equation of an hyperbola. Substitution of a 0 in Eq.

(10) for the great circle gives immediately

y = tan 0 (lib)
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which is the equation of a straight line for any single value of 0, Equa-

tion (11a) shows that if the plane LU of Fig. 9a is rotated about NN' as

an axis, its gnomonic projection P' will sweep out an arc of an hyperbola

in the plane of projection. When P' falls on the F-axis of the plane of

projection, p of (11a) equals 90° — 6 oi (116). Equation (116) shows

that, for successive values of p, the intersections of the hyperbolas with

the F-axis will lay off lengths on the F-axis which will be proportional to

tan 6. This will come up later in our discussion of the gnomonic rotation

net. Equation (116) also shows that when B is kept constant, then y is

constant so that if the plane LU of Fig. 9a is rotated about an axis which

is normal to the great circle RPKR' (Fig. 8) at its center M, then the

gnomonic projection of the plane will sweep out a straight line on the

Fkj. 9«.—Gnomonic! projection of the plane
LL\

Fig. 9?>.—Stereographic projection of the

plane LL\

plane of projection. This means that in the gnomonic projection all

zone axes are represented by straight lines. Herein lies the great value

of the gnomonic projection to the crystal analyst. It has the defect

that the plane of projection would have to extend to infinity in all direc-

tions in order to represent one hemisphere of the reference sphere.

STEREOGRAPHIC PROJECTION

This projection (Fig. 96) differs from the gnomonic not only in the

location of the eye but also in the location of the plane of projection.

The eye is placed at the lower pole E of the reference sphere, and the

plane of projection is made to coincide with the equatorial plane of the

reference sphere. This gives us a = 1 and p' = 2pi. Since the plane

of projection is no longer tangent to the reference sphere but now coin-

cides with the equatorial plane, the coordinates of our projected points

will be only half as large as those in our general Eqs. (8) and (10). If

x' and 2/' are the coordinates on the equatorial plane and x and y are the

corresponding coordinates of a point projected on the tangent plane,

then
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X = 2x'

y = 2y'

Equation (8) for the projection of a point which lies on a small circle of

the reference sphere becomes

tan^ p

for, remembering that a —
1,

2 cos p — y = — (s ^ + y^) cos^ p
4 cos^ p — ^y ct;s p + y- = y- - + y‘^) cos^ p

Ay = cos p • ,4 + + y^)

Si/ - cos p • (4 + 4x'‘‘* + 4/^)

2/ = r-os p • (1 + + y"^)

2y' cos p = cos^ p + x'^ cos^ p + y'- cos* p

Since cos’ p = 1 - sin* p,

y'* cos* p — 2/ CDS p + 1 + cos* p = sin* p

2/'* - 2y'—-- + -VCOS P cos-* P
+ a;'

.'2

COS^ p

tan^ p (12a)

which is the equation of a circle.

Equation (10) for the projection of a point which lies on a great circle

of the reference sphere becomes

{y' + cot e) + x'2
1

sin^ ^
csc‘^ B

for, since a = 1, Eq. (10) will read

2 tan 6 — y = y/y^ + {x^ + y^) tan^ 6

4 tan^ 6 — Ay tan 6 + y^ = y^ + {x^ + y^) tan^ B

A — Ay cot ^ + t/2

2
/^ + Ay cot ^ == 4
y'^ + Ay cot ^ + 4 cot^ ^ = 4 + 4 cot^ B

(y + 2 cot By + — 4(1 + cot^ B) = ^^[^0 ~

(y' + cot 0)* + a:'* = -r;^ = esc* d (126)
Sin u

which is the equation of a circle.

The stereographic projection represents one hemisphere of the refer-

ence sphere in a circle of unit radius and will represent the whole reference
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sphere if the plane of projection is of infinite extent. It is angle true;

all zone lines are circular arcs. These properties make the stereographic

projection useful to the crystal analyst in picturing ‘‘preferred orienta-

tions '' of crystals in mechanically worked metals. This subject will be

taken up in a later chapter,

IDENTIFICATION OF SPOTS IN THE LAUE PATTERN BY MEANS OF THE
GNOMONIC PROJECTION

The gnomonic projection is so widely used in connection with the

Laue method that it will be worth while to describe it more fully from

the standpoint of the crystal analyst. The method of identification of the

Laue spots is illustrated in Fig. 10. The primary beam of x-rays passes

through the crystal at 0. and strikes the photographic plate at P. On

Fio. 10.—Gnomonic projection of a Laue spot.

its way through the crystal at 0 it will strike some atomic plane. Let us

assume that this atomic plane is perpendicular to the plane of the paper

and that it passes through the zone axis OQ. A perpendicular drawn to

this plane at 0 will strike the plane of projection at S. Then S is the

gnomonic projection of this plane of the crystal. The distance from the

spot on the photographic film at R to the central image at P is PR = PO
tan 26. The distance from the primary x-ray beam to S is P'aS = P'O
tan (90° — 0). In practice, PO is usually 4 or 5 cm. and P'O is usually

5 cm. Convenient tables for gnomonic projection have been published

by Wyckoff.^ They are reproduced here as Tables II and III. The data

of Table II or III may be marked off on a paper or celluloid rule (Fig. 11).

A silver print is then made of the original negative of the Laue pattern.

This print is pasted at the center of a sheet of drawing paper, and a pin

is passed through the common starting point P' of the two scales on the

rule and through the middle of the central spot on the print. The rule
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Table II.—Data for Preparing Gnomonic Ruler When the Distance from
Crystal to Plate Is 4 Cm.

Left side of ruler,

centimeters

Right side of ruler,

centimeters

Left side of ruler,

centimeters

Right side of ruler,

centimeters

1.20 34.06 3.40 13.60

1.25 32.77 3.50 13.31

1.30 31.57 3.60 13.03

1.35 30.45 3.70 12.77

1.40 29.42 3.80 12.52

1.45 28.45 3.90 12.29

1.50 27.58 4.00 12 07

1.55 16.74 4.10 11.86

1 .60 25.96 4 20 11.67

1 65 ‘..6-23 4.30 11 .48

1 .70 21 55 4.40 11.30

1.75 23.90 4.50 11.13

1 SO 23.29 4.60 10.97

1 .So 22.73 4.70 10.82

1.90 22.10 4.80 10.68

1.95 21 .67 4.90 10.54

2.00 21.18 5.00 10.40

2.05 20.72 5.10 10.28

2,10 20.28 5.20 10.15

2.15 19,86 5.30 10,04

2.20 19.47 5.40 9.93

2.25 19.09 5.50 9.82

2.30 18.72 5.60 9.71

2.35 18.38 5.70 9.62

2.40 18.05 5.80 9.52

2.45 17.74 5.90 9.43

2.50 17.44 6.00 9.34

2.55 17.14 6.10 9.26

2.60 16.87 6.20 9.18

2.65 16.60 6.30 9.10

2.70 16.35 6.40 9.02

2.75 16,10 6.50 8.95

2.80 15.86 6.60 8.88

2.85 15.63 6.70 8.81

2.90 15.42 6.80 8.74

2.95 15.20 6.90 8.68

3.00 15.00 7.00 8.61

3.10 14.61
"

3.20 14.25

3.30 13.92
1
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Table III.—Data for Preparing Gnomonic Ruler When the Distance from
Crystal to Plate Is 6 Cm.

Left side of ruler,

centimeters

Right side of ruler,

centimeters

Left side of ruler

centimeters

Right side of ruler,

centimeters

1.10 46.0 3.30 16.65
1.16 44.0 3.35 16.44
1.20 42.3 3.40 16.24
1.25 40.6 3 . 45 16.05

3.50 15.86
1.30 39.1

1.35 37.7 3.55 15.68

1.40 36.4 3.60 15 50
1.45 35.2 3.65 15.33

1.50 34 . 06 3.70 15.16

3.75 14.99

1.65 33 . 01 3.80 14.84

1.60 32.02 3.85 14.69

1.65 31.10 3.90 14.54

1.70 30.24 3.95 14.40

1.76 29.41 4.00 14.26

1.80 28.65 4.10 13 . 98
1.85 27.92 4.20 13.73

1.90 27.23 4.30 13.48

1.95 28.58 4.40 13.25

2.00 25.96 4.50 13.02

2.06 26.38 4.60 12.82

2.10 24.82 4.70 12.62

2.15 24.29 4.80 12.43

2.20 23.78 4 . 90 12.25

2.25 23 . 29 5.00 12.07

2.30 22.84 5.10 11.90

2.35 22.39 5.20 11.74

2.40 21.97 5.30 11.59

2.46 21.57 5.40 11.44

2.50 21.18 6.60 11.30

2.55 20.81 5.60 11.17

2.60 20.45 6.70 11.04

2.65 20.11 5.80 10.91

2.70 19.78 5.90 10.79

2.76 19.47 6.00 10.67

2.80 19.16 6.10 10 . 66

2.85 18.87 6.20 10.45

2.90 18.58 6.30 10.35

2.95 18.31 6.40 10.25

3.00 18.05 6.50 10.16

3.05 17.80 6.60 10.06

3.10 17.66 6.70 9.97

3.15 17.32 6.80 9.88

3.20 17.09 6.90 9.80

3.25 16.87 7.00 9.72
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then enables the experimenter to mark down directly on the drawing

paper the point which is the gnomonic projection for the plane-family

corresponding to any given Laue spot.

The gnomonic projections of the Laue patterns of rutile (Fig. 12), and
of rhodochrosite (Fig. 13), illustrate how the names of the various atomic

76 543 2 765 4 3 2 1.5 1

1 'III' Ill'll 1
p=5Cm l.lil 1 1 1

Fig. lx,—Tl>e WyekofT scale.

planes are related to the corresponding points of the projection. Let us

assume for simpliciiy that the crystal belongs to the cubic system and

that the x-rays strike it in the direction of the Z-axis. The positions of

the X- and F-axes are known from the external symmetry of the crystal.

C = 0.455, i.e., body-centered tetragonal with C = 0.644.

Figure 14 gives the gnomonic projections of typical planes which lie

parallel to the F-axis. It is evident that Si, which is the gnomonic

projection of the plane QiOF, is exactly as far from the central image P'

as is the crystal 0, and that P'/Si = S 1S2 = 8282 - This means that if the

plane of projection is P'O cm. from the crystal, then the gnomonic
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projections which fall in the direction of the X-axis are all P'O cm. apart

from each other. Similarly, the gnomonic projections which fall in the

direction of the F-axis are P'O cm. apart. The gnomonic projection of a

cubic crystal is therefore based on a network of squares whose sides are

equal to the distance from the crystal to the plane of projection. The

indices of the planes whose projections fall at the intersections of this

network may be read off directly in terms of the coordinates of their

projections on the network, remembering that the I index (reciprocal

Fio. 12&.~ -Gnomonic projection of Lauc pattern of rutile primary beam at an an^le to

the Z’-axis. (Wyckoff.)

of the intercept of the plane on the Z-axis) is necessarily unity. Indices

of other planes whose projections do not fall on the network may be

determined by first expressing them as fractions and then by changing

them to the lowest possible corresponding integers. For instance in

Fig. 13, the projec^on of plane (12*2) is first found as T • 1) ;
the pro-

jection of plane (43*4) is first found as (1 • 1), etc.

If the crystal is tetragonal, and the primary beam of x-rays is made to

pass parallel to the X-axis (i.c., parallel to the axis which has a different

unit of length from the other two), then the gnomonic pattern will be
built up of a network of squares as in the case of a cubic crystal, but with
this difference—the sides of the squares are no longer equal to the dis-

tance from the crystal to the plane of projection but to this distance
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multiplied by the axial ratio C of the crystal. It has been already stated

in Chap. II that any body-centered tetragonal crystal may be regarded

as a face-centered tetragonal crystal by dividing the axial ratio by y/2.

For this reason the network of Fig. 12a may be replaced by a square

network placed at 45° to the one shown in the drawing. If the primary

Fig. 13.—Gnomonic projection of Laue pattern of rhodochrosite (MnCOs). Primary
beam approximately normal to the basal (111) plane. {Wyckoff.)

Fig. 14.—Gnomonic projection in the X’-Y plane for a cubic crystal. A similar projection
may be made in the X-Z or the Y-Z plane.

beam of x-rays is made to pass parallel to the X- or F-axis, then the

gnomonic network will be composed of rectangles. One side of the

rectangles will be equal to the distance from the crystal to the plane of

projection. The other side will be this distance divided by the axial

ratio C. If the crystal is orthorhombic, the lengths of the sides of the
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rectangles in the network will have the same ratio to each other as the

reciprocals of the corresponding axial ratios in the crystal.

If the crystal is a rhombohedron or has a triangular close-packed

structure, and if the primary beam of x-rays passes parallel to the Z-axis

of the hexagonal lattice, then the gnomonic network will consist of paral-

lelograms whose sides make an angle of 120° (see Fig. 13). This angle

corresponds to the angle between the X- and F-axes. The network

therefore names the planes of the crystal in terms of the reciprocals of the

intercepts on the hexagonal system of axes. As was stated in Chap. II,

the hexagonal indices for the rhombohedral lattice may be transformed,

if desired, into indices referred to the edges of the rhombohedron by the

equations

‘

/i = 2// + X + L
A; = -H + K + L
I = -11 - 2K + L

where //, K, L are the indices in terms of the hexagonal ayes and li, fc, I

are the indices in terms of the edges of the rhombohedron.

If the crystal is monoclinic and the primary beam is parallel to the

Z-axis, the network is composed of parallelograms whose angle is deter-

mined by the angle between the X- and F-axes. If the x-ray beam is

parallel to the X- or F-axis, the network is rectangular but is displaced

so that the origin of coordinates is not at the center of the projection. If

the crystal is triclinic, the network is composed of parallelograms whose

origin of coordinates is not at the center of the projection.

If the primary beam of x-rays is not quite parallel to one of the axes

of the crystal, the gnomonic projection is slightly distorted as in Fig. 126,

but for angles less than 10° the distortion does not usually prevent the

easy identification of atomic planes. However, it is not always desirable

to have the primary x-ray beam approximately parallel to one of the

crystal axes. It will be shown later in this chapter, and again in Chap.

IX, that it is sometimes necessary to compare the intensities of Laue

spots from two families of planes having nearly the same interplanar

spacing. In such cases both spots must appear on the same photographic

film and are preferably at the same distance from the central image.

This sometimes requires the crystal to be oriented so that one of its axes

makes a considerable angle with the incident beam. The identification of

the resulting points in the gnomonic projection can be made easily by the

graphical method of the ‘^rotation net'' described by Wyckoff.^

Figure 15 shows the geometrical relationships which underlie the

rotation net. Let the crystal be situated at the point 0, and let an

imaginary sphere be drawn with the point 0 as a center. The radius

of the sphere is taken as OP\ t.e., it is the distance from the crystal to the

plane of projection ABCD; it is identical with OP' of Figs. 10 and 14, and
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with MO of Fig. 9a. Let us consider the crystal to be so placed at 0
that one of its axes coincides with 0P\ If, now, the crystal is rotated

through some angle 90° —
</>i about the line EF as an axis, the point P'

will move along the circumference of the great circle GP'H and the line

OP' extended will touch the plane ABCD at some point whose distance

from the original position of P' is OP' cot This is consistent with

Eq. (116) in which 90° —
<t>i

= 6 and OP' is taken as unity. A plane

passed through EF and the new position of OP' will intersect the plane

ABCD in a straight line which is parallel to MN and which :*s distant

OP' cot <t)i from it. Now let the line OKSi oe perpendicular to some plane

(hkl) in the crystal. The point of intersection of this line with the plane

Fig. 16.—The theory of the gnomonie rotation net.

{EF corresponds to RR' of Fig. 8.)

ABCD is therefore the gnomonic projection of the plane {hkl). As the

crystal is rotated about the line PP, the line OKSi marks off the small

circle IKL on the sphere and the extension of OKSi marks out on the

plane ABCD the hyperbola SiSi'Si^ as predicted by Eq. (11a). If,

therefore, the angular rotation of the crystal is represented on ABCD by
straight lines parallel to the axis of rotation, then the corresponding

locations of the Laue spots will be shown by the intersections of these

straight lines with the hyperbolas. This gives the gnomonic rotation

net shown in Fig. 16.

Each experimenter should make for himself a gnomonic rotation

net, calculated for the same value of OP' for which his Wyckoff rule

was made, i,e., 5 cm. These drawings will be more satisfactory if they

are traced on tracing cloth. The coordinates of the projection of the

Laue spots in the plane ABCD are:
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a;-coordinate (perpendicular to MN of Fig. 15) = OP' cot <^i

^/-coordinate (parallel to MN) = cot yp\ esc <l>i
• OP' (13)

The center of the rotation net corresponds to the point P' of Figs. 10, 14,

and 15 for a crystal having orthogonal axes. It is the position of the

photographic record of the primary x-ray beam on the silver print

which was pasted on the sheet of drawing paper preparatory to making

the gnomonic projection if the primary beam is parallel to one of the

minimMMlHfiWWi
wkxmMmMwaMmmm

nmmmMianmwmmLmKm

Flo. 16.—The gnomonic rotation net.

If we have a Laue pattern of a crystal taken with the primary x-ray

beam parallel to one of the axes of the crystal, we can, by the following

procedure, draw at once the gnomonic projection of the pattern which

would have been obtained if the primary beam had made some pre-

determined angle 0i with that crystal axis;

a. Make a copy of the original gnomonic projection on tracing cloth or tracing

paper.

b. Place this over the rotation net so that the point representing the primary

beam lies at the center P' of the net.
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c. Orient the drawing so that the desired axis of rotation of the crystal is parallel

to the line MN.
d. Move each point of the original projection along its own hyperbola until its

angular reading on the a;-coordinates has been increased by 90® —

The new positions of the points will give the gnomonic projection which

would have been found if the Laue pattern had been taken with the new
orientation of the crystal. The center of the new projection will be

the gnomonic projection of the plane (hkl) of the crystal which would

have been perpendicular to the primary beam, i.e., the plane which in

the new orientation would have been perpendicular to the primary

Fig. 17a.—Gnomonic projection for a cubic crystal when the primary beam passes parallel

to a principal axis. {Wyckoff.^)

beam is represented as lying parallel to the plane of the new projection.

Since the orientation of the crystal is known for the actual Laue pattern,

and since the angular rotation of the crystal is known, it follows that the

plane which corresponds to the center of the new diagram is also known.

When the primary x-ray beam does not pass parallel to one of the princi-

pal axes of a cubic crystal, it should be noted that the I index is no

longer unity for points lying at the corners of squares in the projection.

This is brought out in Fig. 17, in which A, fc, and I refer to indices of

spots which lie on straight lines in the original gnomonic projection

(primary beam parallel to the crystal axis) and Ai, fci, and h refer to

indices of spots which lie on straight lines in the gnomonic projection

of the crystal after rotation. The changes to be made in the above
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procedure when the original Laue pattern is taken with the primary

beam not parallel to a crystal axis will be obvious. In such a case the

technique is much more tedious than the simple procedure just outlined.

mu>HHiiimi[IimBbb!'m 881
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Fia. 176.-—Gnomonic projection for the same cubic crystal when the primary beam is

normal to the (0 1 1) planes. iAVyckoff,'^)

INTERPRETATION OF THE LAUE PATTERN

Once the spots of the Laue pattern have been identified in terms

of the atomic planes which produced them, there remains the problem

of using these spots to determine the structure of the crystal. The

simplest case is that of a crystal of an element, for, since all its atoms

are alike, their diffracting powers under similar conditions may be

assumed to be all alike. Let us assume for the purpose of illustration

that a given element has a simple cubic structure, although actually

no such element is known. Then, from Eq. (3) of Chap. Ill, we can

calculate the relative distances between its various families of planes in

terms of the edge of the unit-cube. Every such plane should be repre-

sented by a spot in the Laue pattern and is shown in its proper place

in the gnomonic projection, provided only that a suitable wave length

from the primary beam is available for producing the spot on the photo-

graphic film. If, however, the crystal is body-centered cubic, certain

planes are only half as far apart as they would be if the crystal were

simple cubic. An instance of this is the (111) plane. If the crystal

is body-centered cubic, no gnomonic projection of_spots will be found

at A = 1, & = 1; A = T, A; = 1
;
A = 1, A; = T; A = T, A; = T. The same

will apply to every plane for which the numerator of Eq. (3) of Chap. Ill
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is 3^^. Similarly, the Laue pattern of a face-centered cube (or some other

division of the cubic system) is characterized by the absence of spots

of those p’anes for which the numerator of the equation differs from

unity. The same sort of procedure may be applied in the case of other

crystal systems.

It is of course evident that for such comparatively simple structures

the various families of planes which differ only in the sign of their indices

will act similarly; tha^ is, if the (1 1 1) position in the gnomonic network

is vacant, then the (Tl 1), (1 / 1), and (1 iT) positions are also vacant.

Otherwise some other and possibly more complicated structure must be

found which is consistent with ilie Laue pattern and its gnomonic pro-

jection. This implie-- also that it must be consistent with the symmetry
of the crj^stal as deterndned by ordinary crystallographic methods.

The theory of spa c^vgr )up,s, which will be treated more fully in Chap.

Vin, iists the 2H0 wajs mi which points can be arranged symmetrically

in space. Some of these 230 space-groups have the symmetry character-

istics of tljc tricliiiic systerii of crystallization; others belong to the mono-
clinic s^^steiu; still others to the orthorhombic system; etc. The 230

space-groups are listed in Chap. VIII and in Appendix III according

to the crystal systems to which they belong. By reason of its systematic

listing of the various geometrical configurations possible for different

symmetries, the theory of space-groups is useful as a means of insuring

that no possible interpretation of the crystal structure is overlooked

which might be consistent with the Laue pattern. The application

of the theory of space-groups to the interpretation of Laue patterns

will be taken up in considerable detail in Chap. IX. We shall, therefore,

consider here only in a general way how this theory may be used as an

aid in determining the structure of a crystal by the Laue method. The
general procedure described will of course apply to the crystals of either

elements or compounds.

In general, when using the theory of space-groups, the method of

determining the structure of a crystal from the gnomonic projection of

its Laue pattern consists of three steps which are briefly as follows:

1. The selection of the type of symmetry,* i.e., the system of crystallization,

required by the exterior of tlie crystal. This limits the possible marshaling of atoms
•(or molecules) to those space-groups which are consistent with this symmetry.

2. The determination of the dimensions of the unit-crystal and from these the

determination of the number of atoms (or molecules) in the unit-crystal. It will be

shown in Chap. IX how this serves to limit further the number of possible space-

groups found in 1.

3. The selection from the structures found in 2 of the one which is most consistent

with the Laue pattern. This requires the use of Eq. (16) or (17) and involves certain

* This always limits us to some one crystal system and in most cases to some one

division of a crystal system.
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assumptions which may not be rigorously true but which are on the whole consistent

with existing data. This step, too, is given in full in Chap. IX.

For most crystals, the first step may be taken with the aid of any

good crystallography text.*

The crystallographic system to which the crystal belongs determines

the general shape of the unit-crystal. For instance, if the crystal belongs

to the cubic system, the unit-crystal is necessarily a cube; if it belongs to

the tetragonal system, the unit-crystal is a right prism all of whose sides

are rectangles and whose bases are squares; etc. In some cases a

choice is possible between two or more unit-crystals for the same sub-

stance. For instance, it has already been shown that a rhombohedral

crystal may be regarded as having as its unit-crystal a so-called ^‘rhom-

boid prismatic'^ structure whose base is an equilateral parallelogram with

120° and 60° angles (z.e., two equilateral triangles with one side in

common), or it may be regarded as having a unit-crystal of rhombohedr J

shape.

The second step in the solution of the crystal structure requires data

not obtainable from a single Laue pattern. Two procedures are open:

1. The voltage across the x-ray tube may be lowered step by step for successive

Laue patterns until some spot disappears. From the quantum relation given in Eq.

(2) the wave length can be calculated which gave rise to that spot, and thus the inter-

planar spacing corresponding to the spot can be calculated by the aid of Bragg^s law.

2. One of the faces of the crystal may be rotated slowly in the path of a beam of

x-rays consisting essentially of a single, known wave length. The angles at which

diffraction occurs are noted, and from them not only can the order of diffraction n
of Bragg’s law be determined but also the interplanar distance d can at once be

calculated.

From the value of d found by either of these two methods for some
plane of known Miller indices we can determine the edge of the unit of

structure by the aid of the equations of Chap. Ill, assuming the simplest

possible lattice in the crystal system, i.e., simple cube, simple “rhomboid

prism,” {i,e,y the unit of structure for the simple triangular lattice),

etc. The volume of this simple model of the unit-crystal is then calcu-

lated, and its mass is determined (at least approximately) in terms of the

published data for the density of the crystal. From the molecular weight

of the substance of which the crystal is composed and the fact that one

unit of atomic weight is equal to 1.649 X g., the number of mole-*

cules per unit crystal is at once found. It is the n of Eqs. (1) to (3) in

Chap. II. From this and the chemical symbol of the substance of which
the crystal is composed, it is possible to find at once the number of atoms
of each kind in the unit-crystal. A check may be obtained upon the

unit-crystal assumed above by calculating the value of n\ from Bragg^s

* GrothJ “Chemische Krystallographie,” Leipzig, 1906, is probably the most
complete to date.
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law for each spot in the Laue pattern, using in each case the value of d
determined above for the planes which gave rise to the spot and the value

of 6 given bj the Laue pattern. In no case may the value of nX calcu-

lated in this way be less than the minimum of wave length [Xo of Eq. (1)]

present in the x-ray beam. The distribution in space of the atoms in

the unit-crystal is, of course, limited to those space-groups which are

consistent with the data so far obtained. In other words, we have a
limited number of possibilities for the coordinates of the various atoms
of which the ciystal is composed.

There now remains the third step in the ^5olution by which, as far as

is possible, the choice of coordinatcKS for the atoms is further narrowed

down by a considerai ion oi intensities of the various diffracted beams.

These intensities are usually' estimated roughly in terms of the blackness

of the spots in the T aue p hern. Using the language of the wave theory

of radiation, the amplitiide of the beam of x-rays diffracted from any
given family of planes in the crystal will be the vector sum of the ampli-

tudes of the wavelets sen+ out from each of the planes in that family.

This problem is then really the old problem of adding together wave
motions which have the same wave length, but which differ in both phase

and amplitude.*

It is well known that in such a problem the square of the resultant

amplitude may be expressed in terms of the sum of the squares of two

numbers which represent, respectively, the sum of the components,

taken 90° apart, f.e., taken along the X- and F-axes of reference, of the

amplitudes of all the constituent wavelets. The X- and F-components

of each wavelet are, respectively,

a cos A

and

a sin A

where a is the amplitude of the wavelet and A is the phase angle between

the wavelet and some phase standard. When we are dealing with only

two wavelets one of them may be taken as the standard of phase, and the

phase angle A becomes the difference in phase between the two wavelets.

If we represent by X the sum of all the terms corresponding to a cos A
for all the wavelets, and by F the sum of all the terms corresponding to

a sin A for all the wavelets, then the resultant amplitude R is given by

E2 = -h F2 (14)

* In this connection see A. Schuster, “The Theory of Optics,^' Chap. I, Edward
Arnold, London, 1909, 1919. The same problem in another guise appears in alter-

nating-current work.
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To find the values of X and Y we must know both the amplitude and the

phase of every constituent wavelet. The amplitude of the wavelet

diffracted from a given plane of atoms in the crystal depends upon many
factors, but for any given order of diffraction from a single family of

planes we are here concerned with only one, namely, the effect of the kind

of atoms in each individual plane. It is assumed that the amplitude of

a wavelet diffracted from any single plane is proportional to the atomic

or ionic number N of the atoms or ions which compose the plane. * This

assumption is consistent with our fundamental ideas on the diffraction of

x-rays. It appears to have some experimental justification, for, as the

Braggs have pointed out, the two fluorine ions {2N = 2 X 10 = 20) in

CaF2 seem to have about the same diffracting power as the calcium ion,

Fig. 18 .— Projection of interplanar spacings in the direction of the diffracted beam.

for which N is 18. This assumption does not, in its ordinary form,

include any effect of the distribution of the electrons in space, so it is

not quite consistent with the experimental fact^ that Na^ (iV = 11 — 1)

and F” (iV = 9 + 1) differ slightly in diffracting power. It is, however,

sufficiently accur«ate to enable one to distinguish between the various

possible alternatives of crystal structure found in actual practice at

least in the case of comparatively simple structures. It therefore remains

only to express the phase difference between the wavelets diffracted from

successive atomic planes in the same family in terms of the coordinates

of the various atoms in the unit-crystal.

Let the lines a, A, 6, B, etc., of Fig. 18 represent the members of

some family of planes in a crystal. Let the lines a'. A', 6', J5', etc.,

represent the projections of these planes in the direction of the diffracted

beam. If the crystal had had the simplest structure for the crystal-

lographic system to which it belongs (in the case of the cubic system

* It can be shown that the intensity of the diffracted beam will depend a great

deal upon the degree of perfection or imperfection of the crystal. The statements in

this chapter apply most rigorously to an “ideally imperfect” crystal, i.c., to a crystal

which is a fine-grained mosaic of perfect crystals. In this connection see the discus-

sion of primary and secondary extinction in Chap. I; see also Chap. XII. For the

effect of the structures of the atoms of which the crystal is composed, see Chaps. X and

XI.
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this is simple cubic; in the case of the hexagonal system it is simple

triangular, etc.), the successive members of the family would have been

at a, h, c, etc., and nowhere else. In such a case the distances a'6', 6'c',

etc., would have to be such that a wavelet from a would meet the wavelet

from h exactly in phase, otherwise there would have been no diffracted

beam. In circular measure the length of a sine wave is 27r (see any

standard text in optics). The phase difference between these wavelets,

expressed in circular measure in the usual way, is therefore 27rn, where n
is the ord(T of diffraction. The phase ilifference between the wavelets

from a, 6, c, etc., and B, C, etc., is

^ ^ a/.r „ aA
A = 27r/? = iir/z

-

7
-

ah ah

At this point let u.» lim!i oir solves temporarily lo the cubic system. The
distaru’e ah is thr inler ilaaiLi* distance in a simple cube. In terms of the

edg<‘ the unit-cube, by Eq. (3) of Chap. Ill,

ah — —

The distance from atomic plane a to atomic plane A is

^ ^ ~ + %2 + IZj - 1 )

where XiyiZi and X 22/222 are the coordinates of atoms in the two planes.

Now, if one of these planes is considered to pass through the origin of

coordinates, 0:2 = 2/2 = 22 = 0, and

aA^bB, •
• • = ^1*'- ±M

then

hxi + kij i + Izi

1

^ - hxi + kyi + Izi

aA
ah

The phase difference between wavelets from a and A, h and B, etc., is

therefore

A = 2irn{hxi + kyi + Izi) (15)

If the crystal had belonged to any other than the cubic system, the result

would have been the same, because the denominators of both portions
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of the complex fraction necessarily are identical and cancel out. Remem-
bering our assumption as to the dependence of the amplitude of the

wavelets upon the atomic number, we have for the two components

of each wavelet in the X- and F-directions of Eq. (14)

:

N cos 2Tn(hxi + kyi + hi)

and

N sin 2Trn(hxi + kyi + l^i)

For a given family of planes, X and Y will each contain as many such

terms as there are kinds of atomic planes in the unit-crystal which

belong to that family. Since the intensity of the spot in the Laue pattern

is proportional to of Eq. (14), it is proportional to

[SiNTi cos 2Trn{hxi + kyi -f Iz^ + 2X2 cos 2Trn(hx 2 + %2 + 1^2)

+ •••]“ + [ZNi sin 2Tr7i(hxi + kyi + hi)

-j- 2X2 sin 2Tr7i{hx2 ~|“ ky2 "h h^ -4- • *
• (16)

The values of Xi, ^2 ,
etc., are known from the chemical constitution

of the crystal. The theory of space-groups gives all the possiblu coordi-

nates XiyiZ\, X2y2Z2 i
etc., either directly or in terms of an undetermined

distance from some known position in the unit-crystal. In one case the

coordinates are substituted directly in Eq. (16) as a means of choosing

between the alternative structures offered by the theory of space-groups.

In the other case various numerical values are substituted systematically

for the undetermined distance until one is found which gives the correct

intensity. For every test made in this way the calculated intensity

for the various planes must be compared with the actual intensity as

shown by the blackness of the spots in the Laue pattern. Since the

intensity of the diffracted beam depends markedly on the angle of diffrac-

tion, we have only two alternatives: (1) We must take various Laue
patterns with such orientations as will put the spots which we wish to

compare at the same distance from the image of the central beam; or

(2) we must correct the observed intensity for the angle of diffraction.

The first alternative necessitates either taking many Laue patterns

of the same crystal or the use of the gnomonic rotation net. In some
cases this makes the Laue method rather laborious and time consuming.

The second alternative can be taken by means of an empirical approxi-

mate method, proposed by Wyckoff,® by which the relative intensities

of all the spots may be calculated in terms of the so-called “normal
decline'^ of intensity with increase in angle. The calculations differ

from those of Eq. (16) by the factor (d/tfcz/n)^ ®®, where duvx is the inter-

planar distance and n is the order of diffraction. Equation (16) then
becomes
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/, \ 2.35

{[SiVi cos 2Tn(hxi + kyi + Izi) + ^^^2 cos 2irn

(hx2 + ’^
7/2 + ^2) + • •

* ]^ + [SiVi sin 2^71(11X1 + fct/i + foi)

+ 2iV'2 sin 2Tn(hx2 + ky2 + IZ2) + * *
* ]^} (17)

When Eq. (17) is used the intensities of the various spots may ordinarily

be compared without regard to the spacings of their atomic planes.

SUMMARY

The Laue method may be summarized by saying that a single station-

ary crystal is used and the x-ray beam (employed contains all possible

wave lengths from thf^se barely able to pass through the x-ray bulb and

crystal down to the quantum limit imposed by the voltage across the

x-ray tube. The (dffracti« ii pattern obtained is interpreted by means
of a gnornonic m to give the Miller indices of the planes which

diffract the x-rays. The data thus obtained may be used to aid in

eliminating some of the p(*ssibilities permitted by the theory of space-

groups. J 'urther discussion of the Laue method must be postponed until

after we have taken up the theory of space-groups in Chap. VIII. The
discussion will be resumed in Chap. IX.
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CHAPTER V

THE BRAGG METHOD OF CRYSTAL ANALYSIS

We have seen how in the Lane method of crystal analysis the chain of

evidence leading to the structure of a crystal is furnished mainly by the

symmetry characteristics of the crystal, x-ray diffraction being used only

to supply those links which would otherwise be missing from that chain.

In other words, the Laue method makes x-ray diffraction play only the

r61e of an assistant to the older erystallographic methods. In the Bragg

method^ emphasis is placed on the x-ray diffraction data, and symme< ry

considerations are used to supplement these data. The Bragg method

of crystal analysis uses a single crystal. X-rays of known wave lengths

are used so that from the angles of diffraction the corresponding inter-

planar spacings may be calculated at once from Bragg’s law, which is Eq.

(1 ) of Chap. I. These interplanar spacings together with the relative

intensities of different orders of the diffracted beams constitute the x-ray

data used by the Bragg method in determining the structure of the crystal.

EXPERIMENTAL TECHNIQUE OF THE BRAGG METHOD

The x-ray tube is operated at such a voltage as to produce a large

proportion of characteristic rays from the anode (sec Fig. 2 of Chap. IV).

This bundle of characteristic rays contains more than one wave length,

for instance the K spectrum of Mo contains the following four wave

lengths:* ai = 0.712li., = 0.70781., /3 = 0.63121., 7 = 0.61971.*

• * Tho followinR designations and wave lengths are taken from the “International

Oitieal Tables/^ McGraw-TIill Book Company, Inc., New York. The wave length

of /3 given above is the average of 0.6316 and 0.6310.
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In some cases the beam may be made nearly monochromatic by means of

filters. •For example, the /3 and 7 lines of the K spectrum of Mo may be

almost completely absorbed by Zr which is especially transparent to the a
doublet of MoK.^ The characteristic rays most used in the Bragg
method are those of Fe, Cu, Mo, and Rh. The proper filters are, respec-

tively, Mn, Ni, Zr, and Ru. Fe and Cu possess the advantage of giving

large angles of diffraction because of their long wave lengths, but the rays

have such small penetrating ability that the x-ray tube must have a

special window of Lindemanii glass, very thin pyrex, aluminum foil, or

thin mica to let out the rays. When this window is fastened to the glass

of the x-ray tube with sealing wax, the tube can only be operated on the

pump. Glass windings are free from this objection. Tubes with Mo or

Rh anodes do not require such Irajisparent windows. Of these two. Mo
is most used i>ecauee o' tht relative abundance of Zr for filtering material.

Since absorption ol y-iays is essentially an atomic property, it is easiest

to use the Zr in the f jrm of a compound with some atom or atoms of low

siomic number such as Zr02, ZrSi04, Zr(N03)4, etc. Experience shows

that 0.030 g. of Zr* atoms per square centimeter is sufficient to reduce

the white rays and the and 7 lines of MoK to a negligible amount when
the x-ray tube is operated at a voltage of 30 kv. r.m.s. or less. In this

way the x-ray beam is composed mainly of the ai and a2 lines.

It is essential to the fullest success of the Bragg method that the

intensities of the diffracted beams be measured with a fair degree of

accuracy. For this reason the ionization chamber is preferred to the

photographic film as a means of detecting and measuring the x-rays.

The ionization chamber may be a metal tube filled with air in which an

insulated electrode inside runs parallel with the axis of the tube but at

some distance from it. If the air in the chamber is replaced by C2H5Br

or CH3I, the insulation should be preferably of quartz to prevent corrosion

by the gas, and the port of entry for the x-rays is rendered gas-tight

by a thin mica or aluminum window fastened in place with sealing wax.

The use of cellophane or pyroxylin windows is not advised as they tend

to become brittle under the action of the x-rays. The ionization current

is measured in the usual way by either an electroscope, an electrometer,

or an appropriate vacuum-tube circuit of high amplification, care being

taken that the voltage between the electrodes is sufficient to catch every

ion that is produced. For further details on the construction and use of

ionization chambers the reader is referred to any standard book on the

conduction of electricity through gases.

The arrangement of the apparatus is shown in Fig. 1. The x-ray beam
is defined by the two slits Si and 82- These slits are usually made of lead

or gold. The slit S3 is made ^ide enough so that it is not grazed by the

main beam, but narrow enough to intercept any rays diffracted by the

material of which S2 is made. A slit S4, in front of the ionization chamber
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I, insures that only one diffracted beam enters the chamber at any given

setting of the chamber. The filtering material used to render th# x-rays

substantially monochromatic is best placed next to S4,
so that it will

not only filter out undesirable wave lengths coming directly from the

x-ray tube but also at the same time tend to filter out any secondary,

characteristic, rays from the crystal under examination.

The crystal is mounted on a crystal holder as in Fig. 2, so that any

face may be oriented so as to lie parallel to the x-ray beam. This crystal

holder is clamp^ed to a table which may be rotated about a vertical axis.

The crystal is so adjusted in the crystal holder that this axis of rotation

passes through a zone axis of the crystal. The advantage of this is that

diffraction can then be obtained from each of several atomic planes by
merely rotating the crystal table as a whole. The more important the

zone axis, the greater is this advantage. Usually a zone axis is easy to

find, for it may be located from two or more natural faces of the crystal.

If only one natural face is developed, the second atomic plane (corre-
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spending to a second face) must be found by means of its diffracted x-ray

beam, dsing cut-and-try methods.

If the crystal is very small, it will itself limit the x-ray beam suffi-

ciently and the slits may be opened up to any reasonable width. In

such a case it is only necessary to see to it that by some suitable means,
such as a template, the crystal face to be investigated lies directly over

the axis of rotation. For larger crystals, or for crystals in the form of

flat flakes or broad needles, the x-ray beam must be defined by the slits

aSi and >82. In such a case the following technique is recommended:

Fig. 2.—Crystal holder for use with the Bragg method of crystal analysis.

1. The crystal hol(l(3r is clamped on its table so that the diffracting face of the

crystal is in the axis of rotation. The accuracy of the setting will become evident in

the subse(iuont adjustments.

2. Turn on the x-ray tube, and darken the room. Open slits S\, 82, and Sz

wide and place a fluorescent screen in a holder, behind the crystal table to show up
the x-ray beam. It is best to place a piece of black paper somewhere in the path of

the x-ray beam to cut off the visible light which comes through the slits.

3. Turn the crystal table until the face of the crystal is parallel to the direction

of the x-ray beam.

4. Close up the side of Sz opposite the crystal until the line on the fluorescent

screen becomes very narrow. If, in operation 1, the crystal face was not properly

set parallel to the axis of rotation of the crystal table, the line on the fluorescent screen

instead of being of uniform width will be tapering, thus indicating the direction and

magnitude of the tilt.

5. If the crystal table is slowly rotated back and forth, through a small angle, it

will be observed that at a certain angle the line on the fluorescent screen appears.

As the table is rotated still more so that the crystal face becomes more nearly parallel

to the x-ray beam, the line on the screen grows toward a maximum intensity. It

disappears again when the crystal reaches the limiting angle on the opposite side.

The width of the x-ray beam grazing the crystal face at the moment when the two
are parallel can be made as small as desired by closing down the slit, thus decreasing

the limiting angle through which the crystal table can be turned while the line still

shows on the fluorescent screen.
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6. Turn the crystal taVjle through an angle of 180°, thus bringing the diffracting

face of the crystal on the opposite side of the axis of rotation.
*

7. The second side of slit S^ is now closed down as in 4 and 5. If the diffracting

face of the crystal is not on the axis of rotation, it will be found that either

a. The limiting angle is relatively large when the line on the fluorescent screen is

very narrow showing that the crystal face is displaced behind the axis of rotation, or,

h. When the adjustment of the second side of S^ is finished, it will be found that

the slit is still considerably open, showing that the crystal face is displaced so that

the axis of rotation goes through the body of the crystal instead of lying in the crystal

face.

8. Still keeping the crystal holder clamped to the crystal table, remove the

crystal table from its mounting and move the fluorescimt screen to the place where

the end of the ionization chamber w^ould have to be to register the primary, f.e.,

undeviated, x-ray beam. This w ill show the position and wddth of the primary beam,

which is the criterion of the width of the slit adjustment.

9. Close up one side of slit >S'i until the line on the fluorescent screen becomes

narrowed; then slowly open it again until the full width of the line appears and no

farther. Do the same with the other side of slit Si. Repeat with S^. Th#*n mcr<*';3e

the width of S^ slightly, taking care to move both sides of the slit by the same am-Aiiit.

10. Replace the crystal table on its mounting.

11. Rotate the crystal until the diffracting face is again parallel with the x-ray

beam as shown by the fluorescent screen.

12. Note the angular reatling on the scale of the crystal table. This is the zero

of reference.

13. Adjust the orientation of the crystal face to the required angle with respect

to the x-ra.y beam.
Cavtion: In all work involmng adjustments of any sort while the x-ray tube is in

operation
t
great care mvH be taken to keep the hands and all other parts of the body out

of the pa*h of the x-ray beam. The danger of x-ray burns is discussed briefly in Appendix
I.

It is a matter of experience that few crystals will diffract Mo charac-

teristic rays at grazing angles of incidence of less than 3°. The crystal

face is therefore set at an angle of about 3° to the primary x-ray beam,
and the slit is opened up as widely as possible. The ionization chamber
is slowly turned from an angle of about 6° to an angle of 12° or more.

If some atomic plane which pusses through the chosen zone axis happens
to lie at the correct angle to the x-ray beam, a diffracted beam will be
found. Otherwise the table on which the crystal is mounted is turned

slightly, and the ionization chamber is again slowly swept past. This is

repeated if necessary until some plane is found which is so oriented as to

show first-order diffraction of the wave length of x-rays employed in the

primary beam. The slit is then narrowed down so as to be at least

as narrow as the x-ray beam, and the ionization chamber is moved past,

step by step. At each step a reading of the ionization current is made.
The angle is noted at which the maximum ionization current is found.

The crystal is then rotated so that the same family of planes diffracts

on the other side of the primary beam and the angle ofmaximum ionization

current is again noted. Halfway between these two positions is the cor-
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rect zero through which the undeviated beam passes after barely grazing

the axis of rotation of the crystal. Half the angular distance between the

two ionization maxima is therefore the angular deviation of the x-ray

beam; it is the angle
<i> of Eq. (3) of Chap. I, or twice the angle B of

Eq. (1) of Chap. I. It is twice the grazing angle of incidence of the x-ray

beam on the atomic plane in the crystal.

INTERPRETATION OF THE DIFFRACTION PATTERN

From Eq. (1) of Chap. I the interphiiiar spacing d is calculated,

and parallel lines, such as ABC, DEFy GHl, etc., of Fig. 3 are drawn to

scale to represent the atomic planes which

produce the diffracled beam. The crystal

is then turned through angle V' such that

anotbei family of plr.aee shows first-order

diiTraction of the x-rav beam, and the inter-

planar spacing (V Is calcujjied. A new set

of parallel lines such as AP, BQy CR, etc., of

Fig. 3 are now drawn to scale so as to

make an angle
\l/

with the first set of lines.

Then the intersections of these lines repre-

sent possible positions for atoms in the

crystal. The plot suggests other angles at

which the crystal may be set in order to

find first-order diffracted beams. The inter-

planar distances found at these angles are

then drawn on the plot, for example, AElj
GKOy MQ of Fig. 3, These interplanar dis-

tances will be multiples or submultiples of the

distances predicted by the plot. This helps to determine the projection of

the atomic arrangement in the plane of the plot, for now atoms are in gen-

eral to be expected only at positions corresponding to the points where

three lines intersect. The greater the number of planes examined which

pass through the given zone axis, the greater is the certainty with which

the projection of the crystal lattice may be drawn. A similar procedure

for some other zone axis gives still other plots whose planes are at known
angles to that of the first plot. From plots of this sort an idea can be

gained as to the general type of the framework on which the crystal

is built. The greater the number of plots made for a given crystal, the

more certainly are the positions of the various atoms known.

In some cases, at least, the certainty of the positions assigned to

the atoms may be greatly increased by considering the intensities of

the different orders of diffraction for each of the planes. These intensities

may be most accurately compared by making special measurements
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for the purpose.^’® The ionization chamber is set at the correct angle

to receive the first-order diffraction from some family of planes, as

determined by the procedure outlined above. The slit Sa. (Fig. 1) is

then opened up so that the opening is considerably wider than the width

of the diffracted beam and the crystal is swept past the diffracting angle

at a uniform rate. The total amount of ionization produced in the

chamber is taken as a measure of the intensity of the diffracted beam.

The ionization chamber is then set at a little less than twice the angle so

as to receive the second-order diffraction from the same family of planes

as before. The crystal is again swept past the diffracting angle at the

same rate as before, and the total ionization is again read. This is

repeated for such other orders as may be desired. If a crystal is warped,

or if it is imperfect^’’ so that it is a mosaic of small crystals all having

nearly the same orientation (see Chap. I), one portion of a family of

planes will make a slightly different angle with the incident beam from

some other portion, so that there will appear to be a range of se^ Ungs

instead of just one correct setting of the crystal for each family of planes.

The procedure just given has the advantage that it frees the final result

from this effect. There will still be present, however, errors caused

by absorption, temperature changes, the dimensions of the crystal, etc.

(see Chap. I). These are usually of relatively small importance in

the interpretation of the structure of simple crystals by the Bragg

method, and they will therefore not be discussed further at this point.

If all the atoms in the crystal have equal diffracting power, and
if they are arranged according to some elementary lattice (simple cubic,

simple triangular, simple tetragonal, etc.), then every intersection on
the plot will be the projection of the position of some atom in the crystal,

and each order of diffraction will be less intense than the next lower

order. For instance, in KCA the ions of K+ and Cl" are arranged on a

simple cubic lattice. Their ionic numbers are equal, so that they have
nearly identical diffracting powers and KCl acts toward x-rays much
like an element which is simple cubic. The first-order diffracted beam
is more intense than the second order; the second order is more intense

than the third order, etc. The normal rate of decline of intensity with

increasing order of diffraction is given by W. L. Bragg^*® for such cases

as approximately:

First order: second order: third order = 100:20:7

This has since been given ^ as

First order: second order: third order = 100:18.7:6.25

Extreme accuracy in the measurement of these intensities is rarely

necessary because the intensities vary so markedly with changes in

the type of crystal structure. For most work the essential point is
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Fia. 4- Spacing of (111) planes in dia-

mond.

to determine whether or not some one order of diffraction is entirely

absent, or, if all the orders of diffraction are present up to the limit

of the crysti! and the wave length of the x-rays, to know which of two
orders of diffraction is more intense and to determine to within a few
per cent what their relative intensities are. If the structure is more
complicated, the intensities of successive orders of diffraction do not

decrease regularly. For instance, even though all the atoms in diamond
(see Figs. 5 and 6 of Chap. II) are of the same element and may therefore

be supposed to have the same
diffracting power, the second-order

diffraction from the vlH) planes

is missing, although the tlurd and

fourth orders are presen:. This

is interpreted as meanir that the

(111) pianes are arrangoc^ in pairs

(see the di icussion of the diamond

cubic struciure in Chap. Ill) such

that the distance between themem-
bers of a pair is one-fourth the distance between corresponding planes in

two adjacent pairs as in Fig. 4.

The general method of interpreting the data on the intensities of

\'arious orders of diffraction from a single family of planes is as follows.

An arrangement of atomic planes is assumed and the relative intensities

of the different orders of diffraction are calculated in terms of the ampli-

tudes and phase relationships of the waves from the different planes of

the family. The calculated intensities are compared with those found

by experiment, and, if necessary, the procedure is repeated until a mar-

shaling of planes is found such that the calculated and experimental

results are sufficiently in agreement.

In order to illustrate one method of making these calculations let us

suppose that the crystal is composed of equal numbers of each of two

kinds of atoms A and B whose atomic numbers are Nj, and ATg, respec-

tively, and let the atomic planes under consideration have a spacing d as

calculated from the diffraction pattern. Two possibilities are open:

either (1) each plane in the family contains both A and B and these

planes are spaced a distance of d apart (see Fig. 5), or (2) there are

alternate planes of A and of B so spaced that the A-planes are a distance

of d apart from each other and the B-planes are a distance d from each

other, while A and B are spaced a distance apart —d (see Fig. 6).
, 7rl

In the

first case the waves from the A atoms and those from the B atoms are

necessarily in phase, and the amplitude of the resultant wave is the sum
of the amplitudes of the waves sent out by the two sets of atoms. These

amplitudes must be linked up in some way with the atomic number.
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The Braggs^ assume as a first approximation that the electrons in the

atoms vibrate so nearly in phase with each other that the amplitude of

each wavelet is proportional to the number of electrons in the atom

which sends out the wavelet, i.e., to the atomic number. Since the

ionization chamber measures intensities rather than amplitudes, we must

deal with the square of the resultant amplitudes. In terms of Bragg^s

Fig. 5.—Resultant wave from planes each Fig. 6.—Resultant wave from planes

of which contains two kinds of atoms. of one kind of atoms alternating with
planes of another kind of atoms.

assumption we must therefore consider the intensity of an x-ray beam
diffracted from a plane containing both A and B atoms as being

1 = (N^ + N^y
( 1 )

(using units for I such that the factor of proportionality is unity). In

the second case the waves from the A- and B-planes are out of phase by
an angle w such that for the first order of diffraction

-d
coi __

m _ £
2ir d m

Ci>2 2

2ir
^ m

for the second order.
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for the third order,

Therefore

61)3 _ 3
2ir m

27r= —
m
47r

0)2 = —m
6t

0)^ =
yn

2rvir

0)n
—

. ——
m

In terms of the assinnpi'on foentioned above, in which the amplitudes

of the wavelets are taco* t< b/* proportional to the atomic numbers, the

vector sum of th(' amplii udes of the wavelets from A and B is propor-

tional to

+ 2NJi^ cos a, +

thus giving a resultant wave whose intensity is

r = cos CO + (3)

(again using units for I such that the factor of proportionality is unity).

Let the intensities of successive orders of diffraction for the first case

be /i, I2 , hj etc. Their ratios as experimentally determined by W. L.

Bragg have already been given. The corresponding intensities /i',

/s', etc., for the second case, will differ for every possible combination

of values for and and for every possible value of l/rn. They are

most easily calculated in terms of /i, /2 , /a, etc., so that we have, from

Eqs. (1), (2), and (3),

T»rri TkT 2'7r/i'
, -hr a

In' = In-

+ 2NaNb cos —
n

{nT-Tn'^^

If there are p atoms of A and q atoms of B in the chemical formula for

the crystal, then will have to be replaced by pNj^ and by qN^^,

This line of reasoning has been applied by the Braggs to the case of

the (1 0 0) planes of zinc blende (ZnS) on the assumption that the Zn
and S are present in the crystal as atoms so that = 30 and Nq = 16.

All methods of crystal analysis agree that zinc blende has a diamond
cubic structure. The Zn forms a face-centered cubic lattice like Fig. 4

of Chap. II, and the S occupies the four inside positions of Fig. 5 of

Chap. II. This causes the (100) planes to be composed alternately of

Zn and S. Let us assume first that, contrary to fact, each (100) plane
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contains both Zn and S. Then the ratio of the intensities of the first

two orders of diffraction should correspond to the normal rate of

decline/^ t.e., Ii:l2 = 100:18.7. Experimentally they are in the ratio

of 52:100. Obviously the assumed structure is incorrect. Let us now
assume that the Zn and S lie in alternate planes. Equation (4) does not

lend itself readily to a direct solution for 1/m, but various values oi \/m
may be tried in the equation until one is found which gives the experi-

mental intensities. Suppose that the value on trial for 1/m is ? 2 - Then
for the first order, n of Eq. (4) is 1 and

/ ' = /
(30 - 16)^

'

'(30 + 16)2

For the second order, n = 2 ajid

0.09267i

/ ' = /
^30 -M6)2

'
"(30 + 16)2

h

Therefore

^ = 0.0926^
'2 J-i

But by experiment

Therefore

h ^ 100

h 18.7

ll
h’

49.5

100

which agrees very well with the experimental ratio of 52:100.

If, instead of taking the zinc and sulphur as atoms, we had made the
more plausible assumption that they exist in the zinc blende in the form
of ions, then in Eqs. (3) and (4) we should have had = 28 and
Ng- = 18, and h'/I^’ would have been 25.4/100. This is still suffi-

ciently close to the experimental value of 52/100 to enable us to say that
the Zn++ and S lie in alternate layers, for the value of the normal rate
of decline for planes containing both Zn++ and S— Would have to be
something like that for KCl, namely 100/18.7—over ten times the experi-
mental value for the (100) planes of ZnS.

It is not .^surprising that our calculated ratio for the intensities of
different orders of diffraction does not agree more closely with the
experimental value. We have already seen in Chap. I that most crystals
are exceedingly imperfect, i.e., they are made up of a mosaic of crystal
fragments which simulates a single" crystal. The more imperfect the
crystal, the more energy is concentrated in the diffracted x-ray beam
of the first order. This gives the effect of increasing the normal rate of
decline of intensity for successive orders of diffraction. In other words,
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I2/I 1 is smaller, i.e., / 1//2 is greater the more imperfect the crystal

which is taken as a standard. We must remember, then, that the experi-

mental values of the ratio of the intensities of different orders of diffrac-

tion are always open to some suspicion, for they will depend largely

upon the degree of perfection of the individual crystal used in the experi-

ment.* For instance, as a result of experiments made under different

conditions, two values, 52/100 and 27.2/100, are reported^*^ in the litera-

ture for

Intensity of second order from (1 1 1) of NaCl
Intensity of first order from 1 1 1) of NaCl

Bragg and his associates have shown that it h possible to substitute a

suitable specimen uf a powdered crystal lor the single crystal which

we have assumed so far in our discussion of the Bragg method. This

makes the measurenienl^ of ir. tensity correspond to an ideally imperfect

crystal and n inovcs the source of the difficulties we have just considered.

C'aicice coffers an extreme example of the effect of the degree of perfec-

tion of a crystal on the rate of decline of intensity with order of diffraction.

Calcite crystals have been tested® which show a coefficient of maximum
diffraction as high as 44 per cent of that to be expected from a perfect

crystal. For such a crystal the ratio h/Ii should be much higher than

for an imperfect crystal, like KCl. It will be shown in Chap. X that

for imperfect crystals the intensity of the diffracted beam is proportional

to the quantity where F is the ^‘structure factor and has to do with

the number and configuration of electrons in the components of the

crystal. For perfect crystals the intensity is proportional to F. We
may therefore assume for perfect and nearly perfect crystals that the

intensity of the diffracted beam from a given plane of atoms or ions is

approximately proportional to the electron population of that plane, i.e.y

to the sum of the atomic or ionic numbers of the various atoms or ions

in that plane. Since for low atomic weights the atomic numbers are

roughly proportional to the atomic weights, we may take as an alterna-

tive approximation that the intensity of the diffracted beam from a

given plane in a crystal is proportional to the mass of that plane.

W. H. Bragg has given some interesting evidence® that this approxima-

tion can be used to good advantage in the case of calcite. The structure

of calcite (CaCOs) has been worked out® from its x-ray diffraction

pattern supplemented by symmetry considerations. It is simple

rhombohedral with Ca+“^ and CO3— at alternate corners of the rhombo-

hedron. This structure has since been confirmed^® by the Laue method.

* The intensity will also depend considerably upon the configuration of electrons

in the atoms of the crystal. This effect is discussed in Chap. X. It is not important

in the case of the comparatively simplo structures taken up in this chapter, but it is

very important in the case of complicated structures. The method of Chap. X may
be regarded as an extension of the Bragg method.



98 CRYSTAL STRUCTURE

The interplanar spacing of the (1 1 1) planes (referred to rhombohedral

axes) is just double that of the (2 1 1) planes. The second-order diffracted

beam* of (111) therefore falls at the same angle as the first-order beam

from (211) so that their intensities may be compared without any error

due to angle. The (111) planes occur in alternate layers of Ca+“^ and

CO3 . In the second order their effects are additive, so Bragg assigns

a diffracting power equal to the mass of CaCOs = 40 + 12 + 48 = 100.

The (2 1 1) planes are composed of Ca + C + 0(= 68) with other planes

of O lying between them. The effect of those 0 planes is considered

to be negligible. The ratio of the masses of the two planes is 100:68.

The ratio of intensities from experiment is 100:66. If we had used

ionic numbers instead of atomic weights, we should, of course, have

obtained practically the same results.

Ca++ = 18,

CO;r” = 2 + 3 X 10 = 32,

giving a value of 50 for the second-order beam from (1 1 1). Ca = j 8,

CO = 2 + 10 = 12, giving a value of 30 for the first order of (21 1).

These are in the ratio of 100 : 60, which probably agrees with the experi-

mental ratio to within the accuracy of the data.

Equation (4) takes no account of changes in intensity caused by (a)

absorption of x-rays in the crystal, (6) temperature, (c) size of the crystal,

and (d) angle of diffraction. Equation (4) is no more unsatisfactory in

these respects than the more cumbersome Eq. (16) of Chap. IV given in the

discussion of the Laue method. Except for the empirical proportionality

factor mentioned in that discussion, the two equations rest

on the same assumption, namely, that the amplitude of an x-ray beam
diffracted by an atom is proportional to the first power of its atomic

number.

The discrepancies which have been noted above are not so serious

as they might seem at first sight. As has been mentioned before, it is

often sufficient to know only that certain lines in the diffraction pattern

are more intense than certain other lines. Equation (4) is therefore

an exceedingly useful equation. The cumulative evidence of even
relative intensities is of great weight, and, if the lines are so chosen as
to represent several orders of diffraction for every family of planes
belonging to two or three important zone axes, the chance of a false

interpretation is very small indeed.

If the crystal contains only one kind of atoms, i.e.y if it is a chemical
element, then this equation may be assumed to be independent of any
assumptions as to the effect of atomic number on the amplitude of the
component wavelets. In such a case it gives a value of 1/m whose
accuracy is limited chiefly by the structure of the atoms of the element
by the accuracy (not reproducibility) of the intensity measurements
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of the different orders of diffraction, and by the accuracy to which the

intensity ratios are known for the simple structure. The value of 1/m
so obtained will be very close to that required by some structure which is

consistent with the symmetry characteristics of the crystal. It may
in this way serve as a criterion between two structures which are equally

consistent with the symmetry of the crystal. The true value of 1/m
may often be found directly from the atomic coordinates of the theory

of space-groups. When the theory of space-groups permits an undeter-

mined parameter, its value may be obtained approximately in terms

of intensities of diffraction or in terms cf the optical properties of the

crystal (see (Jhap. XIV).

If the crystal contains two or more J:inds of atoms, i.c., if it is a

chemical compound, Eq. ;4) is still useful but not always to the same
extent as in the etsse o^‘ an element. By expressing the fact that atoms
of high, atomic number ditfract x-rays more strongly than atoms of low

atomic number, it makes it possible to determine in most cases whether a

family of planes i^ composed of planes which are all exactly alike or

whether it is made up of alternate layers of A and B. The equation shows

that if the crystal planes under consideration are composed alternately

of A and B, it is difficult to distinguish between the composition of nearly

equally spaced planes if the atomic numbers i^A and A’b are nearly equal.

The equation is also insensitive if N is very large and very small; in

such cases the Bragg plots give no hint as to the complete solution of the

crystal structure, for they tend to show only the positions of A. I'hc

exact determination of the location of B is therefore left in such cases to

considerations of symmetry. As in the case of the Laue method, the

theory of space-groups, especially as given by Wyckoff“ and by Astbury

and Yardley,^^ is useful in this connection as a means of insuring that no

possibilities have been overlooked. Considerations of electrostatic

equilibrium, cleavage, and etch figures are sometimes valuable in help-

ing to decide between alternative structures offered by the theory of

space-groups.

The Structure of the Common Alkali Halides.—So far the Bragg

method has been described only in general terms. Specific examples

have been given only when necessary to make some special point clear

or to justify some particular assumptions. The method as a whole will

now.be illustrated by specific examples. Since, historically, the struc-

tures of the common alkali halides were first determined by the Bragg

method, it will be of interest to take them up first, using, as typical

examples, NaCl, KCl, and KI. These compounds are composed of equal

numbers of atoms (or more correctly, ions) of an alkali metal and a halo-

gen. From their external symmetry they are all classed as cubic crystals.

When a single crystal of KCl is examined by the Bragg method, it is

found that the plots indicate a marshaling of diffracting centers at the
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corners of a simple cubic lattice-work. Although the plots assign a simple

cubic structure to KCl, they do not show whether a whole molecule”

of KCl is to be found at each corner of the unit-cube or whether half the

corners will contain K+ and half Cl~. In either case, Eqs. (3) and (4)

would give identical answers for any family of planes, for the ionic

numbers of K+ and Cl" are identical. We may therefore assume that the

ratios of the intensities of different orders of diffraction for any given

family of planes in KCl will be practically identical with the corresponding

ratios for any other family of planes in the crystal of KCl. This is borne

out by experiment, and these ratios are therefore called the “normal rate

of decline” of intensity with order of diffraction. As has been stated

before, it is approximately

First order : second order : third order == 100:18.7:6.25

The Bragg plots use only the first-order diffracted beam. They show

a face-centered cubic marshaling of diffracting centers for ^aCl and for

KL For the (100) and (1 10) planes of both these salts the iniensities

of the first three orders of diffraction tend to follow the same normal law

of decline as the planes of KCl.

For instance, the intensity of diffraction from the (100) planes of

NaCl is^

First order.

.

Second order

Third order.

.

Fourth order

Fifth order. .

For the (110) planes it is, in the same units,

First order 50.4 100 per cent

Second order 6.10 12

Third order 0.71 1.4

This indicates that the *100) and (110) planes are composed of equal

numbers of alkali and halogen ions. Otherwise these planes would not
show the normal rate of decline as nearly as they do.

The (1 1 1) planes of NaCl and KI, however, do not follow this normal
law. For NaCl the intensities expressed in the same units as before are

First order 9.00 100 per cent

Second order 33.1

Third order 0.58 6.4

Fourth order 2.82

Fifth order 0.137 1.5

The odd orders alone, or the even orders alone, from the (1 1 1) planes
have a rate of decline comparable to that of the successive orders of

100 per cent

8.5

100.00 per cent

19.90

4.87

0.79

0.116
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dififraction from the (1 1 0) planes. This indicates that the (1 1 1) planes

of NaCl (and the same thing holds with KI) occur in pairs, the Bragg

plots shoTing only the locations of the planes containing the ions of

higher atomic number in each case.

All these conditions are satisfied if we assume that NaCl and KI each

have a simple cubic structure in which alkali and halogen ions occupy

alternate corners as in Fig. 7. Such a structure places each kind of ions

on a face-centered cubic lattice.* The simple cube is obtained by the

interpenetration of the two face-centered lattices. Each of the (100)

and (1 1 0) plaoes if extended to infinity is (.omposed of equal numbers of

alkali and halogen ions. The 1 1 1 1)

planes occur as alteiiiati layers of

alkali and halogen ions.

Because of the do e similarity of

NaCl, ivCl, and KI in physical and

chemical properties, and because of

the similarity in iheir crystal habits,

we are at once tempted to assume

that KCl has an arrangement of ions

in space like that assigned to NaCl
and KI. Because the K+ and Cl""

ions have equal ionic numbers, and

therefore approximately equal dif-

fracting powers, the two face-centered

cubes of K+ and of Cl~ would be indistinguishable from each other, so

that the effect, as far as the diffraction of x-rays is concerned, would be

that of a simple cubic lattice.

If the structures assumed above are correct, they must be consistent

with the known densities of the three salts. In Chap. I the wave length

of MoK« was calculated in terms of the density of NaCl and the structure

given above. Using this value of the wave length, the edges of the unit

simple cubes of KCl and KI are found experimentally to be^®

3.138 ± 0.003A. and 3.525 ± 0.004A., respectively. That is, the edges

of the unit face-centered cubes are 6.276 ± 0.006A. and 7.050 ± O.OOSA.,

respectively. In terms of the simple cubic picture, the density of KCl
must equal the mass of its unit-cube divided by the volume of that cube

[see Eq. (1) of Chap. II]. Since K+ and Cl“ occupy alternate corners

of the cube, the average mass per crystallographic point must be used, i.e.,

Fi(i. 7.— Structure of unit-cube of

NaCl. KCl. and KI. Dark circles

represent the alkali ion, light circles

represent the halogen ion.

39.10 + 35.46

2
X 1.649 X 10-*^ g.

This gives a density of 1.990 + 0.006 as compared with 1.987 determined

* The simple cubic picture is easiest to visualize, but the face-centered picture

conforms to the theory of space-groups (Chap. VIII) and is therefore to be preferred.
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in the usual way.* A similar calculation gives the density of KI as

3.125 ± 0.009 as compared with 3.123, determined in the ordinary way.

The agreement is within the experimental error. This, together with the

fact that all other methods of crystal analysis lead to the same structure

for these salts, gives such a high degree of probability to the solution that

any objection to its correctness must be regarded as purely academic.

A warning should be given against assuming that, just because the

crystals of two chemically similar substances both belong to the cubic

system, the substances have the same crystal structure. For instance.

*

1_-J LJ Lo—J LJ I II 1,1.
10® 20® 30^ 40® 50® 60® 70® BO® 90®

1_I
._L 1

,-JJ LJ 1 I I L-
10® 20® 30® 40® 50® 60® 70® 80® 90®

Fi«. S.

—

Intensities of diffcrc nt orders of diffraction from (100), (1 10) and (1 1 1) planes
of diamond and zinc blende. {Bragg.)

all the alkali halides have physical and chemical similarities, and they

all belong to the cubic system. Of these, Csl, CsBr, and CsCl crystallize

as body-centered cubic lattices of ions. CsF and all the Rb, K, Na, and
Li halides crystallize as simple cubic lattices of ions. The ammonium
halides may have either of these structures depending upon the tempera-
ture. It is therefore evident that in every case the results of x-ray

diffraction must be shown to be similar before any weight can be placed

upon physical, chemical, and crystallographic similarities.

The Structure of Diamond, Zinc Blende, and Fluorite.—Just as a
correlation of the diffraction patterns of NaCl, KCl, and KI served to

give the key to the interpretation of all three, so the structure of diamond,
zinc blende (sometimes called sphalerite, ZnS), and fluorite (CaF2 ) are

best considered together. The diffraction patterns of the (100), (1 10),

* In terms of the face-centered cubic picture, the mass of the unit of structure for

KCl becomes

4(39.10 + 35.46) X (1.649 X lO"*^) g.

(4) (39.10 -f 35.46)(1.649 X 10“24)

(6.276 X 10-*)«
1.990

and the density is
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and (1 1 1) planes of the first two of these crystals are shown' diagram-

matically in Fig. 8. The (100) and (110) planes of a diamond show
a progressive decrease in the intensity of successive orders of diffraction

which is much like the rate of normal decline. The pattern from the

(111) planes is of the same general sort, except that the second order is

almost entirely absent. The intensities are approximately:

(100) planes:

First order 8. .

.

Second order 2

(110) planes:

First order 12

Second order 2I2

Third order 1

(111) planes;

First order. . . i 24

Second order. 0

Third order 4

Fourth order

Fifth order 0*^1

100 per cent

25

100 per cent

21

8

100 per cent

0

17

7

3

The Bragg plots show the diamond crystal to be of the face-centered

cubic type. Assuming all the atoms in diamond to be alike, we must

account for the absence of the second-order diffraction from the (111)

planes in terms of the marshaling of the atoms in space. This means
that in Eq. (4), Nj^ and are the same, and we must find a value for

1/m such that the intensity for the second order will come out to be zero.

In other words, cos 47r/m must be —1; i.c., Air/m = 180® and 1/m =

We now have to imagine a face-centered cubic crystal structure such that

the (1 1 1) planes come in pairs, the members of a pair being one-fourth

as far apart as the corresponding planes of two successive pairs (see

Fig. 4). Such a structure has already been shown in Fig. 6 of Chap. II.

Each order of diffraction for the (100) and (1 1 0) planes is less intense

than the next lower order, so that in a qualitative way these planes follow

the rate of normal decline. The agreement is, however, far from quanti-

tative. This may be explained by the fact that diamond is an unusually

perfect crystal,'^ so that it should probably be calculated like cal cite.

In any case, Bragg^s interpretation of the structure of diamond, as it is

described above, is consistent with the ordinary crystallographic proper-

ties of diamond and with its density. The structure has since been

confirmed by both the Laue and the powder methods and is as well

established as any crystal structure so far investigated.

The Bragg plots (which, it will be remembereti, use only the first-

order diffraction) show zinc blende to be founded on a face-centered cubic

lattice. The intensities of the different orders of diffraction are shown
in Fig. 8. They are not those to be expected from Eq. (4) for an ordinary
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face-centered cube. The density shows that, considered only as a face-

centered cube, a whole molecule'^ of ZnS must be associated with each

point. This is interpreted to mean that the ions of Zn+“^ are arranged

on a face-centered cubic lattice, and that we must find additional places

in this lattice-work for the S ions. If we place the Zn++ ions on a

face-centered cubic lattice, there are two simple ways of symmetrically

placing an equal number of S ions either of which places the S— on a

second face-centered cubic lattice. In the first way, the two face-centered

cubic lattices are displaced with respect to each other along a cube axis

so that the corners of the S cube come at the centers of the edges of

the Zn++ cube. This is the structure already found above for NaCl,

KCl, KI, etc., and illustrated in Fig. 7. In the second way, the two

face-centered cubes are displaced with respect to each other along the

body-diagonal, so that the corners of the S cube come one-fourth

of the way along the body-diagonal of the Zn++ cube. This is the strii>

ture already found for diamond and illustrated in Figs. 4, 5, and C of

Chap. II. We must make a choice between these two structures for

zinc blende, and the choice is to be made on the basis of the relative

intensities of the different orders of diffraction for the various planes of

atoms in the crystal. The intensities shown in P'ig. 8 are approximately:

(100) planes:

First order.

.

Second ord«'r

Third order.

Fourth order

(110) planes:

First order.

.

Second order

Third order.

(1 1 1) planes:

First order.

.

Second order

Third order.

Fourth order

6

12

0

0

7

3

1

17

2}^

2M
1

It is at once evident that, for the first and third of the three families

of planes cited, these intensities do not correspond at all with those for the

same family of planes in NaCl. The intensities of the various orders of

diffraction from the (100) planes are like those of the (1 1 1) planes of

NaCl. It has already been shown in the discussion of Eq. (4) that they

are what might be expected of alternate layers of Zn++ and S . This

is consistent with the second of the two tentative structures given above

for zinc blende. This is brought out more clearly in Fig. 9. The con-

struction lines show that each S— ion lies at the center of a tetrahedron

of Zn'^^ whose vertex is the corner of the face-centered cube of Zn“^
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and whose base is determined by the three Zn'^ ions at the centers of

the adjacent faces. Such a structure causes the S“~ ions to form (100)
planes midway between the (100) planes of Zn"*^, in this way reducing
by interference the intensity of the odd orders of diffraction. It intro-

duces no new (110) planes so that the various orders of diffraction

from (110) tend to show the normal rate of decline. It gives (111)
planes of S close to similar planes of Zn++ so that the distance between
S and Zn++ planes is one-fourth that between the nearest Zn*^"*" planes.

It will be remembered that this type of lat tice caused the (111) planes of

diamond to lose their second-order diffraction, for the two sets of planes

had equal diffracting pcm^r. Since the has less diffracting power
than Zn++, the secoTahorder diffraction of the (1 1 1) planes of zinc blende

is not entirely wiped oui but ^s so greatly weakened that it is no more
intense than the 1 hire' order.

(a) (Ji)

Fig. 9.—Structure of unit-cube of zinc blende (ZnS). Dark circles represent the Zn^'**;

light circles represent the S .

The relative intensities of the various orders of diffraction from the

(100), (1 1 0), and (1 1 1) planes of fluorite (CaF2) are practically identical

with those for diamond. Here again the Bragg plots, founded on inter-

planar distances calculated from firsL-order diffractions, indicate a face-

centered cubic structure. The density shows that we are to place the

Ca"*^ on the points of this face-centered cubic lattice and find other,

symmetrically located, positions in the lattice for 2F“ such that the

intensities of the various orders of diffraction may be accounted for.

Since the cleavage is just like that of diamond, we shall at once try the

diamond type of lattice, putting the F” at the centers of tetrahedra of

Ca++. In order to get enough F~ into the lattice to conform to the

chemical formula CaF2 ,
all these tetrahedra must contain F“”. This

gives (100) planes composed alternately of Ca"*^ and 2F~ Since the

ionic number of Ca"^ is 20, — 2 = 18 and the ionic number of F~ is

9 + 1 = 10, it is evident that the sum of the diffracting powers of the

F~ planes is very nearly the same as that of the Ca"*^ planes. The rela-.
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tive intensities of the various orders of diffraction from the (100) planes

should therefore be practically the same as in diamond. The (110)

planes are composed of both Ca"^ and F“, so they tend to give the

normal rate of decline as in diamond. The (1 1 1) planes have a plane

of F“ on each side of each plane of Ca++ and situated one-fourth as far

from it as the next plane of Ca++. This means that there are two F”
planes between each two Ca"^ planes, and that the distance between the

two F~ planes is half that between adjacent Ca++ planes. The result is

that the second-order diffraction from the Ca++ planes is almost com-

pletely destroyed by interference with the first-order beam from the

two F“ planes. The relative intensities of the diffracted beams from

the (1 1 1) planes are therefore practically the same as in diamond.

The structure of fluorite just described is shown in Figs. 10 and 11.

Fig. 10. Fig. 11.

Fig. 10.—Inner structure of the unit-cube of fluorite (CaP^2). The light circles repre-

sent F“. The Ca'*'^ is on a face-centered cubic lattice like Fig. 4, Chap. II. When these
two figures are superimposed to give the complete structure of fluorite, we have Fig. 11.

Fig. 11.—Structure of the unit-cube of fluorite (CaF2). Dark circles represent Ca"*''^;

light circles represent F“.

The Structure of the Calcite Group.—The Bragg plots for calcite

(Iceland spar, CaCOs) show it to be a face-centered rhombohedral lattice.

A rhombohedron may be considered to be a cube which has been stretched

or compressed along the direction of one of its body-diagonals. Although

the angles between the three axes are all equal, they are no longer 90°.

If the body-diagonal of the cube has been stretched, these angles are less

than 90°. If it has been compressed they are more than 90°. For calcite

the angle between any two axes of reference is 101° 54'. The Bragg

plots give the data for a rhombohedron directly in terms of these rhombo-

hedral axes so that in the following discussion these axes will be employed
rather than the axes of the hexagonal system.

In a face-centered cube the distance between successive (100) planes is

one-half the edge of the unit-cube, because the atoms at the centers of the

faces introduce planes half way between the faces of the cube. Similarly,
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the interplanar spacing dioo ( = 3.03 X 10“® cm.) of the face-centered rhom-
bohedron is half the distance between the sides of the unit-rhombohedron.

The density of calcite, measured in the usual way, is 2.7102. This density

is consistent with a structure for calcite in which a whole molecule”
of CaCOs is associated with each point of a face-centered rhombo-
hedral lattice. Using a precise determination of the density of a particu-

lar sample of calcite, A. H. Compton^® finds for that sample that

dioo = 3.029 X 10~® cm. This value has since been given by Birge^®

as 3.028 X 10“® cm., which is the value now universally accepted as the

primary standard for all crystal structure ind wave-length work.* It

has since been confirmed by Bearden. Just as in the case of NaCl, it

was necessary to find the location of Na+ in the lattice in terms of the

intensity of the various orders of diffraction, so in the case of calcite we
assume from the Br^ gg ,ilot s that the CO 3

— radicals (ionic number 32)

are majshaled on a fe. e-centered rhombohedral lattice and we assign

places in that lattice to ihe ( 'a++ (ionic number 18) in terms of the relative

intensities of the diffracted beams. As in the case of NaCl, the various

orders of diffraction from the (100) and (110) planes, referred to the

rhombohedral axes, tend to show the normal rate of decline of intensity,

indicating that these planes contain equal numbers of Ca'^'^ and CO 3

ions. For the (111) planes the relative intensities are approximately:

First order 9 per cent

Second order 29

Third order 0

Fourth order 6

showing that these planes are made up alternately of Ca"*"^ and CO3 .

Bragg has pointed out^ that if this is the case, it should be possible

to find a carbonate which will show a simple rhombohedral structure

of ions on the Bragg plots, just as KCl shows a simple cubic structure

of K+ and Cl“. The ionic numbers of the positive and negative ions of

a series of salts having the calcite structure are:

Na :N03 = 10:32

Ca :C03 = 18:32

Mn:C03 = 23:32

Fe :C03 = 24:32

Bragg’s experimental data for diffraction from the (1 1 1) planes of these

salts are given in Fig. 12. It is evident from this figure that the nearer

the two ions are in ionic number, the more nearly equal are their diffract-

ing powers. For NaNOs the preponderance of x-ray intensity from

the NO3"" is so great that the intensity of the first order of diffraction

is greater than that of the seebnd order. For MnC03 and FeCOs the

* See, however, footnote on p. 12.
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interference is so nearly complete that the first-order diffraction is

practically extinguished. ZnCOs has a “calcite^^ structure and is an

even better example, for its ionic numbers are 28:32. If the interference

between Zn++ and CO 3 is sufficiently complete, it will make the first-

order diffraction from the (111) planes correspond to the distance

between adjacent Zn++ and CO3 planes. This distance is half that

between successive CO3 planes, so that if we are correct in assuming

the diffracting power of CO3 to be 32 (see, however. Chaps. X and XI)

the (111) spacings will appear to be half what they would have been

if the interference betweeen Zn"^+ and CO3 had not been complete. The
Bragg plots for ZnCOs may therefore be expected to show a simple rhombo-
hedral lattice, just as for KCl they showed a simple cubic structure.

We have now located the (^a++ and the CO3 radical in the calcite

lattice. There remains the problem of showing the locations of the three

NOIN03

CaCOj
1

MnCOj
1

FeCOj
1

10° 20° 30® 40° 50° 60°

Pd Roiys

Fig. 12.—Intensities of different orders of diffraction from the (111) planes of NaNOs,
CaCOs, MnCOs, and FcCOs. {Bragg.)

oxygens, with respect to the carbon. Bragg's solution to this problem,

using intensity and symmetry considerations, is given in Fig. 13. The
oxygens are placed at the corners of an equilateral triangle with the carbon

at the center. In successive (1 1 1) planes of CO3 these triangles are

rotated by 60°. In this way the average amount of oxygen along any
one of the hexagonal axes is kept the same as along any other axis,

thus giving complete crystallographic similarity to each end of each axis.

This not only gives a symmetrical crystal blit is also in accord with

the fact that the etch figures are supposed to be identical on all (100)
faces of a calcite crystal when an optically inactive etching reagent is used.

The details of Bragg's solution for the positions of the oxygens must be

postponed until after we have studied the theory of space-groups in

Chap. VIII.

SUMMARY

The Bragg method of crystal analysis may be summed up by saying

that it interprets as much of the structure of a crystal as possible in
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terms of the angles of diffraction of x-rays of known wave length and
in terms of the intensities of the diffracted beams. The nature of

the method is such that the results are necessarily consistent with the

Co CO3 Co CO5 CoCaCO 0 0 CoCO 0 0 CoCO Ca CO3 Mg CO3 Co

(6)

Fia. 13.—Structure of calcite. {After Brcigg.)

symmetry of the crystal and often include implicitly the results of the

theory of space-groups. The theory of space-groups as such is used as

a primary tool in determining possible positions of atoms in the crystal
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only when x-ray methods are inapplicable or do not give a unique solution

of the structure.
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CHAPTER VI

THE POWDER METHOD OF CRYSTAL ANALYSIS

THE POWDER METHOD

This method was devised indej»endenl]y by A. W. HulP and by
P. Debye and P. Scherrer.'^ Just as the Lane and Bragg methods
were named after the men who first employed them, so in naming this

method an attempt was made to honor those who originated it by calling

it the “Hull-Deby>S^ horror method.’^ The awkwardness of this

name has been resporwible for the widespread use of the descriptive

litie ‘‘powder method.” This method uses a beam of essentially mono-
chromatic x-rays as does the Bragg method, but, instead of using single

crystals, it uses crystals which have been crushed to such a fine powder

that the fragments have a random or chaotic orientation. Such a

powder requires no rotation, for, since every atomic plane is present

in every possible orientation, there must be some individuals from each

family of planes which are oriented at the correct angle to diffract the

monochromatic x-ray beam. If the volume of powder used is large

enough and the fragments are sufficiently small, there will be, for any

given family of planes, many individuals correctly oriented, so that, as

far as the general appearance of a line in a photograph of the diffraction

pattern is concerned, the combined effect for any one plane is much
the same as might be expected from a large single crystal having the same

orientation. P^xperimentally it is found that in most cases the powder

is fine enough if it will go through 200-mesh bolting cloth. The openings

in such cloth are of the order of 0.06 mm. This does not mean that

perfect crystals of 0.06 mm. in diameter would show a truly random
orientation. It does mean that most crystals are imperfect enough (i.e.,

consist of a sufficiently complex mosaic of crystal fragments having

nearly the same orientation), so that the actual crystal fragments will

show a truly random orientation if the aggregates are not more than

0.06 mm. in diameter. The powdered crystal is of sufficient amount if

it will fill a cylindrical container % mm. or less in diameter and about

10 mm. long, i.e., if the total volume is about 6 cu. mm. Since every

atomic plane in the powdered crystal has some representatives at the

correct angle for diffraction, the whole diffraction pattern may be photo-

graphed simultaneously.

The powder method may be used with any crystalline substance. It

is the only method which can be used with that large class of substances

in
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which cannot be obtained easily in the form of perfect crystals of appre-

ciable size. This class includes not only most metals and their alloys but

also a large number of compounds. For instance, the writer wished to

study the crystal structure of calcium selenide (CaSe). As this was not

an article of commerce, it had to be made for the occasion by heating

weighed lumps of metallic calcium and selenium in a hard-glass tube

which had previously been evacuated and sealed off. For some unknown
reason the reaction took place with explosive violence, shattering the

glass tube to small bits. These bits were gathered, and on the concave

side of each was fouhd a thin layer of dark scale. This was scraped off

and found to be composed of crystals of CaSe. Crystallization had taken

place during the time in which the explosion took place, thus giving rise

to extremely minute crystals. They were examined by the powder

method with complete success, although they were obviously quite

unsuited for either the Laue or Bragg methods.

EXPERIMENTAL TECHNIQUE OF THE POWDER METHOD

A typical arrangement of x-ray tube, slits, and specimen is shown
diagrammatically in Fig. 1. Slits Si and S2 serve to define the x-ray

beam. S^ cuts off any diffraction pattern from the crystals on the edge

of S 2 . The specimen of powdered crystal is at C. In the type of appa-

ratus illustrated, the width of the specimen is less than that of the x-ray

beam, so that the effective width of the beam is determined by the width

of the specimen. The diffraction pattern is recorded on the photographic

film P. The filter F renders the rays practically monochromatic (see

Chap. V). The trap T not only prevents overexposure from the undevi-

ated beam but also by its shape prevents fogging the film by rays scattered

by the trap from the primary beam. A septum in the film-holder allows

two diffraction patterns to be taken on the same photographic film.

. Ordinarily, if the specimen is a salt or some other brittle type of

crystal, it is crushed in an agate mortar. If the specimen is a metal, it

may be reduced to filings using only light pressure on a very fine, clean

file. The powder or filings are then sieved through a clean 200-mesh silk

bolting cloth. This powder may be mounted in any of several ways.

Probably the most common method is to load it into a thin-walled glass

tube of not more than 0.6 mm. internal diameter. Care must be taken

that the glass contains only elements of low atomic weight. Lead-free

lime glass, such as is made for x-ray bulbs by the Vineland Flint Glass

Works (Vineland, N. J.), or pyrex glass tubes, are suitable. They may be

drawn down easily from larger sized tubing. The Corning glass, known
as 707 BM, from the Corning Glass Works (Coming, N. Y.) is especially

good. Ordinary hard glass usually contains a little lead and is too

opaque to the x-rays. In some cases celluloid tubes may be used to

advantage.
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These tubes may be loaded rapidly and with little danger of breakage
by means of the following technique: (1) A plug of cotton is pushed into
the tube to a point midway between the ends, using as a ramrod a piece

Fia. 1.—Typical apparatus for the powder method: (a) View from top; {b) view from
side.

of 10-mil wire of platinum, molybdenum, tungsten, or other non-corrosive

material. The plug should not be longer than the width of the septum
in the film-holder (see Fig. 16). (2) The open end of the tube is scraped

along the bowl of the mortar containing the crushed crystal, starting at

Fig. 2.—Filling a specimen tube: (a) Beginning of stroke; (b) end of stroke.

the bottom and ending at the top (see Fig. 2a and 5). (3) The lower end
of the tube is then held vertically between the thumb and index finger of

one hand and the thumbnail is tapped with a pencil. This causes the

powder to drop into the tube. In some cases it is better to hold the cen-
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tral portion of the tube vertically between the thumb and index finger

of one hand and with the other hand draw the corner of a fine triangular

file lightly across the side of the specimen tube. During this operation

the file should rest on the thumb of the hand which holds the tube.

(4) These operations are repeated until enough powder has been collected

to extend from the septum to a point beyond the edge of the x-ray beam.

A second piece of cotton is then inserted to keep the powder in place. (5)

The whole procedure is repeated in loading some other crystal into the

other half of the specimen tube. The first powdered crystal to be

loaded is some substance used as a comparison stand-

ard, usually NaCl (ao = 2.814A.)* which is the secondary

standard for interplanar distances (see Chap. I). The
second substance is the one under investigation. The two

ends of the tube are then plugged with sealing wax with the

aid of an electrically heated nichrome hairpin, and an

identification tag is waxed on. Care must be taken that no

•5 sealing wax is on that part of the tube exposed to x-rays, for

" in such a case the inorganic filler in the wax will produce a

diffraction pattern of its own. If the powdered crystal

is slightly hygroscopic, the agate mortar must be kept

heated to about 100°C. on a hot plate during the loading

operation. A full-size diagram of the loaded tube is shown
in Fig. 3.

o f These specimen tubes increase the time of exposure by

tube
reason of their absorption of energy from the x-ray beam,

and they have a tendency to scatter the x-rays causing

some general blackening on the photographic film. To obviate

these difficulties, a method has been devised by Morse® which

consists of casting the powder in place in the form of cylinders

approximately 0.6 mm. in diameter and 15 mm. long in the center of the

cassette. The method is especially adapted for use with apparatus in

which the specimen is held vertically. It is hardly applicable to other

types of apparatus. Figure 4 shows a cross-section of the mold used.

A little shellac is used to make the base [marked (1) in the figure] tacky, so

that the foot of the cylinder will adhere to it. The position of the mold

(2) is governed by the nut (3) by means of lugs which project through

slots in the stem (4). This mold is screwed down tight by means of the

nut (3) and filled from the top with the powdered specimen material. If

necessary to make it mold properly, the powder may be mixed with

a little gum tragacanth. Care must be taken to prevent so much
pressure as would cause orientation of the crystal fragments. When the

mold is full, the plunger (5) is attached firmly to the stem (4) by the set

* On the basis of a simple cubic picture, ao = 2.814A. On the basis of the theo-

retically correct face-centered cubic-picture, Oo * 6.628A.

KH-7FI
NaCltZFl

F I

Diagrai'i
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screw (6), thus holding the molded specimen from the top. The mold

(2) is then raised by means of the nut (3) on the thread of (4). The
plunger (5) is then carefully removed and the mold (2) is taken off,

leaving the powder cylinder without any container, standing vertically

on its support.

The act of crushing or filing introduces strains into many crystals.

If the strains exceed the elastic limit, the crystals may even be broken up
into aggregates of smaller fragments

without introducing cracks at the newly

formed fragment boundaries. 1 1 , has

already been stated in Chap. Ill that

for very small crystal size the intensity

of the diffracted beam drops off very

sharply, as the angle of diffraction is

increjiscd. The diffra lion pattern of an

overstrained crystal has therefore only a

limited number of lines of measurable

intensity. A second effect is the widening

of those few lines which can appear in

the diffraction pattern. This is due to

the failure of Bragg's law for extremely

small particle size.

The effect of strains which do not

exceed ihe elastic limit is to distort the

atomic planes, thus introducing the effect

of slightly variable interplanar spacings.

This results in a widening* of the lines

and may even result in seriously weaken-

ing the intensities of the lines from those

planes in the crystal whose interplanar

distance is small. It has already been

explained in Chap. V that the nearest convenient approach to mono-

chromatic x-rays gives a beam containing two wave lengths, called a\ and

qj2 which differ from each other by less than 1 per cent. Each of these

is diffracted by the crystal powder independently of the other, so that if

the angle of diffraction, 0, is large enough (about 21® or more for a

specimen in a cylindrical container about 0.6 mm. in diameter when
Mo rays are used), and if the crystals in the powder are large enough,

each ‘‘line" of the diffraction pattern should be a doublet. If the crystal

\< /" -H

Fig. 4.—Mold for forming specimonR.

* In this connection see the articleJjy^W. A. Wood, Phil. Mag., 16, 633 (1933).

An attempt is made to differentiatjKfietween the effects of fine grain and of lattice

distortion on the x-ray diffractioti pattern of a metal. A method is suggested for

calculating the proportionate contribution of each factor to the broadening of the

x-ray line.
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fragments in the powder have become

too greatly strained, each line of

these doublets is widened out until

the lines of the doublet tend to

become merged into a single line of

rather hazy outline. The total

energy of the diffracted beam from

these planes is spread out over a

larger area of the photographic film

so that the line is less black on the

film than it otherwise would be, thus

giving the effect of a decrease in the

intensity of the diffracted beam.

This may be illustrated by an experi-

ment with tungsten. A tungsten

incandescent lamp was burned ior

4 hr. at its rated voltage in order to

anneal the filament thoroughly.

The filament was then removed and

crushed to a powder in an agate

mortar. Half of this powder was

then reannealcd in hydrogen at the

same temperature as before. Dif-

fraction patterns of the two portions

were taken side by side on the same

film. They are shown in Fig. 5tt.

Unfortunately the temperature at

which a crystalline material becomes

annealed is the temperature at which

crystal growth begins to become

appreciable. A fine example of a

diffraction pattern of strain-free iron

is shown in Fig. 56.

While the primary beam is

traversing the specimen, it suffers

absorption. Still further absorption

occurs in each of the diffracted

beams on their way out from the

specimen. If the specimen is

mounted as shown in Fig. 1, the

optimum thickness of crystalline

material is approximately
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where ix is the linear coefficient of absorption of the crystal for the wave
length of x-rays used.^ This may be shown as follows:

If the original intensity of the incident primary beam is /o, the inten-

sity after passing through a distance x is reduced to

h =

The initial intensity hi2 of a diffracted beam from a layer in a crystal of

thickness hx in the direction of the incident beam, the layer b^ing at a
distance x below the surface of the specimen, must be proportional to hx

and to /i, so that

hi2 = hhhx khc^^hx

The path of the diffracted bean to the surface of the crystalline material

may be expressed appr.xi/v afely as it — x) where t is the thickness of the

specin^en in the diroc' '»n ot the incident beam. The intensity /s of the

emergfint diffracted bfam is therefore approximately

= J^kIoe~'“dx

= fc/ote""'

This will be a maximum if dh/dt = 0, f.e., when

It is obviously not ' convenient to use specimen tubes of different

diameter for different crystalline materials. The same effect may be

obtained, however, using tubes of constant diameter, by diluting the

powdered crystal with some amorphous material of low opacity to the

x-rays. Gum. tragacanth is sufficiently amorphous for this purpose.

For many crystalline materials the diffraction pattern is so strong in

comparison with that from cellulose that cornstarch or flour may be used

as a diluent. Cornstarch is better than flour for specimens containing

small quantities of iodides, because most wheat flour is bleached with

chlorine. The chlorine in the flour tends to decompose the iodide. In

general, the higher the atomic number, the greater is the coefficient of

absorption of the crystal. For this reason, from the standpoint of

Eq. (1), crystals composed of elements of high atomic number should be

very greatly diluted. There are, however, practical limits to the amount
of dilution, for a point is soon reached where there are not enough

crystal fragments present in the material which can be packed into a

specimen tube to give a truly chaotic orientation. Table I gives an

empirical schedule, used by the writer, for diluting powdered crystals.

It applies best to specimen tubes 0.6 mm. in diameter and is for use with
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Mo rays. At each end of the horizontal rows of Table I will be found a

number. This represents the number of volumes of diluting material

to be mixed with one volume of an element at that end of the row. If

the crystal is a compound, the weighted average is taken of the dilutions

for the elements in the compound, the weights being proportional to the

number of atoms of the element in the chemical formula for the compound.

Table I.—Empirical Dilutions of Powdered Material

Volume of

diluting

material

•

Group
Volume of

diluting

material
0

1
1

H(l)
Li(3)

2

Be(4).

3

I

1

4

1

5 6

0(8)

7 8

0 He(2) B(5) C(6) N(7) F(9) 0

1 Nc(lO) Na(ll) Mg(12) Al(13) Si(14) P(I5) S(16) Cl(17) Fet2«) 3

3 A(1S) K(19) Ca(20) Sc(21; Ti(22) V(23) Gr(24) Mn(25) Co(27) 5
Ni(28)

5 Cu(29) ZnCJO) Ga(31) Ge(32) A8(33) Se(34) Br'ciS) llu(44) 6
t> Kr(3f)) Rb(37) Sr(3..) Yt(39) Zr(40) Cb(41) Mo(42) Ma(43) Hh(45)

Pd^,4G)

7 Ag(47) Cd(48) Iu(40) Sn(50) Sb(51) Te(52) 1(53) 08(76) 8

8 XcCM) Cs(55) Ba(5G) La(57) Ir(77)

9-10 Ta(73) W(74) Re(75) Pt(7S) 10

Itiirc cartha

Au(79) Hg SO) Tl,81) Pb(82) Bi(83) Po(84) Am (85) 10

Nt(80) Va(87) AcX(88) Ac(8«) lldAc(90) IJX2(91) Ui(92)
ThX Mth2 lUh U2

lo

Mth Th
Uxi

In certain cases it is desirable to avoid the use of the glass specimen

tube, and yet it is not convenient, or sometimes not even possible, to

press the specimen into a cylinder by means of a mold. If the specimen

is not hygroscopic and is not readily oxidized in the air, the powdered
crystal may be mixed with an amorphous adhesive such as gum traga-

canth and pressed up into a thin slab having a flat edge. This slab may
then be mounted with its edge at C, Fig. 6, so as to make a very slight

angle with the primary beam. The edges of the lines in the diffraction

pattern are sharpened if the specimen material is pasted on the edge of

some opaque amorphous material like lead glass. In some cases it is

possible to substitute for the slab and lead glass a strip of thin cardboard

which has a layer of the powder stuck on its edge. The crystals of

mechanically worked metals are usually quite small. If the specimen

to be examined is a thin sheet of metal having a straight edge, it may be

mounted in the same manner as the slab described above. Most metals

are sufficiently opaque to the x-rays used in crystal analysis so that

the lead glass backing is unnecessary. If for some reason there is objec-

tion to using an edge, the sheet may be bent over a mandrel and the bent

portion may be used as the specimen. It should be remembered, how-
ever, that the bending will alteF the sizes and orientations of the crystals of
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the metal. If the metal is in the form of a thin wire, it may be stretched

out in the path (jf the beam so as to take the place of the specimen

tube of Fig 1. This is one of the most desirable methods of mounting

a specimen when no other diffraction pattern is to be taken on the same
film for purposes of comparison. If a comparison pattern is desired,

the wire and the comparison standard may be mounted along the same
straight line on the edge of an amorphous holder such as a slab of pressed

gum tragacanth or a sheet of glass, or the wire and the comparison stand-

ard may be inserted in opposite ends of a glass or celluloid specimen tube.

Fig. 6.- Powder method applied to a prewsed block.

If the wire is of very fine diameter, it is best to use several lengths side

by side. For 5-mil wire, six or seven lengths are sufficient.

If it is desired to investigate the surface of a flat sheet, such as a

sheet of rolled metal, the x-ray beam may be defined by a narrow slit

of about 0.020 in. width, and the surface of the sheet may be placed

at an angle of about 5° to the beam. The width of each of the diffracted

beams is obviously determined largely by the projection of the irradiated

portion of the surface in the direction of the diffracted beam. The x-ray

beam should therefore be as narrow as is consistent with a reasonable

speed of taking the diffraction pattern, and the surface of the foil should

make as large an angle as possible with the x-ray beam without blocking

out part of the diffraction pattern. Considerations of this sort were

responsible for the recommendations just given for slit width and angle.

If the specimen is transparent to the x-rays but, like some textile

fibers, difficult to mold into a cylindrical shape, it may be pressed in a
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hydraulic press between two metal plates to give a reasonably flat slab.

A very dilute glue solution may be used if necessary to bind the fibers

or particles together. The slab may then be mounted at right angles

to the x-ray beam. In such a case the beam must be defined by a

narrow slit of about 0.020 in. width, and the slab should be thick enough

to present an adequate amount of specimen to the rays. For cotton or

wood fiber, the slab, pressed to a hard mass, should be about Jfe
thick.

St. John^ has applied the principle of the ^^Seemann slit’'® to powdered

crystals. The specimen is a pressed slab of powdered crystal diluted

Fig. 7.—St. John’s application of a Seemann slit.

with gum tragacanth. Since the reciprocal of the dilution is made
proportional to the thickness t of Eq. (1), the dilution must be roughly

proportional to the coefficient of absorption /x. An x-ray beam passes a

pair of slits (Fig. 7) and falls upon the specimen slab. A narrow slit

adjacent to the slab permits x-rays to pass to the photographic film.

Each of the diffracted beams comes from a different part of the slab so

that homogeneity of the slab is essential. It is important too that the

x-ray beam be used only at a small angle from the face of the target

so that all parts of the slab are irradiated uniformly. For any given

line in the diffraction pattern the effect is the same as if all the crystalline

material in the path of the x-rays composing that line had been crowded

up into the specimen tube of Fig. 1. The advantage of the scheme is

that the glass specimen tube is eliminated, thus avoiding variations

in the general fog on the photographic film caused by variations in the



THE POWDER METHOD OF CRYSTAL ANALYSIS 121

thickness of the glass wall of the specimen tube. The slits cause the lines

on the diffraction pattern to be very clean and sharp without the necessity

of preparing a specimen with a narrow edge. The scheme is, of course,

as unsuited to hygroscopic substances or to substances which tend to

oxidize in the air as is the scheme of Fig. 6.

H. Seemann,® H. Bohlin,^ W. H. Bragg,® and J. Brentano® have
described methods in which thin layers of powder are used in such a way
as to focus the diffracted x-rays rather sharply upon a photographic

film. The methods all depend upon the geometrical principle that two
angles inscribed in the same circle are erp al if they subtend the same
arc. Let a photographic film bf placed oa the arc ABC of the circle

beam ia considerably exaggerated in the figure. The angle FEB — 2o,

A BCDE of Fig. 8, and let a crystal powder be pressed into an arc SDEA
of the same circle. Let a fine slit S be placed on the circumference

of the circle so that a divergent beam of monochromatic x-rays falls

on the powdered crystal. Then all the particles of the powder which

find themselves oriented at the correct angle for diffraction from some
given family of planes will, irrespective of their position on the arc SDEAy
diffract the x-rays to the same point on the photographic film. For

example, the angles SDB and SEB are equal because they both are

inscribed in the same circle and both subtend the same arc BCS. There-

fore 180° - ASDB = 180° - ASEB, But 180° - ISEB = AFEB = 2dy

where 6 is the grazing angle of incidence mentioned in Bra-gg's law.

Therefore, if, in a crystal fragment lying in the arc SDEA at D, a given

family of planes can diffract x-rays to B, then in a second fragment the

same family of planes similarly situated in the arc at any point E can

also diffract the same wave length of x-rays to B,
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Since 29 = 180° — ASEB, it must also equal lEBS + ZESB, The

angle EBS^ subtends the arc SDE, and the angle ESB subtends the arc

EABy so that the sum of the inscribed angles EBS and ESB subtends

the arc SDEAB and is measured by half of that arc. In other words, 26

is measured by half the arc SDEAB. Since the central angle SOB is

measured by the arc SDEA B, we have

±

where I is the length of the arc SDEA By and R is the radius of curvature

of the photographic film (
= OB).

It is essential that the slit S be very fine, otherwise the effect is the

same as if the point S were moved to the left, away from the circum-

ference of the circle. The wider the slit Sy the less sharp is the focus

at B. A scheme due to Brentano® minimizes this effect, especially

over small angular ranges. It can be applied to large angular ranges

with some loss in the speed of photographing the diffraction pattern.

It will be shown later on in this chapter that, if the length of the slit

is too great, one side of the line which represents the diffracted beam
on the photographic film will be distorted. The straight side of the line

represents the true position of the diffracted beam. The straight side

lies away from the slit, so that, if 29 is less than 90°, it lies on the side

toward C of Fig. 8; and, if 29 is greater than 90°, it lies on the side toward

A. When 29 is 90°, the chord SB becomes the diameter of the circle;

the line is then of minimum width, and both edges are straight. The
sample of powdered crystal must, of course, be thin. Otherwise, dif-

fracted beams coming from behind the surface will be far enough off the

arc SDEA to decrease the sharpness of the focus. The more transparent

the crystal is to the wave length of x-rays employed, the more important

is- the thinness of the layer of powder. In using specimens of metal foil

it is necessary to make sure that the surface of the foil lies accurately

on the arc SDEA without any wrinkles.

For the sake of simplicity the rest of this chapter is written in terms

of the type of apparatus shown in Fig. 1. The few changes necessary

to make it apply to the other types which have just been described will

be obvious.

THE DIFFRACTION PATTERN AND ITS INTERPRETATION

It is inherent in the powder method that all the families of atomic

planes in the specimen send out their diffracted beams simultaneously.

A single photographic film may therefore be made to record the whole

diffraction pattern or as much of it as may be desired. Each family

of planes in the powdered crystal produces a line on the film for its first-

order diffracted beam and additional lines for such other orders of



THE POWDER METHOD OF CRYSTAL ANALYSIS 123

diffraction as may be given by the crystal, provided only that nk/2d
is less than unity (see Bragg's law). The photographic record of the
diffraction pattern is therefore a series of lines whose angular distances

from the ''zero line" (photographic record of the undeviated beam)
are characteristic of the various interplanar spacings in the crystal.

From these angular distances, and the wave length of the x-rays, the

interplanar spacings may be calculated at once from Bragg's law.

Knowing the interplanar spacings, it is possible, at least in the case

of the simpler crystal systems, to find by systematic cut-and-try methods

Table II.

—

Distan<*es between Hoavs in a Su ple Re(:tan(Jular (Two-dimen-
sional; Lattpe

Disitaiicc*

rows, foot

froi.i

'*H 11
=

(60.0 - 1.00)

Ratio from
expcrimont

(25.0 = 1.00)

Ratio calrii-

laUid for simple

rectangular

lattice

{A - 2.00)

Miller indices

for rows in

simple rectan-

gular lattice

5().0 1 .00 2.00 2.000 1,0
25.0 0.50 1 00 1 .000 0,1
22.3 0.44 0.87 0.894 1,1

17.7 0 35 0.71 0.707 2,1

13.9 0.27 0.55 0.555 3.1
12.1 0.24 0.48 0.485 1,2
11.2 0.22 0.45 0.447 4.1
10.0 0.20 0.40 0 400 3,2
9.3 0.18 0.37 0.372 6,1

8.2 0.16 0.33 0.329 1,3

7.9 0.16 0.32 0.316 J2,3
}C,1

7.8 0.15 0.31 0.312 6,2

6.9
10.14 0.28 0.277 4,3

<0.13 0.27 0.275 v.i

an arrangement of atoms in space which will account for the observed

interplanar distances. The situation may be visualized by the following

illustrations in two dimensions. If the trees of an orchard are planted

according to some systematic geometrical scheme, they will appear

to be in rows whose direction and distance apart will depend upon the

position of the observer with respect to the orchard. Now suppose that

the reader had never seen the orchard but had been supplied with data

giving the distance apart of these various rows of trees, and suppose

that it is required to draw a map to scale showing the positions of the

trees in the orchard. It would be necessary to list the data in a column

in the order of the size of the numbers, starting with the largest number
at the top of the column. In a parallel column a corresponding list

would be made of the ratios of the several distances to the largest dis-
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tance, as in Table II, Some geometrical configuration of trees must
now be assumed, and the ratios of distances required by that configura-

tion must be compared with the tabulated ratios. If they do not agree,

a new configuration must be assumed and its ratios compared with those

listed from the data. The first column of Table II shows that the orchard

has its trees at the corners of imaginary rectangles whose sides are in

the ratio of 2 : 1, for such a configuration gives calculated ratios of spacings

identical with those from the tabulated experimental data. It is evident

that the imaginary unit-rectangles are 50 ft. long and 25 ft. wide.*

Suppose the distances between rows had been those listed in the

first column of Table III. Certain of the ratios in the second column

Table III.

—

Distance between Rows in a Centered Rectaniujlar

(Two-dimenstonal) Lattk^e

Distance between

rows, feet

Ratio from

experiment

(25.0 = 1.00)

Ratio calculated for

a centered rectan-

gular lattice

(A = 2.00)

Miller indices fur

row s in centered

rectangular lattice

25.0 1.00 1.000 1,0

22.2 0.89 0.894 1.1

13.7 0.55 0.656 3,1

12.5 0.60 0.500 0,1

9.2 0.37 0.372 5,1

8.8 0.35 0.353 2,1

8.2 0.33 0.329 1,3

6.9 0.27 0.275 7,1

are identical with those of the second and third columns of Table II.

Such an. accidental agreement of a portion of the data cannot be taken

to mean that the plan of the orchard of Table III is a simple rectangle,

for, if every experimental ratio is not duplicated, within the precision

of the data, in the columns of calculated ratios, the solution cannot be

valid. The third column of Table III shows that every experimental

ratio is duplicated in the ratios calculated for a centered rectangle for

which A = 2.00. The actual distances in Table III may be accounted

for if the unit-rectangles are 50 ft. long and 25 ft. wide. A comparison

of the third and fourth columns of Table III with the fourth and fifth

columns of Table II shows that the effect of the additional trees has

not been to produce rows in new directions in the orchard; all that has

^

* In crystallographic language wc have a two-dimensional analogy to an ortho-

rhombic crystal for which a = 60, 6 = 25, and A = 2.00. The distances between

the various rows of trees can be calculated from Eq. (6) of Chap. Ill, remembering

that I is zero. For the simple rectangular lattice the periodicity is of course always

unity. For the centered rectangular lattice the periodicity is unity when both indices

are odd; if only one index is odd, 4he periodicity is
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been done is to cut in half the distances between those rows which have
one even Miller index.

The int irprotation of the diffraction pattern of a powdered crystal

is much like the foregoing illustration except that there are three dimen-
sions to be considered instead of two, and the data include fictitious

distances d/n caused by lines in the diffraction pattern corresponding

to the second, third, etc., order of diffraction. In the cubic system it

is easy, with the aid of the information given in Chap. Ill, to make
reference tables of interplanar distances taking the edge of the unit-cube

as the unit of length. Such a table :s illustrated by Table V of Chap. III.

The fictitious distances are listeti in the table as though they actually

existed, so that the iar)le corresponds to all the interplanar distances

calculated from the diffrac ion pattern just as truly as Tables II and III

Fio. 9.—Effect on diffraction pattern of complicating the crystal structure.

correspond to all the distances measured in the orchards. An inspection

of Table V of Chap. Ill shows that the pattern for a simple cubic crystal

contains every possible line which can be produced by a crystal having

cubic symmetry. When the crystal structure is made more complicated

by placing additional atoms in symmetrical positions in the simple cube

without changing the dimensions of the cube, the effect is not to add
more lines but to wipe out certain lines from the simple cubic pattern.

This is brought out in Fig. 9 which is plotted from Table V of Chap. III.

The actual diffraction patterns will differ from those of Fig. 9, for in

Fig. 9 the distance from each line to the zero line is made proportional

to \//i2 + while in the actual pattern the distance from each

line to the zero line is the length of the arc corresponding to twice the B

in Bragg’s law. In terms of the actual diffraction pattern, therefore,

Fig. 9 is considerably compressed on the right-hand end.

It was shown in Chap. Ill that each spacing for a simple cube is the

reciprocal of the square root of the sum of three squares. These spacings

therefore decrease in regular fashion for the first six lines of the diffraction

pattern. There is, however, no line corresponding to l/\/7, for no three

squares can add up to 7. Similar breaks may be found at l/\/l6,

l/\/^, If therefore a diffraction pattern is found to have
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six lines regularly spaced, followed by a vacant place where the seventh

line might be expected, it should be tested quantitatively at once to see

if the ratios of spacings correspond to those of a simple cube. The
spacings for the first six planes of a body-centered cube decrease in a

regular way like those of a simple cube. In fact, if, in Table V of Chap.

Ill, instead of using as a unit of measure the edge of the unit-cube, we
had used the largest interplanar spacing calculated from the diffraction

pattern of a body-centered cube, ^.e., the (110) planes, we should have

found exactly the same ratios as in the simple cube. The fundamental

reason for this is that for the body-centered cube the numerator of

Pki. (3) of Chap. Ill is unity only when the denominator is the square

root of an even number. The diffraction pattern of a body-centered

cube differs markedly, however, from that of a simple cube in that there

is no break in the regularity of spacing of the lines until after tlic thir-

teenth line. The diffraction pattern of a face-centered cube has fhe

first nine lines grouped so as to form three repetitions of “a pair folK)wed

by a single line.^^ The tenth line, corresponding to the spacing 1/V^>
would be the first line of the next pair except that the second line of the

pair would correspond to a spacing l/\/^ which cannot exist. The
sequence of ^^pair and one'^ is continued for three more groups after which

it is broken up again by missing lines. The diffraction pattern of a

diamond cube consists of a single line follov/ed by a succession of pairs.

GRAPHICAL METHODS OF INTERPRETATION

The quantitative examination of the diffraction pattern of a cubic

crystal is easiest made with the aid of a slide rule. If the slide of an

ordinary slide rule is turned so that the numbers are upside down, and
the ends of the scales are made to register with each other (Fig. 10), it

will be found that readings on the lower scale of the body of the slide

rule are opposite the reciprocals of their squares on the inverted slide.

If the slide is pushed along, any two readings on the lower scale of the

body of the rule have the same ratio as the reciprocals of the square roots

of the corresponding readings on the lower (adjacent) scale of the inverted

slide. The interplanar distances of a crystal, as calculated from the

diffraction pattern with the aid of Bragg’s law, are therefore plotted on

the lower scale of the body of the slide rule, using a soft lead pencil.

The interplanar distances usually measured from the diffraction pattern

range for most inorganic crystals from 2 or 3A. down to about 0.6 or

0.7A. At l.OOA. the plot runs off the left-hand end of the scale and
must be continued at the right-hand end. The inverted slide is pushed

along until 1 is opposite the pencil mark corresponding to the greatest

interplanar distance. Suppose the next pencil mark is found opposite 2,

the next opposite 3, etc. Taking note of the reading on the slide which

is opposite 1.00 at the left-hand end of the fixed scale, move the slide
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back until this reading is opposite 1.00 at the right-hand end of the fixed

scale (see Fig. 11). If all the remaining pencil marks also come opposite

integers on the slide, the crystal is simple cubic, for its interplanar dis-

tances have the same ratios as those listed in the fourth column of Table V
of Chap. III. If an exact match is not obtained the slide is moved back
until 2 on the inverted slide is opposite the pencil mark corresponding

to the greatest interplanar distance. Then if all the pencil marks are

Fici. 10.- Slido rulo arv ant'i'o lor c.uanti^^ath s' study o/ diffraction patterns of cubic crystals.

opposite oven numbers (ui iho inverted slide, the crystal is body-centered

cubic. If an exac i i lo' h s si ill not found the slide is moved back until 3

on the inverted slide is opposite the first pencil mark, and the pattern,

as plotted out on the body of the rule, is examined to see whether every

piuicil ma rk is opposite an integer on the inverted slide. If so, a compari-

son with the ratios given in Table V of Chap. Ill will show whether the

diffraction pattern is characteristic of a face-centered or of a diamond
cube. A similar procedure may be employed for still other types of

cubic crystals. In all cases, if an exact match is obtained within the

Wil1n

HHIHlIi

nmiiHimmHy
Fig. 11.—Slide rule marked with a body-centered cubit diffraction pattern.

limits set by the accuracy of the data, the reading on the lower scale of

the body of the slide rule opposite 1 on the slide is the length in Angstrom

units (10“® cm.) of the edge of the unit-cube. It is important that the

match be exact within the precision of the experimental data. If any

lines in the experimental diffraction pattern are unaccounted for, either

the solution is invalid or it must be shown that the specimen consists of a

mechanical mixture of two crystals such that every line is accounted for.

The usefulness of the slide ^ule in the solution of diffraction patterns

of cubic crystals is due to the fact that the distances engraved on the

inverted slide are proportional to the logarithms of successive values of d
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in Eq. (3) of Chap. III. Since the scale on the body of the slide rule on

which the experimental interplanar distances are plotted is also logarith-

mic, a direct comparison can be made between the two sets of ratios

without further reference to the absolute values of the interplanar

distances. This principle has been used^® in the development of a series

of semilogarithmic charts for the rapid solution of the diffraction patterns

of crystals belonging to the tetragonal and hexagonal systems. The
logarithms of d from Eq. (5) of Chap. Ill and from the corresponding

equation derived from Eq. (23) of Chap. Ill were plotted as functions

of the axial ratio C. For any given value of C the lines of the chart

have the same relation to the theoretical ratios of distances in the tet rago-

nal or hexagonal systems of crystals that the readings on the inverted

slide of the slide rule had for the cubic system. The experimental data

are plotted to the same logarithmic scale on the edge of a piece of paper.

This plot corresponds to the pencil-mark plot on the lower scjjle of the

body of the slide rule. Such charts were made and published at first

only for the simple, body-centered, and face-centered tetragonal lattices

for the simple triangular, and rhombohedral lattices and for the hexagonal

close-packed structure. Although the diffraction pattern must be plotted

as log d, the scale of abscissas was shown in terms of d itself, just as on a

slide rule, in order to facilitate the work of plotting the pattern. A
specimen chart is reproduced in Fig. 12. Figure 13 illustrates the use of a

chart of this sort in the interpretation of experimental data on cadmium
obtained by Hull.^‘’’^^

This method of interpretation is also applicable to diffraction patterns

of crystals belonging to the orthorhombic system, and an extensive set

of simple orthorhombic charts has been published by J. 0. Wilhelm.

A series of charts for the tetragonal, hexagonal, and orthorhombic systems

is given in Appendix II. Obviously the number of charts required for

the monoclinic system would be prohibitive. Of course, if the axial

ratios and angles are known for some monoclinic or triclinic crystal from

ordinary crystallographic measurements, the theoretical interplanar

distances may be calculated at once, plotted on the inverted slide of a

slide rule, and compared with the experimental pattern plotted on the

bottom scale of the rule. Then a consideration of what lines, if any,

are missing may give a clew to the degree of complexity of the inner

structure of the unit-crystal.

In cases where the charts of Appendix II contain lines whose spacings

are too close for accurate reading, the graphical methods of Bjurstrom^^

may be used. Bjurstrom combines the equations of Chap. Ill with

Bragg's law and writes the results in the form:

sin^ 6 = (tetragonal system)

sin^ B KiQi^ + KJc'^) + KzV^ (orthorhombic system)

sin^ e = Kiih^ + hk + + Kzt^ (hexagonal system)
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where 6 is as usual the grazing angle of incidence of the x-rays
;
h, k, and I

are the Miller indices; and Ki, K^, and Kz are constants. P’or the pur-

'j'JiC iF D I
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To find the Miller indices corresponding to the powder pattern of a

tetragonal crystal, construct a figure like Fig. 14a. In this figure, C is

perpendicular' to AB. Points are marked off on AC whose distances

from A are proportional to {h^ + k^), and other points are marked off

on BD whose distances from B are proportional to 1^, 2‘^, 3^, 4^, etc.

Every point on AC is then connected to every point on BD by a straight

line. It is evident that any line, drawn perpendicular to AB will

be cut by these lines at points whose distances from E are proportional

to the quantity KiQi^ + k'^) + KvP. If, therefore, the values of sin- 0

of the tetragonal lattice under investigation could be laid off fn)m E on

EF on a suitable scale, and if EF could be moved parallel to itself along

the chart, then at the position where AE:EB = KiiK^, every point

h k i

3 3 2
0 0 4
4 0 2

4 2 0
4 I 1

3 3 0

4 0 0
3 I 2

2 2 2

3 1 0
2 0 2

\ I 2
2 1 1

0 0 2

2 0 0

marked off on EF would fall on the intersection of EF with some crossline

whose indices correspond to the indices of the diffracting planes in the

tetragonal crystal. Up to this point the correct scale for plotting the

points on EF is unknown. This scale may be found as follows. Let

the experimental values of sin-^ B be plotted on a large scale (larger

than EF) on the line GI which is perpendicular to GH of Fig. 146. If

these points are connected to some common point H on GHy then every

line KL parallel to GI will be cut at points corresponding to those on GI,

and GI and KL will differ only in the scale of measurement. Let Fig. 146

be laid on Fig. 14a so that GH and AB coincide, and let Fig. 146 be slid

back and forth on Fig. 14a until some imaginary vertical line shows the

same intersection points on both figures. Now let this line be drawn on
Fig. 14a; it is the line represented by KL and EF, Not only is the ratio

of the constants Ki and Kz known from the position of this line, but also
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the indices of all the diffracting planes can be read off directly on AC
and BD,

The equation for the hexagonal system can, of course, be treated in

the same way except that the distances marked off on AC must corre-

spond to {h^ + hk + k^).

Another type of procedure is illustrated in Fig. 15. It applies not

only to the tetragonal and hexagonal systems but also to the ortho-

rhombic system. It has the disadvantage of being a little hard to

manipulate. For the tetragonal and hexagonal systems, straight lines

are drawn parallel to AB of Fig. 15 such that their distances from AB
are proportional to sin^ 8, Points are marked off on the edge of a ruler

CD whose distances from a point 00 are proportional to + k‘^) or to

(h- + hk + k"^). From ihese points parallel threads are stretched to a

second ruler which m kept parallel to CD. t)n these threads points are

marked whose distar.oes from the edge of the ruler CD are proportional

to Ihf numbers V, 2-, 3^, 4^, etc. The ruler CD is placed so that 00 falls

on AB, and by trial the angle of inclination of the ruler and that of the

threads are varied* until each of the horizontal lines falls across a point

either on the ruler or on a thread. Since the points on the ruler corre-

spond to (h^ + k^) or (h^ + hk + and the points on the threads

correspond to P, 2^, 3^, 4^, etc.,t it follows that the indices for the hori-

zontal lines can be read off directly. For the orthorhombic system the

scheme has to be changed slightly. If the distances of the threads from

the point 00 are made proportional to 1-*, 2^, 3‘^, 4*^, etc., and if the points

marked on the threads are also spaced proportional to P, 2^, 3^ 4^, etc.,

then we can use the threads and ruler to find a series of diffraction lines

whose values of sin^ 0 satisfy the equation

sin‘^ 6 = Kih^ + K2k^

or

sin2 0 = Kih'^ +
or

sin^ 8 = K2k^ +

If several such series of diffraction lines can be found, the constants

Ki and K2 ; Ki and K^] or K2 and should be evaluated for each series.

If the same value appears in two series, it must be proved whether or not

this and the other constants of these two series are the three lattice con-

stants Ki, K2 ,
and K^.

Still other graphical schemes are described by Bjurstrom for which

the reader is referred to reference 13.

* This corresponds to varying Ki and Kzj respectively.

t The intersection of the threads with Ihe edge of the ruler corresponds to 0®.
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Owen and Preston have published a chart for the interpretation of

hexagonal, close-packed structures in which log
^

and log ^ are the

coordinates. This has the advantage of including a wide range of axial

ratios on a single chart, although at some sacrifice in the accuracy with

which the axial ratio may be determined. In using their chart, which is

shown in Fig. 16, it should be noted that the scale of abscissas is expressed

in terms of the logarithm of 1/d and not in terms of d directly as in the

case of the semilogarithmic chart of Fig. 12. When no filter is used to

Fi(’r. IG.—Owen and Preston’s chart for hexagonal close-packed structures.

give a single wave length of x-rays, the ionization chamber or photo-

graphic plate shows two diffraction patterns superimposed, one produced

by the “a doublet, the other by the line” of the x-ray beam. If the

scale of abscissas is taken as log sin B instead of log
^

it is evident that

the angles of diffraction for the 0 line can be plotted directly on the same

strip of paper as the angles for the a doublet. Either of these patterns

may then be used independently of the other. Figure 16 shows some of

the pattern for Mg crystals plotted along with the a pattern.

Ewald^® has published an incomplete chart of a rhombohedral lattice,

regarding it as a distorted cube and using the rhombohedral axes of

Eq. (24) of Chap. III. Several lines are missing, but the chart shown in

Fig. 17 serves to illustrate how, instead of an axial ratio, the angle m
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between the axes may be used in the interpretation of rhombohedral

structures. Like Owen and Preston, Ewald plots log
^

or log sin 6 as

abscissas. An additional scale has been added in Fig. 17 giving the

abscissas in terms of 1/d directly. The use of the plot is illustrated by
Debye^s diffraction pattern of “pseudo-graphite.^' Ewald's equations

Fiq. 17.—Interpretation of diffraction pattern of pseudo-graphite by means of Ewald ’s

chart.

differ from Eq. (24) of Chap. Ill as they are based on the idea of a
“reciprocal lattice" (see Chap. VII). His chart therefore uses

- 2
,

^ -

1 + COS n

as ordinates. The corresponding values of the angle ji are given on a
separate scale of ordinates.

Owen and Preston have also proposed a graphical solution of the

diffraction patterns of cubic crystals. They write Bragg's law in the

form

nX = 2ka sin 0

where a is the edge of the unit-cube and fc is a constant for any given

family of planes for some one value of the wave length X. This may be
written



136 CRYSTAL STRUCTURE

n
a

showing that for any given wave length of x-rays the relation between

n/a and sin 6 may be represented graphically by a family of straight lines

passing through the origin. Their charts for body-centered and face-

centered cubes are shown in Figs. 18 and 19, using the Mo characteristic

rays K = 0.710i. and = 0.63li.

It should be emphasized that no matter what scheme is used for

interpreting a diffraction pattern, the solution must be verified by:

. Showing that it is consistont with the known density of the crystal;

. Showing that the order of the intensities of the lines in the pattern can be

calculated from the proposed crystal structure. This latter point will be taken up
more fully later on in this chapter in the discussion of the Structure of Arsenic.

Number of Lines Required.—No matter what method is used for the

interpretation of diffraction patterns, too much emphasis cannot be

placed upon the necessity for having a sufficiently large number or lines

in the diffraction pattern. It has already been shown that the ratios

between the interplanar distances for the first six lines of a simple cubic

pattern are the same as for a body-centered cubic pattern. Many other

instances will be found from the semilogarithmic charts given in Appendix

II, where the first few lines are often identical for widely different crystal

structures. Such diffraction patterns can be differentiated from each

other only when lines are present in sufficient number.

In most cases the diffraction pattern should be investigated through

an angle corresponding to an interplanar distance of 0.7A. In the case

of some crystal structures, such as the face-centered cubic, an angle

corresponding to O.sA. is sufficient. The number of lines in a diffraction

pattern of a powder is greater the shorter the wave length of x-rays

employed, since the smallest interplanar distance which will diffract the

rays is, from Bragg’s law,

d =

The longer wave lengths, such as are characteristic of Fe and Cu, give

more accurate determinations of the larger interplanar spacings, and in

special cases, such as investigations of the structure of organic com-

pounds, have considerable real advantage for such purposes. The wave
length for Fe is too long to give enough lines for the satisfactory solution

of crystal structures of many inorganic substances, even when the x-rays

are bent through an angle 26 = 180°. The wave length for Cu requires

180° for an interplanar distance of 0.77A. Both wave lengths are so

long as to require a special window on the x-ray bulb, and this in turn

has until recently necessitated operating the tube while connected to the

pump. The objections to operating on the pump are obvious to any one
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who has ever tried it.* The very short wave lengths such as are char-

acteristic of W, X = O.2A., give angles of diffraction which are so small

as to interfere seriously with accuracy of measurement, especially on a

photographic film. An interplanar distance of 0.7A. bends these rays

through an angle 2B of about 16°. The upper left-hand corner of Fig. 12

shows that, in extreme cases at least, there is a practical limit to the

number of lines in a diffraction pattern which are useful in solving a

crystal structure by the ordinary graphical methods, so that we arc led

to the conclusion that the short wave lengths from W, Pt, etc., are

ordinarily of little value in making a complete crystal analysis by the

powder method. They are sometimes useful in studying the constitution

diagrams of alloys when a well-known phase may often be identified by
two or three lines. The wave lengths which are characteristic of Mo,
Rh, or Ag are sufficiently penetrating to permit the use of an all-glass

x-ray bulb which has been pumped out once for all and sealed off from the

pump. An interplanar distance of 0.7A. corresponds to an angle of

about 60° for Mo rays. This means that, if a photographic film is bent

on an arc of 8 in. radius, interplanar distances of 2.oA. can be determined

to I'i per cent and distances of 1.6A. or less can be determined easily

to 31 0 cent. Greater accuracy is rarely useful because the traces of

impurities ordinarily found in even chemically pure^' materials seem to

make variations from sample to sample of the order of 31o pcr cent in the

parameters of crystals from different sources. For instance, the edge

of the unit-cube of 99.9 per cent Ag is 4.058 ± 0.004A., while the value

for 99.999 per cent Ag is 4.079 ± 0.004A.^® Considerations of this sort,

coupled with the fact that the x-ray tube itself imposes certain limitations

upon the choice of a target material and therefore indirectly upon the

choice of a filtering material, have led users of the powder method in this

country^ when investigating inorganic materials, to the almost exclusive

use of MoiiL„ rays, a radius of curvature of the photographic film of 8 in.,

and an exposure time sufficient to show a diffraction pattern throughout

an arc of at least 60°. When investigating organic materials either Mo
or Cu rays are used, depending upon the circumstances of the experiment.

STRUCTURES OF TYPICAL SUBSTANCES

The Structure of Typical Alkali Halides.—It will be of interest to

illustrate the powder method by showing the interpretation of the diffrac-

tion patterns of some of the same crystals by which the Bragg method was
illustrated. Figures 20, 21, and 22 show the diffraction patterns of

KCl, NaCl, and KI, respectively.

* The most serious of these objections may be removed by inserting a carboy or

tank between the high-vacuum pump and the backing pump with a stopcock between
the carboy and the backing pump.
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The pattern of KCl shows six lines whose spacings decrease in regular

fashion. Where a seventh line might be expected, there is an empty

space. This corresponds to the description already given for the diffrac-
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planes, parallel, respectively, to the three axes of the crystal (see Table V
of Chap, III). There are six families of (110) planes corresponding to

the six possible directions for face-diagonals. There are four families of

(1 1 1) planes perpendicular, respectively, to the four directions for the

body-diagonals of the cube. The chance of a (110) plane being turned

at the correct angle for diffraction is therefore double that of a (100)

plane. The chance of a (1 1 1) plane being turned at the correct angle is

1 times that of a (1 0 0) plane, etc. Other things being equal, the x-ray

beam diffracted from the (1 1 0) planes of the powdered crystal should,

therefore, be twice as intense as that from the (100) planes. The beam
from the (111) planes should be 1}^ times as intense, etc. If we remem-
ber that the intensity of the diffracted beam falls off as the angle of

diffraction increases, it is evident from Fig. 20 that the relative intensities

of the lines actually do correspond to the numbers of families of the

various planes in the crystal.* We therefore arc justified in assuming

that KCl is built up on a simple cubic lattice. A calculation of density

made in accordance with Eq. (1) of Chap. II shows at once that, on the

average, half a molecule’’ of KCl is situated at each corner of the

unit-cube. Since the ionic numbers of K+ and (^1~ are equal, their

diffracting powers should be practically equal; so we conclude at once that

they occupy alternate corners of the cube.

The diffraction pattern of NaCl is that already described as char-

acteristic of a face-centered cubic lattice. A calculation of density shows

that a whole molecule” of NaCl must be associated with each point

in the face-centered cubic lattice. It will be noticed from Fig. 21 that

those planes for which the Miller indices are all oddf produce lines in the

diffraction pattern which are much weaker than the others. If these

relatively faint lines are disregarded, the remaining lines form, quantita-

tively, a diffraction pattern of a simple cubic lattice whose cube-edge

is half that of the face-centered cube. A calculation of density for such

a cubet shows that, on the average, half a ‘‘molecule” of NaCl would

have to be associated with each point of the simple cubic lattice, ^.e.,

Na+ and Cl“ might be assumed to occupy alternate corners of the simple

* These intensities will depend also upon the degree of imperfection of the crystal,

and comparisons between theory and experiment must be carefully scrutinized to

make sure that they apply to crystals having the same degree of imperfection. In

this connection see Chaps. X and XI.

t Second-order diffraction is considered, as before, as being a first-order beam
coming from fictitious planes whose Miller indices are all double those for the actual

first-order diffraction. Such indices are therefore all even. Third-order diffraction

is considered as coming from fictitious planes whose indices are three times those for

the actual first-order diffraction.

t In order to avoid reasoning in a circle we must calculate our interplanar spacings

for NaCl in terms of wave lengths obtained by experiments with ruled gratings such

as were used by A. H. Ck)mptOh, or by considerations of quantum theory.
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cube. Such a structure would place the Na"^ and Cl“ on two inter-

penetrating face-centered cubic lattices as in Fig. 7 of Chap. V.

This model gives alternate planes of Na+ and Cl“ for each of those

families of planes whose Miller indices are all odd and gives planes com-
posed of both Na"^ and Cl“ for the other families of planes. If now we
assume, as we have already done all along in discussing the Laue and
Bragg methods, that Cl~ (ionic number 18) diffracts x-rays more strongly

than Na"^ (ionic number 10), then the small intensities of the diffracted

rays from the (111), (311), (331), (51 1), (333) .. . planes will be

accounted for, for their amplitudes in :\*.ch case will be the difference

between the amplitudes of the beams sent out by the planes of Na^ and
of Cl“. Similar reasoninu- leads to a structure of the NaCl type for KI.

In this case the linos from the
i
laiios of odd indices are relatively stronger

than for NaCl bc^caus*; of i he greater difference in the ionic numbers of

and I *.

Csl; CsBr, and ( sCl show much the same sort of progression in their

diffraction paticrns. Cr ' and I " have the same ionic number and are

therefore assumed to have equal diffracting power. The diffraction

pattern of Csl is that of a boay-centered cube. It is concluded from the

density that half a “molecule^’ of Csl is situated at each point of the

body-centered cubic lattice. This is consistent with having the ('s+ ions

occupy the corners of the unit-cube and the 1“ ions occupy the body-

centers, or vice versa, CsBr shows a simple cubic pattern, the strong

lines of which form a body-centered cubic pattern. ("sCl shows a

similar sort of pattern except that the lines which are weak for CsBr are

stronger, thus accentuating the simple cubic pattern. These facts may
be accounted for by assuming for CsCl and CsBr the same structure

which we have assumed for Csl. It should be noted that, if we are to

follow the theory of space-groups rigorously, we must describe these

structures as being simple cubic with a whole “molecule” (Cs+ and halo-

gen) associated with each point of the simple cube. We shall learn in

Chap. VIII the methods of designating structures in accordance with

the theory of space-groups. For our present purposes it is sufficient to

describe the structure as a body-centered cube with Cs^ at the corners

and halogen ions at the body-centers.

The Structure of Diamond, Zinc Blende, and Fluorite.—Hull has

obtained^ a very complete powder-diffraction pattern of diamond using

MoitL« rays and a photographic film mounted in a complete circle except

for a small porthole through which the incident beam entered. The
glass tube containing the crushed diamond was at the center of the circle.

In this way he was able to photograph every one of the 26 lines which are

theoretically possible within an angle of 172° on each side of the incident

beam. There should be two more lines between 172° and 180°, but the

fog from the incident beam made it impossible to see them clearly.
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HulPs data are tabulated in Table IV. Along with his experimental data

are given the interplanar distances calculated with the aid of Eq. (3)

of Chap. Ill from Bragg^s value for the edge of the unit-cube. Every

experimental spacing is accounted for, and there are no theoretical

spacings left unaccounted for. The chance of any structure, other than

that of Fig. 6 of Chap. II, accounting completely for 25 consecutive

interplanar spacings is so remote as to be negligible.

The powder pattern of zinc blende is that of a face-centered cube

with strong lines such as to give a diamond cubic pattern if taken alone.

Table IV.

—

Hull’s Diffraction Data for Diamond

Miller

indices

Number of

cooperating

planes

Spacing of planes in Angstroms Estimated

intensity

of lineExperimental Theoretical

111 4 2.05 2.06 1.00

no 6 1.26 1.26 0.50

311 12 1.072 1.075 ' 0.40

100 3 0.885 0.890 0.10

331 12 0.813 0.817 0.25

211 12 0.721 0.728 0.40

U 11 (3) H 0.680 0.683 0.20
/5 1 1 12J

1 1 0 (2) (i 0.625 0.630 0.10

531 24 0.597 0.602 0.20

310 12 0.558 0.563 0.15

533 12 0.538 0.543 0.06

1 1 1 (4) 4 0.507 0.513 0.03

^711
0.496 0.498 0.08

J55 1 i2S

321 24 0.473 0.476 0.20

(731 24)
0.462 0.463 0.15

J553 12j

100 (2) 1 3 0.442 0.445 0.005

733 12 0.432 0.435 0.003

(411
0.417 0.420 0.12

jllO (3)

(751
0.409 0.411 0.08

1 1 1 1 (5) 4)

210 12 0.397 0.397 0.05

(753 24)
0.389 0.391 0.08

joi 1 12J
332 12 0.378 0.379 0.05

931 24 0.372 0.373 0.05

2 1 1 (2) 12 0.363 0.363 0.07

/933 12^

)755 I2I
0.358 0.358 0.20

1771 12(
*311 (3) 12;
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The dimensions of the face-centered and diamond cubes are identical.

The density shows, that a whole molecule of ZnS is associated with
each point of the face-centered lattice, but that on the average only
half a molecule is located at each point of the diamond lattice. These
facts lead at once to the structure of Fig. 9 of Chap. V.

The diffraction pattern of fluorite is that of a diamond cube, and
the intensities of the lines are practically the same as in the pattern of

diamond. The density shows that, on I he average, one Ca'^+ or two F~'

ions must be associated with each point'' in the diamond lattice.

By placing the two F~ ions as in Figs. 10 aiK 11 of Chap. V, the diffraction

pattern, the density, and the ordinary crystallographic properties of

fluorite are all satisfied.

The Structure of Quartz.* -Tlie lowr-temperature form of quartz

offers an interesting ample of the possibilities of the powder method.

Its ditTractioa patten is of a simf)le triangular lattice. The side of

the equilateral tjian'de is ao = 4.903A. The height of the unit-prism

is Co = 5.39;{A., gi". ing an axial ratio C = 1.10. Equation (3) of Chap. II

gives the dimsity as 0.89 instead of the actual density of 2.69. Evidently

the crystal has three times as many Si02 molecules as it would have

if there were only a single Si02 at each point of a simple triangular lattice.

This means that the crystal must be composed of three interpenetrating

simple triangular lattices. The symmetry of the crystal leads us at

once to believe that the unit-triangle of each of the basal (0 0-1) planes

may be derived from those of the plane below by a rotation of 120°

together with a vertical shift of C/3 along the Z-axis. Since a rhombo-

hedral lattice is composed of three simple triangular lattices equally

spaced along the Z-axis, it is natural to guess that quartz might be

rhombohedral; but a comparison of the actual diffraction pattern with

that calculated for a rhombohedron of the same axial ratio shows that

this guess is wrong. It is therefore necessary to assume that, although

the quartz is made up of three interpenetrating lattices equally spaced

along the Z-axis, yet these are differently situated with respect to each

other along the X- and F-axes than they would have been if the crystal

were rhombohedral. The approximate locations of the Si and O on

the X- and F-axes have been determined by McKeehan.^^ His work

illustrates the possibilities of the powder method so well that the results

are given below in some detail.

It will be remembered from the discussion of the Laue method in

Chap. IV that the resultant R of waves which have the same wave
length but which differ in phase and amplitude is given by

= (X2 + F2) (2)

where R is the amplitude of the resultant wave and X and F are* two

numbers which represent, respectively, the sum of the components, taken
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90° apart, of the amplitudes of the constituent waves. Equation (16)

of Chap. IV gave for X and F, respectively:

X = Y,Ni cos 2Trn{hxi + kyi + Izi)

+ 2:iV’2 cos 2'Kn{hx2 + ky2 + IZ2)

+
and

Y = 2)iVi sin 2Trn(hxi + kyi + Izi) (3)

+ 2N2 sin 2Tn{hx2 + ky2 + IZ2)

+

where Vi, N2 y
etc., are the atomic or ionic numbers of atoms or ions in

the crystal, n is the order of diffraction, A, k, and I are the Miller indices

of the atomic plane, and XiyiZi, X2y2Z2 y
etc., are the coordinates of the

various atoms in the plane (hkl).

The intensity of a beam of homogeneous radiation is proportional

to the square of the amplitude of the waves in that beam, i.e.,

I = = Kr{X^ + F2) (4)

For a single crystal the factor of proportionality between the intensity

of the x-ray beam and the square of the amplitude of the waves was shown

in Chap. IV to be of the form

where dhu is the interplanar distance and g is an exponent given by
Wyckoff as 2.35. McKeehan uses Eq. (4), but, since he is dealing with

powdered crystals, his value of Kiis different from that just given above.

The intensity of the diffracted beam of a finely powdered crystal falls

off more rapidly with the angle than when a single crystal is used. This

necessitates an increase in the exponent g. The intensity of the dif-

fracted beam is proportional to the number / of families of cooperating

planes in the crystal which can diffract at the given angle, so that it

is necessary to introduce / as a factor. McKeehan therefore writes

Eq. (4) in the form:

I = + Y^) (5)

The values of / and d depend upon the plane chosen for investigation,

i.e., upon the values of A, fc, and Z. It is assumed that the silicon and
oxygen are present as ions in the crystal, thus giving Si+++'^ an ionic

number Vi = 10 and each O an ionic number ^2 = 10. This assump-

tion is consistent with chemical theory and with calculations on the

optical properties of quartz. Various values of x\y\Z\, X22/222 ,
etc., are

systematically substituted in the X- and F-terms and the relative inten-
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sities of diffracted beams are calculated for various atomic planes in the

crystal. McKeehan used the six planes having the largest interplanar

spacings, d, in the crystal. The values of XiyiZ\j etc., which gave calcu-

lated intensities most nearly in agreement with results of experiment,

were assumed to be the values of the true coordinates of the atoms.

The value calculated for I from Eq. (5) is very sensitive to small changes

in the values of XiyiZi, etc., so that a change in the coordinates of O.lA.

from the preferred values gives a calculated result of the wrong order

of magnitude.

At first it might seem that an infinite number of choices was possible

for the value of each coordinate, so that (1 e chance of finding the right

values would be negligibly small. It is at this point that the symmetrical

characteristics of the crystal are again useful. These impose two limi-

tations oil the tjho’ce of coi . dinates:

1. Ir. each molt'cule ti . two O"” eentera arc equidistant from the center,

sr th^t ‘he three lon-e.eniers he at the corners of an isosceles triangle.

2. Ea('h (tenter is eq lidistant from the two O centers in adjacent mole-

ciih's, the centers of which belong to simple triangular lattices which are

different from each other and fiom that of the center under consideration.

The reasons for these two limitations will be more clear to the reader

after a study of Chaps. VIII and IX.

It is a matter of experience that the distance of closest approach of

atomic centers in crystals usually lies between 1.5 and 3.5A. In the

neighborhood of Si and O this range is between 1.5 and 2.5A. This

serves to reduce the number of choices of coordinates still further.

Bragg^s values for the parameters of (fuartz are

ao = 4.89A.

Co = 5.375A.

In terms of these values for the unit-crystal, McKeehan finds that the

following values of XiyiZi, X 22/222 ,
etc., give the best agreement with the

results of experiment.

Coordinates of ion-centers, grouped by molecules:

Si++++(0, 0, 0)

O" (0.325a, -0.016a, 0), (-0.325a, -0.341a, 0)

Si++++(0.603a, 0.206a, 0.333c)

O--(0.619a, 0.547a, 0.333c), (0.944a, 0.222a, 0.333c)

Si++++(0.397a, 0.603a, 0.667c)

0“(0.056a, 0.278a, 0.667c), (0.381a, 0.928a, 0.667c)

Angles at ion-centers between lines to adjacent ion-centers:

At Si"‘"+'‘^ between lines to O— of same molecule = 115° 14'

At Si++++ between lines to O— of adjacent molecules = 111° 28'

At O between lines to Si++++ of same molecule and to Si“^+++ of adjacent

molecules = 137° 50'
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Distance between Si++++ and 0— centers of the same molecule =

1.63iA.; of adjacent molecules = 2.176A.

These coordinates give three equally spaced horizontal layers of ions as

described above. A plan of each of these three layers is shown in Fig. 23a,

6, and c. Figure 24 shows these plans superimposed, thus giving a view

of a quartz crystal looking down from the top.

1 i

(fc) (c)

Fig. 23.—Plan views of sucoossivc (0 0- 1) planes of McKeehan’s quartz.

A second approximation to the correct atomic coordinates has been

suggested by Gibbs^* from a consideration of the diffracted beams from

the (00*1) planes. Diffraction from these planes is very weak, and the

first three orders of diffraction have about the same intensity. This is

easiest accounted for by assuming each basal plane to be split up into

three others: a plane of 81++++ sandwiched in between two planes of O—

.

Gibbs spaces these planes so that the Z-axis of the unit-crystal is divided

into approximately equal parts. The spacings differ from the value C/3

used by McKeehan only enough to give a weak third-order diffraction.
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Such an arrangement of basal planes, if confirmed, would alter some of

the interionic distances in McKeehan^s model somewhat, because it would
rotate each Si02 group slightly about an axis running in the plane con-

taining from the center of the Si++++ to the screw axis of sym-
metry* of the unit-structure. This would have the effect of lifting all

the O marked with a circle in Fig. 23 and depressing the O— marked
with a triangle, or vice versa.

But in spite of such a change, the structure of quartz differs from the

structure of all other compounds described up to this point. In all the

crystals so far described the unit-particle h is been a single ion. Such
crystals have nothing which may
properly be called a “chemical

molecule.^' For instance each

Na+ in NaCl is equaJlv spaced

from six Cl ' and ea ii C! ' is

oqaall}" spaced from sis Na'

.

A
given Na+ can hardly be .>aid to

“belong’’ to one of the six Cl~

more than to any of the other

five. Such a crystal is an ionic

crystal, for it is merely a system-

atic assembly of ions. In quartz

each Si"’"^'^'^ has two 0— which

are slightly closer to it at room
temperature than to any other

t 1

Fia. 24.—Superposition of Figs. 2aa, 6, artl c.

Si++++^ SO that the molecule of Si02 has a real existence in the quartz

crystal. Such a crystal is a molecular crystal. At elevated temperatures

it is to be expected that this slight inequality in spacing will be overcome

from instant to instant for individual ions because of their increased

freedom of motion. This means that at elevated temperatures quartz

should take on the properties of an ionic crystal and should become
electrically conducting. It is a matter of ordinary laboratory experience

that this is indeed the case.

The Structure of Arsenic.—The powder method is also well illustrated

by Bradley’s solution^® of the structure of arsenic. The diffraction pat-

tern is that of a rhombohedron whose axial ratio (in the hexagonal system)

is C = 2.81. Such a rhombohedron may be easiest thought of as a face-

centered cube which has been stretched along a body-diagonal. The
crystal must contain two interpenetrating rhombohedra of this type in

order to give the proper density.

The symmetry of the crystal demands that the Z-axes (hexagonal

system) of the two rhombohedra lie in the same straight line. This

means that, if we think of these rhombohedra as distorted cubes, then

* A screw axis of symmetry is defined completely in Chap. VIII.
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the body-diagonal of one will lie in the same straight line as the body-
diagonal of the other. Such a displacement is much like what we have
in NaCl. So far we have considered the face-centered lattice of Cl" to

be displaced along the cube-edge of the Na^ lattice until the corner of the
Cl~ cube was halfway along the edge of the Na"^ cube. A glance at Fig. 7
of Chap. V shows that exactly the same result could have been obtained
by displacing the Cl“ lattice along the body-diagonal of the Na"^ cube
until the corner of the Cl“ cube was halfway along the body-diagonal of

the Na"*" cube. P]ither kind of displacement leads to the generalized

ionic coordinates (see Chap. II),

Na+
TTlj

1
n P

m + Vz, n’+ P
m + yz, n. P +

n + K, P + y
ci-

-

m + Vz, n + P +
m 1, 71 + 1, P + yz
m + 1, 71 + yz, P + 1

7)1 + n + 1, P + 1

where m, n, and v are any integers, including zero.* The two face-

centered rhombohedra (distorted face-centered cubes) of arsenic must be
related to each other in much the same way, except that the corner of one
cannot lie exactly at the center of the body-diagonal of the other. If it

did lie exactly at the center we would have a distorted simple cube, and
the diffraction pattern would have to be different from what it actually

is. If we use rhombohedral axes so as to correspond to the cubic axes
of our NaCl analogy, the generalized atomic coordinates must be

m, n, p
m + H, n + > 2 , p
^ P + Vz

'^ + Hy V + }i
m + }i+x, n + 2̂ + X, V + H+ X
m + 1 + a:, n + 1 + x, p + H + x
m + I + Xy n + H + X, p + l+ x
'm + Yz + X, 71 + 1+ a;, p + I x

The displacement of 3^^ + a: along each of the three axes is equivalent
to a displacement along the body-diagonal to some point other than the
center. By the use of the coordinate x, it is unnecessary to use the factor

* Since m, w, and p are integers, m + 1, n + 1 ,
and p + 1 are also integers. Since

m, n, and p are any integers, it follows that m + 1, w + 1, and p + 1 may be written
as m, n, and p when making generalizations.
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\/m which was employed in Chap. V in our discussion of the Br|^gg

method. Of course it is possible, if desired, to calculate the value of

1/m for any given family of planes from the value of x and the angles

between the (rhombohedral) axes of the arsenic crystal.

Bradley used a slightly simpler, but less general, scheme for calculat-

ing the atomic coordinates of arsenic than was used by McKeehan for

quartz. McKeehan used Eqs. (3) and (5), which give the resultant

of two or more waves which differ from each other in both amplitude and
phase. These equations resolve each of the waves along the X- and
]^-axes and add up the components alon,-; each axis, thus giving two
vectors at right angles to each other, which are, in general, of different

magnitude. The square of the resultant of these two vectors is expressed

in the usual way by Eq. (o ) as the sum of the squares

of the two A'eetors. i\ ^sui. ing that all the atoms of

arsenic, are alilc( and ^icreh re have equal diffracting

pitwer, Bradley had to deal with only two wave trains

of e(iual amplitudo A in e ich beam of the diffraction

pattern. I .et bo the phase angle between these two

wave trains (P'ig. 25). The resultant K is evidently

2.4 cos ~ + cos \l/)

Fid. 26.—Result-
ant of two vectors

Since the intensity / of the wave is proportional to ecmal in magnitude

the square of the amplitude, we may use K2 as a

factor of proportionality and write

/ = K2R^ = K2 (
2^‘')(1 + cos

/ = K2AH2 + 2 cos i) (6)

An empirical expression for the factor of proportionality has already

been given in the discussion of McKcehan^s structure of quartz, namely.

This may be turned into the form used by Bradley. Bragg's law may be

written:

2dhki _ 1

n\ sin d

If X is kept constant, this becomes

n sin 6

If we choose our units of intensity so that k is unity, then

/d/ifczV / 1 V
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Following Bragg, Bradley uses gr = 2, so that he has

K,
sin^ d

where 6 is the angle of grazing incidence as in Bragg’s law.

The value of ^ of Eq. (6) is found in terms of the atomic coordinates

in the following way: For the sake of simplicity we shall assume, at

first, a cubic structure instead of the rhombohedral structure of arsenic.

We shall continue to use the symbol dhki to represent the interplanar

spacings as calculated for the (hkl) family by the methods of Chap. Ill

and shall use the symbol d' to represent the distance between adjacent

planes of this same {hkl) family. In the case of Fig. 18 of Chap, IV,

dhki would represent the spacings ah or ABj and d' would represent the

spacings aA or bB. By Eq. (3) of Chap. Ill,

d' = (^-^1 + kyi + Izi — 1 ) — {hx2 + ky2 + lz2 — 1 )

In terms of the generalized atomic coordinates of arsenic this distance

is

_ h{x + 10 + k{x + 1.0 + l(x + 10

Vh^+lc^Tl^
Since

Eq. (7) becomes

dhki
8

+ k l)dhk i

8
(8)

where s is the periodicity of the {hkl) planes (see Chap. III).

Obviously all expressions which are characteristic of the 90° angles of a

cubic structure have disappeared and Eq. (8) will hold forarhombohedron.

When
2dhki sin d

is an exact multiple of the wave length used in the experiment, complete

“constructive interference” occurs [see discussion of hlq. (15) in Chap.

IV]. This corresponds to an angular distance of 27rn. Then

2d' sin e ^ ^ {x + H){h + k + l)dhki{2 sin d) .

2dhki sin 6 2irn sdhki{2 sin B)
^ ^

Therefore the phase difference between x-ray waves diffracted from

corresponding planes in the two face-centered lattices of arsenic will

be

^ + A: + Z)
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If we follow the usual convention of incorporating the order of diffraction

n with the indices so that the nth-order diffraction from (hkl) is con-

sidered as a first-order beam from a fictitious plane (nhnknl), we have

+ ^{nh + nk + nl) (10)

Substituting for ^ and K2 in Eq. (6), we have

^ ^ + 2 co» + i VnA + nk + nJ)}] (11)

It is now necessary to solve Eq. (11) for the various beams diffracted

from the crystal using successive values for ar, remembering that x

must always be a positive fraction. For each value assumed for x

there must be made j tabulation of the calculated order of intensities

of the various lines in tbe di fraction pattern. This is done by numbering

the lines in the order of iheir calculated intensities, calling the most

iniense line 1, the second most intense line 2, etc. In a parallel column

is listed the experimental order of intensities, and in still another column

is listed the ^^crror,^^ i.e.^ the difference between the calculated and

the experimental orders of the intensities. For any assumed value of

X the sum of all the errors, irrespective of sign, is taken as a measure of

the incorrectness of the assumed value of x. Such a tabulation for one

value oix {x — 0.0488) is shown in Table V. The use of order of intensity

instead of absolute intensity avoids many pitfalls connected with some
of the assumptions on which the calculations are based, for, although

certain changes in these assumptions may result in great changes in the

calculated intensities, they rarely affect seriously the order of these

intensities. (In this connection see Chap. X.)

Bradley saved a great deal of labor in the calculation of x by first

getting approximate values which served to show the limits within which

his calculations could be made profitably. The line (311) entirely disap-

pears in the first order. The factor {nh + nfc + nl) in Eq. (11) becomes
— 1. Since s is unity the only way to make / negligibly small is to make
the term

2 cos \2t(x + J'0(— 1)1

have a value approximately equal to —2. This, in turn, requires us to

make x very small. The line (200) is by far the brightest on the photo-

graphic film. If X were 0.25, Eq. (11) would contain the term

2 cos {27r(0.75)(2)} = 2 cos [St] = -2

so that the calculated intensity of the diffracted beam would be zero.

It is evident, then, that x must be much less than 0.25, if we are to account

for the high intensity of this line. The line (2 2 0) is the third strongest
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in the diffraction pattern. It would disappear for x = 0.125 or 0.375, so

that X must be considerably less than 0.125. Lines (442) and (444)

Table V.—Bradley^s Diffraction Data for Arsenic

I II III IV V VT

d/n d/n kkl Order of Order of

(observed) (calculated)* (trigonal intensity intensity Error

X10-« cm. XIO 8 cm. a.xes) observed calculated

1 3 . 555 3 . 525 1 1 1 19 19

2 3.18 3.118 1 1 1 25 24 1

3 2.780 2.777 200 1 1

4 2 . 054 2.054 220 3 3

5 1.891 1.886 220 2 2

6 1.781 1.790 311^
9

7 - 1.764 1.764 2 22 /
4 5

8 1.662 1.662 3 1 1 12 15 V

1.614 311 26

9 1.562 1 . 559 222 8 7 1

10 1.387 1 . 388 400^
11 1.368

1.286

1 . 368

j'1.291

3 3 1/
33 n

5 4 1

12 7 8 1
\ 1 . 287 420 /

13 1.223 j 1 .227 4221
23

t 1 . 226 agi}
23

14 1.201 1.201 420 6 5 1

15 1.182 1.177 3 33 21 21

16 1.119 1.119 42 21 9 6
17 1.107 1.109 511/ 3

18 1 . 089 1.088 422 14 14

19 1.068 1.066 5 1 1 15 15

1.041
r 1 . 039 333>

2020
11.038 511/

22 2

21 1.023 1.027 440 24 25 1

1.005 442 28

22 0.998 0.997 531 10 10

23 0.955 0.955 531 16 13 3

24 0.942 0.943 440 18 18

25 0.929
r 0.9265 ooo'i

10.9265 442> 11 11

26 0.922 0.9215 533j
^0.910 531)

27 0.908 <0.902 620> 22 20 2

(o.902 531/

0.891
rO.895 622>

13 1228
10.892 442/

1

0.882 444 27

29 0.854 0.856 620 17 17

Total error, 25

* These interplanar spacings are calculated with the aid of Eq. (23) of Chap. Ill, u.sing for C the

value of 2.81 obtained from the charts and for ao/2 the most probable value (2.799A.) calculated from

the data of column 1.

are absent. The smallest values of x giving zero intensities in Eq. (11)

are x = 0.05 and x = 0.15 for (442) and x = 0.0417 and x = 0.125 for
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(444). A value in the neighborhood of x = 0.04 or 0.05 will obviously

fit in with all these facts. Bradley actually calculated from x = 0.025

to X = 0.075.

When the calculations have been made and tabulated, a plot is made,
as in Fig. 26, which shows the value of x for which the total error is a

minimum. The error can never be zero, partly because of the difficulties

in measuring the observed intensities accurately. The value of x used

in Table V is the one for the minimum cf the plot. It is strongly advised

that the reader repeat the calculations necessary for Fig. 26, in order that

he may obtain a really workable knowledges of the powder method.

It was brought out in Chap. 11 that many lattices might be con-

sidered to belong to otk' of t wo or more cr^stat structures, depending only

upon the point of vlt-w. Arsenic is

an excellent exam ole of his. We
have ah*eady consider <l it as being

made up of two slightly distorted face-

centered cubes, i.e., t\\ • interpene-

trating face-centered rhombohedra

with rhornbohedral (distorted cubic)

axes of reference. One of these face-

centered rhombohedra is shown in

Fig. 27a. The two together are shown

in Fig. 275. The edge A B of the unit

face-centered rhombohedron is ai =
5.598A. and x = 0.0488«i. The
angle between any tw^o of the axes is

a = 84° 36'. Such a structure may also be referred to a second

set of rhornbohedral axes which lie along the face-diagonals of the

rhombohedra described above. Since a is less than 90°, the longer of the

face-diagonals must be used. The edges of the new rhombohedra lie

along these new axes and have a length equal to half the face-diagonals

of the old rhombohedra. The long body-diagonals of the new rhombo-

hedra are identical with the long body-diagonals of the corresponding old

rhombohedra. From this point of view, arsenic is built up of two inter-

penetrating simple rhombohedra. One of these is shown in Fig. 28a.

A portion of the other is shown in Fig. 285. The side AG is a2 = 4.145

and X becomes 0.054a2. A structure similar to arsenic has been described

in the literature as being made up of two interpenetrating fragmentary

simple rhombohedra whose axes are identical with those of the face-

centered rhombohedra described above. The edges are parallel to the

edges of the face-centered rhombohedra but are only half as long. Each

of these fragmentary simple rhombohedra has half its corners missing so

that if X had been zero the combined structure would have been a com-

plete simple rhombohedron. From this viewpoint arsenic is built up of

Value of Parame+er X
Fk5. 20.-- Oraphituil method of deter-

mining X for arsenic.
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two interpenetrating fragmentary simple rhombohedra of side az = 2.8oA.
and X = 0.097a:j. If now the origin of coordinates of the original

face-centered rhombohedron of arsenic is shifted to any one of the three

adjacent corners of the unit-structure, the crystal appears as a special

case of the triclinic system (see Chap. II), in which all three axes are of

equal length and two of the three axes make equal angles with each other.

Two of these three structures turn out to be duplicates, so that for every

rhombohedral structure so far described for

arsenic we have two possible face-centered

triclinic lattices. Lastly, any rhombohedron
may be thought of as being built up of three

interpenetrating simple triangular lattices, and
lliiis i^ may be considered to belong to the

tr angular (hexagonal) system. The diffraction

))a:tern of arsenic is an exact match with the

theoretical pattern for a rhombohedron such that

L

(h)

ursenir. One of the Biinple rhombohedra. {b) Structure of

A portion of the secoml rhombohedron.

the side of the unit-triangle is 3.75A. and the axial ratio is 2.81. This axial

ratio is somewhat larger than that for a face-centered cube (considered as

a rhombohedron, a face-centered cube has an axial ratio of 2.45), so that

the rhombohedron is built upon a face-centered cubic lattice which has

been stretched along its body-diagonal. This therefore agrees with the

first interpretation given of the structure of arsenic. The density shows

that arsenic is composed of two interpenetrating face-centered rhombo-

hedra. If the simple rhombohedra of Fig. 28 are considered from the

point of view of the triangular (hexagonal) system, they lead to the same
size of unit-triangle and the same axial ratio as are given above.

Altogether we have seen how the structure of arsenic can be expressed,

without undue complication, in any one of seven different ways. Such

an embarrassing; freedom of choice in the description of a crystal structure

sometimes makes it a little hard to correlate the various statements in
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the literature. This is one of the reasons why models of crystal structure,

built to scale, are indispensable to workers in this subject.

PRECISION MEASUREMENTS OF CRYSTAL PARAMETERS

We have seen how, by means of x-ray diffraction, it is possible to

determine the arrangement of atoms and of ions in crystals. If this were

the whole object of our study, there would be little incentive to make
precision measurements of the dimensions of unit-crystals. It will

appear, however, in later chapters that the study of crystal structure is

usually undertaken as a tool for the investigation of phenomena in other

branches of science—it is a means to an end. The attainment of that

end often necessitates a measurement of the dimensions of a unit-crystal

to within 1 part in 1,000, i.e., jfo per cent. It will therefore be necessary

to take up in detail the methods to be employed and the sources of (^rror

to be avoided in making such measurements.

The diffraction pattern is usually recorded on a photographic fim

bent into the arc of a circle whose center is the specimen of powdered

crystal (see Fig. 1). The grazing angle of diffraction B of Bragg\s law,

may then be determined for any line in the diffraction pattern directly

in terms of the distance Tj from that line to the shadow of the specimen

on the zero line (photographic record of the undeviated beam), for

o. j. 360L ,

20 = ^
radians = deg.

where R is the radius of curvature of the film. Bragg\s law then becomes

d
n\

2
sin

1

360

47r

L
R

nX

„ . 28.65L
2«'n

“Te
-

(12)

The value of X is fixed by the material used as a target in the x-ray tube.*

Because diffraction of the second, third, . . . ,
/ith order may always

be considered as a first-order diffraction from fictitious planes having

an interplanar spacing of 3^^, ,
l/n of the actual spacing, n is

taken as unity. Our discussion of precision measurements of d or of the

edge a of the unit of structure in the crystal must necessarily, therefore,

center about the measurements of L and R, If a flat plate is substituted

for the curved film, the value of By and therefore of d, may be measured

in terms of L' (analogous to L) and the perpendicular distance R' from

the specimen to the sensitive surface of the photographic plate. In such

• a case the discussion of L and R which follows may be readily altered to

make it apply to L' and R\
* Tables of characteristic wave lengths are given by Wm. Duane, Nat. Research

Council Bull. 6 (1920); M. de Broglie, ‘‘Les rayons X,” 1922; M. Siegbahn, “Spektro-

skopie der Rontgenstrahlen/’ 1924.
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It is customary, when examining a diffraction pattern, to hold the

film so that the zero line (photographic record of the undeviated beam)
is on the left, and most apparatus used in examining diffraction patterns

is designed in accordance with that custom. It will therefore be assumed,
for the sake of simplicity, that this custom is followed by the reader.

It was explained earlier in this chapter that, if the source of x-rays were

a geometrical point and if the slit system were merely a series of infinitesi-

mal pinholes, the lines of the diffraction pattern would be arcs of circles

whose common center would be the spot caused by the zero ^eam.

Since the source of x-rays is actuary a s])ct of finite size, its projection

is a line whose length is several times its ^vidth. The slits are usually

rectangular in outline, liach line of the diffraction pattern therefore

represents the envelope an infinite number of circles, all of the same
radius and all tangent 'o the same straight line at successive points along

its length. The shap^ of the lines is therefore roughly that of some por-

tion oi the cross-section of a plano-concave lens. Over an arc of 90°,

the straight edge is on Uu: side away from the zero line. This effect is

most noticeable at- the left-hand end of the pattern where the radius of

the component circles is least. This is plainly brought out in Fig. 21.

When the specimen is in the form of a thin sheet, (for instance, when
studying the structure of the edge of a safety-razor blade), the zero

line is cut off sharply by a well-defined shadow from the specimen. In

conformity with Fig. 6 it will be assumed that it is the left-hand half of

the zero beam that is cut off, and that the photographic film is mounted
so as to record the diffraction pattern to the right of the zero line. Then,

if the edge of the specimen is at the center of the arc on which the film

is bent, there is little chance for error in the measurement of R, L is

then taken as the distance from the edge of the shadow of the specimen

to the straight edge of the line in the diffraction pattern. It is difficult

to determine accurately the position of this edge for such lines as do not

show complete resolution of the ai and wave lengths of the K doublet.

For all other lines in the diffraction pattern this value of L is free from

objection, (a) if there is no widening of the line caused by halation of the

film, (6) if the crystals are not so small that Bragg^s law starts to break

down to the ordinary diffraction equation for light thus broadening the

line, and (c) if there is neither stretching nor shrinking of the film.

When the specimen is mounted in a tube whose center is the center of

curvature of the film, as shown in Fig. 1, the measurement of R and L is

not so simple. Let us first assume that the specimen is infinitely trans-

parent to the x-rays. Then, R would be measured from the center of

the specimen tube. Such a specimen could not throw a shadow on the

zero line, but the measurement of L would have to be made from the

center of the narrowest portion of the given line in the diffraction pattern

to the center of where the shadow would have been in the zero line if the



158 CRYSTAL STRUCTURE

specimen had not been infinitely transparent. If, instead, we assume

that the specimen is infinitely opaque to the x-rays, the diffracted beams

would all come from the right- and left-hand surfaces (Fig. 1). This

would give the effect of two separate specimens, one on each side of the

center of curvature of the film. Because of the opacity of the specimen

the left-hand edge would give no diffraction pattern on the film to the

right of the specimen, and the right-hand edge would be the source of

the only diffraction pattern recorded on the film. Equation (12) does

not hold rigorously for such a condition but gives too large values of L
and therefore too small values of d. It would have to be modified to

account for the eccentricity of the edge of the specimen. All actual

specimens fall between these two extremes and act as though they were

made up of two specimens each of which has its own equivalent center

of diffraction. The more transparent the substance is to the x-rays,

the closer these two equivalent centers will approach the actual center

of the specimen. It might be supposed that the difficulty could be

avoided by using a photographic film only on the right-hand side of the

zero beam and placing the edge of the specimen at the center of curvature

of the film. All measurements of L would then have to be made from

the right-hand edge of the shadow to the right-hand edges of the lines

in the diffraction pattern. Experimentally it is hard to place the speci-

men with sufficient accuracy, and the shadow cast by specimens of low

atomic number is often too faint to give a sharp outline.

Both of these objections may be obviated by using a calibrating sub-

stance, so that its diffraction pattern serves as a comparison standard

for the pattern under investigation. There are two ways in which the

calibrating substance may be mounted: (1) It may be mixed directly

with the substance to be investigated, so that the equivalent centers of

diffraction of the two coincide. Such a procedure is possible only in

those cases where there is no chemical action between the two sub-

stances and no tendency for one to form a solid solution with the other

during the process of mixing the two powders. (2) The calibrating

substance may be put in one end of the specimen tube and the substance

to be investigated at the other end.^^*^^ In this case the film-holder must

be provided with a septum as illustrated in Fig. 1, in order to separate

the two diffraction patterns. Both substances must be diluted with an

amorphous material until they have approximately the same efficiency

of diffraction. Empirically it is found that, when this condition is

fulfilled, the equivalent centers of diffraction of the two substances

practically coincide. In the absence of more complete knowledge the use

of the table of dilutions as given in Table I is recommended. That this

gives results which may be depended upon in ordinary practice to 0.1 per

cent is shown by the following A specimen tube of very fine bore (about

0.3 mm. diameter) was loaded at one end with NaCl which had been
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mixed with an equal volume of flour. The other end was loaded with
W powder (99.999 per cent pure) which had been passed through a
200-mesh .sieve and which had been mixed with 10 times its own volume
of flour as recommended in Table I. The diffraction pattern gave the

lattice parameter a = 3.155 ± 0.001A. A second tube of somewhat
greater bore (about 0.6 mm. diameter) was loaded with a mixture of 1

volume of the same lot of W and 10 volumes cf NaCl. The diffraction

pattern gave a lattice oarameter

a = 3.157 ± 0.003A. The first

value gives a density 19.32. The
second gives a density 19.28. Tiie

best determination of the density

of W by ordinary meihods-*'* is l‘J.3.

The latt ice pai’arn^jter if pare gold

(99.999 per cent) ha"- boon deter-

minod‘3 in terms of .NaCl as a =
4.065A., nnd the density agrees

within th(i oxpeninontal error with

that for pure gold. Using this

gold as a comparison standard, the

lattice parameter of W is 3.155A.

The results are shown graphically

in Fig. 29, which will be referred to

in greater detail later. The agree-

ment between the final results for

the two methods of using NaCl is

striking. The high atomic number
of W would lead one to expect that

its equivalent diffracting center in

the specimen tube would be much
closer to the surface than that of

NaCl. This would unquestionably have been so if the W had been uni-

formly dispersed throughout the tube. The favorable results shown
above are caused by the fact that, instead of being coated on to each

particle of flour, the W was scattered through the flour in the form of a

powder so that the x-rays found relatively free paths by which to enter

and emerge from it. It is doubtful if such good agreement could have

been found if the specimen tube had exceeded 0.7 or 0.8 mm. in diameter,

for larger tube diameters tend to be incompatible with the existence of

free paths for the x-ray beam. It is mainly for this reason that, in the

discussion of the technique of preparing the specimen, it wasrecommended

that the diameter of the specimen tube should not exceed 0.6 mm.
The use of a calibrating substance avoids any accurate measurement

of R, In making measurements of L, whatever procedure is adopted for
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one of the diffraction patterns must be employed for the other. For

instance, the measurements may be made from the right-hand edge of the

shadow of the specimen to the right-hand edges of the lines in the pattern.

This presupposes that there is no widening of the lines caused by very

small particle size, halation of the film, etc., and that the ai and an lines

are completely resolved. If these conditions have been fulfilled, the

Table VI.—Theoretical Values of Interplanak Spacincs for NaCl (Con-

sidered AS A Simple Cube (a = 2.814A.)

1

Theoretieal simple

/i’ + Plane

1

cubic spacin^s

for Na(Cl

(a = 2.814A.)

1 100 2.814

2 110 1.990

3 111 1.625

4 100 (2) 1.407

5 210 1.259

6 211 1.149

8 1 1 0 (2) 0.995

9
IlOO (3)t

<221 S

0.938

10 310 0.890

11 1 311 0.848

12 1 1 1 (2) 0.812

13 320 0.781

14 321 0.752

16 100 (4) 0.703

17
U10>
(S22)

0.682

18
ill 0(3)?

Ui 1 )

0.663

19 331 0.646

20 210 (2) 0.629

21 421 0.614

22 332 0.599

reading at the right-hand edge represents the position of the lines from an
infinitely narrow specimen whose zero-line shadow falls on the right-hand

edge of the actual shadow. It is usually much easier, especially if the

lines are faint, to measure L from the center of the shadow on the zero

line to the center of the lines of the diffraction pattern. The previous

discussion of the shape of these lines makes it plain that the center of the

line should be taken at its narrowest width. For instance, in Fig. 5, the

lines of the upper pattern should be measured close to the top. The lines

of the lower pattern should be measured at the middle of their length.
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The calibrating substance is usually NaCl. It is the secondary
standard for crystal-lattice measurements, and it is easily obtainable in a
high state of purity. Its diffraction pattern is fairly well spread out over

the film, so that all parts, especially those corresponding to the larger

interplanar spacings, are easily calibrated. The theoretical interplanar

spacings of NaCl in terms of a = 2.814A. (i.e., in terms of the simple

Table VIT.—Theoretical Values of In'^eiiplanau Spacings for CdO, Con-
sidered AS A Fa(’E-CENTERED CUBE (a = 4.681 A.)

-f A'2 + /2
1

Plant! jTiicoretical spacing

1

Ill 2.704

4 1 100 (Ca2) 2.340

8 1 10 (1)(2) 1 655
11 ! 311 1.411

1 1 1 (2) 1.352

I.-)
1
100 (2) (4) 1.170

331 1.074

20 210 (1)(2) 1.074

24 2:1 (1)(2) 0.955

27 [

h 1 1 (3)

i

0.901

32 no (2) (4) 0.827

35 531 0.791

36
O00(3)(6)/

<221 (1)(2))
0.780

40 310(1)(2) 0.740

43 533 0.714

44 31 1 (2H4) 0.706

48 1 1 1 (4) 0.676

51
i7n<

0.655
(551)

52 320 (1)(2) 0.649

56 321 (1)(2) 0.626

59 !???( 0.609
(731)

64 100 (4) (8) 0.585

67 733 0.572

cubic pattern of strong lines) are given for reference in Table VI. The
use of CdO as a calibrating material has been suggested by Brentano and

Adamson^® and by Fuller. The advantage of CdO lies chiefly in the fact

that the lines have larger intensities at large diffracting angles than do

the lines of NaCl. This facilitates the calibration of films of low inten-

sity. The interplanar spacings for CdO are given in Table VII.

The chance of not having the equivalent center of diffraction of the

calibration standard coincide with that of the substance under investiga-

tion is lessened if the two materials themselves have about the same
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opacity to the x-rays. Patterson has proposed ^'conductivity copper

as a new secondary standard for use with substances like Cr, Fe, and Ni.

Such copper is easily obtained and seems to be uniform from sample to

sample. In terms of NaCl = 2.814A., the lattice parameter of Cu^* is

3.605 ± O.OO2A. In terms of W = 3.155A., it is 3.600 ± 0.003 where ±
refers to the combined uncertainty of the values for W and Cu. For

substances of high atomic number, the W from a Mazda lamp filament

might be used as a calibration standard, as it is of high and uniform

purity and may be easily obtained. Of the values for its lattice parameter

given above, the first, a = 3.155 ± O.OOlA., is to be preferred because

of the high degree of reproducibility in the readings on the diffraction

pattern from which the measurements were made. The uncertainty of

measurements made with derived standards like Cu orW is the sum of the

uncertainty of the value for the derived standard plus the uncertainty of

measurement of the substance under investigation. Therefore, if

derived standards are to be used, it is important that their lattice parame-

ters be established within narrow limits so that the precision of the final

results, expressed in terms of NaCl, may not suffer too seriously.

Table VITI.-“Data fuom Film 805 for Determininij the Lattice Parameter
OF Pure W

NaCl w

Experi-

mental

Theoret-

ical

Correc-

tion
Plane

Inten-

sity

Experi-

mental

Cor-

recitc'd
lug a

2. 82A. 2.814A. 1 10 S 2.23A.

1.995 1.990 -0.005 100 w 1 .679 1.6771. 49 886

1.627 1.625 -0.002 211 M i.290 1.289 49 932

1.409 1.407 -0.002 no (2) W 1.117 1.116 49 920

1.260 1.259 -0.001 310 M 0.998 0.997 49 870

1.150 1.149 -0.001 111 F 0.912 0.912 49 958

0.996 0.995 -0.001 321 W 0.842 0.842 49 837

0.938 0.938 0.000 100 (2) VF 0.788 0.788 49 859

0.890 0.890 0.000 Ull } W 0.744 0.744 49 920
0.848 0.848 0.000 <110 (3)i

0.812 0.000 210 F 0.706 0.706 49 931

0.780 0.780 0.000

So far we have discussed the measurement of the distances, L, from

the zero line to various lines in the diffraction pattern. After the various

readings of L for the calibrating pattern have been taken, they must be

translated into measurements of interplanar spacings by Eq. (12). A
calibration curve is drawn showing the corrections which must be applied

to change these values into the theoretically correct values. This

correction curve is then applied directly to the interplanar spacings
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calculated from the diffraction pattern of the substance under investiga-

tion. This procedure may be illustrated by giving the data^^ from our
film 805 for the lattice parameter of pure W. The calibration material

was NaCl. The interplanar distances of NaCl, as determined from the

pattern, are listed in the first column of Table VIII. The corresponding

theoretical distances are listed in the second column. The third column
gives the correction which must be added to each experimental value to

change it to the correct value. Figure 30 shows these corrections plotted

against interplanar distances so that interpolations may be made easily.

The large experimental error in rearming diJi action patterns too near the

zero line makes it useless to attempt to correct readings for interplanar

spacings of more than 2.00A. whe?i MoA\, rays are used. The experi-

mental values of W, giver in coiunm 6 of Table VIII, are corrected by
means of Fig. 30 i b is ' iting the readings of column 7. Fiach of these

A

0.0

- 0.010

zoo 150 1.00 0.50 A

Fio. 30.—Correction curve for film 805.

corrected readings is then multiplied by the reciprocal of the appropriate

structure constant from Table II of Chap. Ill, so that each reading smaller

than 2.0oA. is made to give a value for the edge a of the unit-cube.

This is easiest done by the use of five-place logarithms. The last column

of Table VIII gives the values of log a so obtained. For convenience of

reference. Table IX gives the cologarithms of the structure constants for

the common types of cubic crystals.

It remains to find from all of these values the true value of the edge of

the unit-cube. This is usually done graphically. The operation is

carried out in terms of the logarithms such as are listed in Table VIII,

partly as a matter of convenience and partly as an aid to the investigator

in drawing his graph without prejudice for any particular final answer.

The various logarithms from Table VIII are first arranged in ascending

numerical order as shown in Table X. If there are p logarithms, the mth
100 m

. . .V ,

one is interpreted as showing that
p + 1

per cent of the values are equal

to, or smaller than, that logarithm. If the logarithms are then plotted

against their corresponding percentages the result is an approximation

to the integral of a probability curve, and the larger p is the closer the

approximation will be. This may be illustrated in terms of life-insurance

statistics. Suppose we choose a large group of men all of the same age,

and suppose we plot, year by year, the number who die during the year
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Table IX.—Cologakithms of the Structure Constants for the Common
Types of Cubes

Planes
A* 4- &* +

for simple cube

Simple cube

log

Body-centered Face-centered diamond cube
cube cube

1

2
3
4
5
6
8

9

10
11
12
13
14
10

17

18

19
20
21
22
24

25

20

27

20

30
32

33

34

35

30

38

40
43
44
40
48

50

51

52

54

60
68

59

62

64

66

67

68

0.00000
0.15051
0.23860
0.30103
0.34948
0.38907
0.45154

0.47712

0.60000
0.62069
0.63969
0.55097
0.57300
0.00200

0.61523

0.62703

0.03937
0.05051
0.06111
0.07121
0.09010

0.09897

0.70748

0.71508

0.73120

0.73860
0.76257

0.75925

0.70574

0.77203

0.77815

0.15051
0.23866 0.23866

0.30103 0.30103

0.38907
0.45154 0.46154 6.45154

0.50000
0.52069 0.52009

0.53959 0.53959

0.67300
0.(i0200 0.00200 0.00206

0.02703

0.63937 0.63937
0.05051 0.65051

0.07121
0.09010 0.09010 0.09010

0.70748

0.71608 0.71608

0.73850
0.76257 6.75257 6.75257

0.70674

0.77203 0.77203

0.77815 0.77815

0.78987

0.80103 0.80103 0.80103
0.81073 0.81073

0.82172
0.83138

0.82172

0.84002 0.84062 0.84062

0.84948

0.86378 0.85378

0.85800 0.85800

0.86619

0.87409
0.88171

0.87409 0.87409

0.88542 0.88542

0.89619

0.90309" 0.90309 0.90309

0.90975

0.91303 0.91303

0.91625
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against the length of life. The result is a probability curve, the peak of

which gives the most probable length of life of the men in the group. If,

instead, Wo plot, year by year, the total number who have died from the

beginning of the test through to the end of the year, we have the integral

of a probability curve. Instead of plotting the actual number of men,
it is preferable to plot the percentage of the original number. If there

were an infinite number of men in the tost, it is evident that the center

of symmetry of the curve would come at the 50 per cent point. If there

are only p men in the test, the pk t may ho made on the basis of p + 1,

thus making the peak couie at the 50 per cent point of abscissas. The

mth point on the curve Oien represents
J

cent of the total number

of men who were dead at the end of m years. Such a curve may easily

be made into i straig* t lin? by expanding the abscissas symmetrically

on both sides of the ><> })er cent point in accordance with the equation

for the probability iiitegnd. Coordinate paper of this kind has been

fully desciibed elsewhere by Hazen*-^® and by Whipple.^“*

'tABLE X.- Diffrac’tion Data OF W (Tablb VIII) Arranged for Plotting on
Probability Paper

Per (V‘nt

(p -f 1 - 10) log a

10 0.49837

20 0.49859

30 0.49870

40 0.49886

60 0.49920

60 0.49920

70 0,49931

80 0.49932

90 0.49958

In Table X we have p = 9 values for the logarithm of the edge of the

unit-cube of pure W. The first value (m = 1) indicates that, if p were

infinity, 10 per cent of the values would be approximately

0.49837 or less; similarly, 20 per cent would be 0.49859 or less; etc. In

the case of the insurance data the number of men necessary to give a

smooth curve would be rather large. In the case of x-ray diffraction

data taken with MoX rays on a film bent over an arc of 8 in. radius, the

degree of reproducibility is such that if = or > 8 the graph represents

very closely the integral of a true probability curve between the 30 and

70 per cent abscissas. The upper curve of Fig. 29 is the probability

integral, plotted on probability paper/^ for the data of Tables VIII

and X.

* This type of plotting paper is printed in tablet form by the Stationery Depart-

ment of the General Electric Company. It is known as ‘TN-384 probability paper.'^
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Hazen uses a somewhat different formula for finding the decimal

position of the mth term. Expressed in terms of the symbols we have

just used, his expression is —^— This divides the abscissas into p

equal spaces and requires that the position of plotting be at the center of

each space.

The two methods give almost identical graphs especially in the

important range of 30 to 70 per cent on the axis of abscissas. The use

of logarithms makes either of these methods of plotting exceedingly

sensitive, without using too open a scale of ordinates. For instance, the

interplanar distance l.lloA. in Table VIII, corresponding to 50 per cent

in Table X, gives a point in the upper curve of Fig. 29 which appears to be

considerably above the straight line. If this value is decreased by only

0.1 per cent, ^.e., if it is reduced to 1.115A., the point would be as far

below the graph as it now is above it. The probability method is io be

preferred to the ordinary method of averaging in that it automatically

weights the most concordant values; yet it does not completely disregard

the less concordant values, for they have their effect in producing a shift

of the whole graph to the left or right. The greater the consistency of

the data the more nearly horizontal will be the graph. For any given

scale of ordinates the slope of the straight line of the graph is a measure

of the probability of the correctness of the final answer. It is easy by

this method to measure different diffraction patterns of the same sample,

or patterns of different samples having identical composition, or a single

pattern at intervals of several months, and to have no final result differ

from the mean of all of them by more than 0.1 per cent. If proper

precautions are taken to insure that the calibration standard and the

crystal under investigation have the same equivalent center of diffrac-

tion, and if the crystal fragments are free enough from strain to give

clear lines in the diffraction pattern, the accuracy of the final result

should be greater than 0.1 per cent. It rarely happens, however, that

materials are duplicated either in nature or in the arts with sufficient

precision to justify the assumption that two specimens from different

sources are identical. Even slight amounts of impurities may make
considerable change in the lattice parameter. For instance, the lattice

parameter of 99.999 per cent Ag is 4.079A.; that of 99.9 per cent Ag plus

0.1 per cent Cu is 4.058A. In other words, a difference of 0.1 per cent in

composition in this case makes a difference of 0.5 per cent in the lattice

parameter. For most ^^pure^' metals and their compounds the effect of a

small amount of impurity is much less than this. For instance,^^ the

lattice parameter of 99.999 per cent Au is 4.065A.; that of ‘‘ 24-carat

gold is 4 .073A. Iron of high purity from one source gave 2.868A.;

from another source 2.855A. This effect of impurities is not surprising

when it is remembered that, if the impurity comprises only 0.1 per cent
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of the total number of atoms in a simple cube, the atoms of the impurity
are on the average only 10 atoms apart, while the range of atomic influence

is given by surface-tension experiments as about 200 atomic diameters.

All this makes it seem that it is usually inadvisable to assign lattice

parameters with a precision better than 0.1 per cent except for some one
individual specimen or for specimens which have been subjected to a
thorough chemical analysis. Refined table salt (NaCl), conductivity

copper, and Mazda lamp filaments are three notable exceptions. In

some cases, especially in metallographie work, it is also necessary to

make sure that the physical state of each specimen is known. When
additional precision can be justified in the case of a cubic crystal, diffract-

ing angles close i(> i.iay be used. Diffraction patterns taken at

these largo angles are sc.notimes given the technical name of ‘'back

reflections’’ in tbt‘ rtei duve

Several invest have discussed the sources of error

which art to be taken into account in measuring the lattice parameter

of an individuai si>ecimeii. They all agree that the chief source of

error lies in the lack of absolute coincidence of the center of curvature

of the photographic film and the equivalent center of diffraction. Several

rules and formulas are to be found in the literature for the correction of

this error. These all lead to essentially the same result (to within 0.1

per cent) as is given by the procedure recommended at the beginning of

this chapter. Methods may be found in the literature by which it is

claimed that a lattice parameter may be determined to within less than

0.01 per cent, using lines whose spacings are all greater than O.oA. The
scheme is to include in the formula an arbitrary constant which is

intended to represent the distance from the center of curvature of the

photographic film to the equivalent center of diffraction. A value is

then selected for this constant such that all the lines in this pattern are

caused to give as nearly as possible the same value of the lattice parameter.

It is easy to show that such “accuracy” is illusory. To obtain a lattice

parameter from a film to within 0.01 per cent it is necessary to be able to

calculate the interplanar spacings for individual lines with an accuracy

of a few hundredths of one per cent. For purposes of illustration it

will be assumed that the individual lines are to be read to 0.01 per cent.

If, using MoliT rays, the radius of curvature of the photographic film is

8 in. (20.32 cm.), the line corresponding to an interplanar distance of

2.00A. would have to be located to within 0.0003 in. (0.007 mm.) to

give a precision of 0.01 p)er cent; for l.OOA. it would have to be determined

to within 0.0006 in. (0.015 mm.); for 0.50A, it would have to be deter-

mined to within 0.001 in. (0.025 mm.). The difficulty of locating either

the center or the edge of a line on the clearest possible diffraction pattern

to within 0.001 in. or even to 0.003 in. is apparent to any one who has

ever tried it. No amount of calculation will increase the precision of a
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final result beyond that determined by the accuracy of the experimental

data. It is therefore evident that if a lattice parameter is to be measured

with MoK rays to 0.01 per cent from a single film, or even from two or

three films, only those lines must be used which correspond to interplanar

distances of 0.50A. or less.

It has already been stated that the axial ratio of a hexagonal, tetra-

gonal, or orthorhombic crystal may be read off from the charts of Appen-

dix II. M. L. Fuller and the author have devised a method^^^ by which

the precision of such measurements may be considerably increased.

The axial ratio is found approximately from the semilogarithmic charts of

Appendix II. A group of seven or eight values approximating this

axial ratio is selected and, for each of these axial ratios, values of log a are

calculated from each of the observed interplanar spacings.

The values of log a for each axial ratio are plotted on probability

paper according to the method described above, one curve for each axial

ratio. That curve based on the most probably correct axial ratio will be

closest to being a straight line. All others on either side of it will be

progressively farther from being a straight line, because they will neces-

sarily be poorer approximations to true probability curves. The sensi-

tiveness of the method is illustrated in the case of zinc oxide. The
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semilogarithmic charts of Appendix II give an axial ratio of 1.61 from
these data, hence a series of axial ratios from 1.606 to 1.613 were selected

for the cal julations. The curves plotted from these data are shown in

Fig. 31. The origin of coordinates is shifted for each curve in order to

avoid overlapping of the cu^^"es. The ordinates for two of the curves are

indicated on the figure. There is no doubt that the points of the 1.610

curve come closest to being in a straight line between the 30 and 70 per

cent points. The value of log a at the 50 per cent point of this straight

line will give the most probably correct \ alue of a.

The unit-cell dimensions of zin^.* oxide; of extremely high purity are,

therefore, a = 3.235 ± ().003A.; c - 5.209 ± O.OOSA.; C = c/a =
1.610 ± 0.001. Thi;- of the axial re^tio is slightly higher than the

value 1.608 accepted b^ Bragg’^^ and by Weber®® and considerably

higher than the Mil le . 506 obtained by Barth.

This method seem?, to give results reliable to the third decimal place

for C. Under \ ery s{)ecial and carefully controlled conditions a higher

accuracy of data can sometimes be justified. In such cases a Seemann-

Bohlin focusing cassette can be used, of large enough radius to give,

with proper precautions, a very high accuracy of data. With such

data the method just described is not sufficiently sensitive. Instead,

equations must be set up for the interplanar spacings corresponding

to the various lines in the diffraction pattern. For hexagonal and

tetragonal crystals each equation will have two variables, one for the

edge a (or h) of the unit of structure along the X- (or F-) axis, and one

for the axial ratio C. These equations may be solved by taking them

in pairs, so that each pair yields a value of a (or b) and a value for C.

Examination of the eciuations will show that certain pairs of planes

yield results for axial ratio which are much more sensitive than others.

These are the pairs which should be used in determining the axial ratio.

Of course the accuracy of the result can be increased if a wave length

of x-rays can be used which will cause the desirable pairs of planes to

give back reflections.

SUMMARY

Like the Bragg method, the powder method of crystal analysis

interprets as much of the structure of a crystal as possible in terms of

the diffraction data. Great emphasis is placed on the cumulative evi-

dence given by the interplanar spacings of many families of planes

arranged in the order of their magnitude and on the relative intensities

of the lines in the diffraction pattern. The symmetry characteristics

of the crystal are used to supplement the x-ray data. So far as is known
to the author, no complete solution of crystal structure by the powder

method has been found to be inconsistent with the results of other

methods. It is a method which is applicable to a large number of
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materials whose analysis offers the greatest hope of immediate usefulness

to science and industry.
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CHAPTER VII

THE ROTATING-CRYSTAL METHOD*

There has been developed in Germany and in England a method^’^'^*'**®

of crystal analysis in which the necessary diffraction data are obtained

either by oscillating or by rotating a single crystal in a beam of mono-
chromatic x-rays. nT.e interpretation of the diffraction pattern so pro-

duced involves certain geotm trical considerations which make this

method very powc‘t’ful Jally in the case of crystals of complex struc-

ture. It is with tlxe . xpeiirnental technique and with the theory and
details of the interpretation that this chapter has to do.

*

APPARATUS AND EXPERIMENTAL TECHNIQUE

Apparatus.—When a large crystal is used, the x-ray beam must be

defined sharply by a set of slits. If the crystal is small enough to be

completely bathed in the beam passing through the slit system, it will

itself define the beam. A schematic diagram of the apparatus is shown
in Fig. 1. The diffraction pattern may be registered either upon a

photographic plate P perpendicular to the x-ray beam or upon a film F
in a cylindrical camera the axis of which coincides with the axis of rota-

tion of the crystal. Figure 2 shows the Bernal type of apparatus arranged

for use with a photographic plate. The cylindrical camera C, which is

interchangeable with the plate-holder on the apparatus, may be seen

at the right of the figure. The small crystal D is attached to a fine glass

*By Dr. W. P. Jesse, Research Laboratory, General Electric Co., Schenectady,

N. Y.
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fiber with a tiny drop of clear nitrocellulose lacquer, and the fiber is

mounted in a mass of plasticine on the crystal holder. The holder is

equipped with a pair of goniometer arcs A at right angles with each other.

These greatly facilitate any adjustments necessary to bring some given

crystallographic axis in the crystal into coincidence with the axis of rota-

tion. The crystal may also be centered accurately on the rotation axis

by a double cross-slide arrangement S with centering screws. A small

lead cup in the center of the plate-holder prevents the direct x-ray beam

Fig. 2.—Rotating crystal apparatus designed by J. D. Bernal for W. G. Pye and Company
after instruments in use at the Royal Institution.

from striking the plate and causing general fogging from scattered radia-

tion. This cup may be removed for an instant at the end of an exposure

to obtain on the plate a record of the central spot due to the undeviated
beam.

Rotation and Oscillation Photographs.—In crystal analyses by this

method, either of two types of photographs may be obtained. The
first of these, the ^^complete-rotation^' photograph, involves the uniform
turning of the crystal through a series of complete revolutions. In the
apparatus shown in Fig. 2 this rotation is accomplished by a clockwork
drive which rotates the crystal spindle by means of a belt and pulley T.

A complete rotation of the crystal gives rise to the symmetrical photo-
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Fi«. 3.—Rotation photograph of a crystal of rock salt about a cubo-edgo. X-ray

plTto
perpendicular to tho rotation axis and to a flat photographic

r

"

' f _

Fig. 4.—Rotation photograph of a monoclinic crystal of diphenyl about the [100] axis.
Unfiltered copper radiation. Flat photographic plate.

i
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graphs of Figs. 3, 4, 5, and 6. In the general case each set of planes in

the crystal diffracts four times during the rotation. The four resulting
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Fio. 5.—Rotation photograph of a tetragonal crystal of urea about the [COIJ axis.

Unfiltorcd copper radiation. Cylindrical film.

diffracted beams are distributed in a rectangular pattern about the

center point of the photograph.

Sometimes it is useful to investigate the diffracted beams as the crystal

turns through a more limited angular range. In such a case the second

type of photograph, called an oscillation photograph, may be employed.

,
Instead of being given a continuous

rotation, the crystal is made to oscillate

back and forth with a constant angular

speed throughout a chosen angular

range. Such a range may be 5°, 10®,

15®, or even larger according to cir-

* cumstances. The rocking motion is

imparted to the spindle of the crystal

holder through a lever arm the end of

which is always in contact with a heart-

shaped cam. This cam, shown in Fig.

7, is so designed that, turning with

uniform speed, it gives to the rocker

arm a uniform angular motion, which

e. is imparted to the crystal spindle.

Three such cams, M, are shown in the

foreground of Fig. 2. They give to the

crystal an oscillation range of 5®, 10®, and 15®, respectively. Any
one of these cams may replace the driving pulley T. The rocker arm,

L of Fig. 2, is clamped on the lower end of the crystal-spindle shaft so

that its sharp edge rests against the surface of the cam. The oscillation

I -

1

# #

i-
•

p *
,

*

* m '

» #

f

Fig. 6.—Rotation photograph of

monoclinic crystal of stilbene about a:

axis perpendicular to the (0 1 0) face

Copper radiation filtered through nicke

Cylindrical film.
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range may be set quite precisely by reference to the horizontal graduated
azimuth circles on the instrument. A typical oscillation photograph
is shown in Fig. 24. It will be noted that such a photograph lacks the
symmetry shown by the complete-rotation photographs.

Adjustment of the Crystal.—A small “perfect single^^ crystal should
be chosen with dimensions of the order of 0.1 to 0.5 mm. If the crystal is

too small, the task of setting becomes difficult and tedious. On the other

hand, if the crystal is too large, the geometrical shape of the crystal, the

increased absorption, and the nonhomoger eity of the x-ray beam over

the large cross-sectional area, all tend to alter the relative intensities

of the diffracted beams from planes of widely different orientation in

the crystal.

Fig. 7.—Cam and lever arrangement for rocking a crystal at a uniform angular speed.

Rotation and oscillation photographs are generally taken with the

axis of rotation of the crystal in coincidence with some principal crystal-

lographic axis. The easiest method of making such an adjustment will

depend upon the crystal used. When the crystal is needle-like in shape,

the long axis may be brought into coincidence with the rotation axis

by viewing the crystal from the side with a short-focus telescope and

by making adjustments on the goniometer until the long axis of the crystal

coincides with the vertical crosshair of the telescope. When the axis

of rotation is a zone axis of a crystal with well-developed zonal faces,

the setting may be made best by transferring the goniometer arcs to

an optical goniometer and then setting the crystal by the usual optical

method. The apparatus shown in Fig. 2 is fitted with a telescope 0
and collimator Q which may replace the x-ray slit system and the plate-

holder assembly. Hence in this instrument the optical adjustment

just described may be made with the crystal in place.

In case no optical goniometer is available, a satisfactory setting by
optical methods may still be accomplished in the following manner. An
improvised eyepiece is made by fastening, at an angle to the outer

face of the pinhole system, a thin microscope cover slide as shown in

Fig. 8. A parallel beam of light directed through the pinhole system
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strikes the crystal face and is reflected back. When some face of the

crystal is exactly perpendicular to the beam, the reflected beam passes

back through the pinholes, is partially reflected by the coverglass G, and
is seen by the eye at A. The crystal is adjusted by means of the goni-

ometer arcs until, on rotation, each of its zone faces gives a tiny flash of

light observable at A
;
then the zone axis is parallel to the axis of rotation.

Of course any attempt at such an adjustment presupposes that the beam
through the slit system is accurately perpendicular to the axis of rota-

tion of the instrument. If such is not the case, the slit system must
first be adjusted by a method similar to the above except that the crystal

is replaced by a small plane parallel glass plate silvered on both surfaces.

In case the crystal does not have well-defined bright faces so that an
optical method of setting may be used, then an accurate setting must

Fig. 8 .—Oxitical method for adjustment of crystal.

be made by means of x-rays. Laue photographs are of great help here.

Frequently the small angle through which the crystal must be turned
for a perfect setting may be determined by observing the angle between
the trace of a plane of symmetry on the Laue photograph and a true
horizontal or vertical line on the photographic plate. Two successive

oscillation photographs® with a known change of setting on the goniom-
eter arcs will also give information leading to the desired setting. Such
methods, however, may become very complicated.

Assuming that, by one of the above methods, the desired crystal-

lographic axis has been set accurately parallel to the rotation axis, then
the only further adjustment necessary is the exact centering of the crystal

on the axis of rotation. This is done easily by means of the cross-slide

arrangement, S of Fig. 2, use being made of a short-focus telescope
equipped with a vertical crosshair.

Calibration of Apparatus—If the distance from the crystal to the
photographic plate (or the radius of the circular camera) is unknown, it

must be determined before rotation photographs of unknown crystals

can be interpreted. This calibration is easily accomplished by photo-
graphing the diffraction pattern of a calcite rhombohedron or a bit of
mica and computing th^ distance involved from the known grating
space of the crystal used.
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Choice of Wave Length.—For most rotation photographs a long-wave«
length radiation, such as the K radiation from copper, is generally most
convenient since it tends to give a well spread-out pattern. This is

especially important in the investigation of organic crystals where the
interplanar distances are quite large. When using copper radiation

the lines may be suppressed by a filter of nickel 0.001 in. thick. Such
filtering is, however, rarely necessary since the 0 lines cause little con-

fusion on the photographs.* If the crystal absorbs the copper radiation

too strongly, some more penetrating radiation may be used, such as

that from molybdenum.

THE THEORY OF THE ROTATION PHOTOGRAPH

The rotation diagrams Figs. 3, 4, and 5 all show, grouped on the

central horizontal lii^ the ‘^<»rt of diffraction pattern which has already

been described in connection with the powder method (C-hap. VI). It

is the sort of pattern that would have been obtained by the continuous

rotation of a crystal in the Bragg method (('hap. V) if a stationary

photographic film had been rjubstituted for the ionization chamber.

Such diffracted beams are produced by planes parallel to the rotation

axis. Planes which are not parallel to the axis give rise to still other

diffraction patteirns because, at certain points in their rotation, the angle

at which the x-ray beam meets the oblique plane will be exactly that

required by Bragg’s law, t.e., nX = 2d sin 6, At such points diffraction

will take place. Diffraction spots from such planes may be found

grouped in horizontal lines or curves above and below the central hori-

zontal lines of Figs. 3, 4, and 5. In general, any oblique plane passes

through four such points during the course of a complete revolution.

In the special case in which the axis of rotation is parallel to a crystal-

lographic axis or is perpendicular to a crystal face, the array of spots on

the photograph is on definitely ordered curves. Such an orderly array

is comparatively easy of interpretation and will now be considered in

detail.

Assume a crystal lattice, such as is shown in Fig. 1 of Chap. II, to be

mounted so that one of the crystallographic axes coincides with the axis

of rotation. For simplicity let us choose the ^-axis. Let A and B of

Fig. 9 be neighboring atoms at the lattice points along the Z-axis, the

distance between them being the primitive translation c. As the crystal

lattice is rotated in the x-ray beam, the limitations upon the diffracted

beam are those discussed in the derivation of Eq. (2) of Chap. I. There

* It will be noted from Figs. 3, 4, and 5 that, except in the case of the equatorial

line, the fainter lines caused by diffraction of the ^ wave length fall in layers different

from the lines caused by the a wave length. These fainter layers of lines fall some-

what closer to the origin, since X has a smaller value for the wave length. This is

brought out more fiilly in the discussion of Eq. (2).
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it was shown that the condition for diffraction from a linear grating is

given by an equation of the form

21(72 — 71) =

Hence, in the notation of Fig. 9, the condition for diffraction is

6*(cos b + COS </>) = n\ (1)

where n is an integer (equivalent to g, above) representing the order of

diffraction by the line grating. For the usual case where the direction of

Fig. 9.—Diflfraction of x-rays by crystal lattice elements spaced reKularly along the rota-
tion axis.

the x-ray beam is perpendicular to the rotation axis, </> becomes 90° and
Eq. (1) simplifies to

c cos 5 = c sin /Lt = nX (2)

For various orders of diffraction n assumes values such as 0, 1, 2, 3, etc.,

giving rise to the series of equations

cos 5o = sin

cos 5i = sin m

cos ^2 = sin /X2

cos 53 = sin m 3

cos bn = sin /in

Such equations, fox a constant wave length, give the loci of all possible

diffracted rays as the crystal turns. These loci are elements of a series of

cones, shown in Fig. 10, of which the half-apex angles are given by 5o, bi,
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52, 6tc. Any element of each of the cones makes an angle /xo, Mi, M2,
etc.,

respectively, with the horizontal plane.

For th*‘ crystal which we are considering, the central horizontal plane
contains, according to Eq. (3), all diffracted beams of order of zero for the

linear grating along the Z-axis. The grating distance c must therefore

appear in the zero order for all these beams. Hence the Miller indices

of all planes giving diffracted beams in the horizontal plane must be

. Fuj. 10.—X-ray diffraction by a Fi«. 1?.—The intersection of diffracting

rotating crystal and the formation of cones with a photographic plate, placed

layer lines on a cylindrical film. perpendicular to the x-ray beam.

represented by (/i fc 0). Similarly all x-rays diffracted by planes of indices

(hkl) lie on the first-order cone defined by

jUi = sin-'
^

(4)

and in general all beams diffracted from planes of indices (hkn) lie on

the nth-order cone defined by

Mn = Sin-' y (see Fig. 5) (6)

Figure 11 shows that the intersections of such cones with a plane

photographic plate placed perpendicular to the incident x-ray beam
consist of a system of hyperbolas AiBi and AiB2 on either side of a central

straight line AoBo. Figure 12 shows that for a cylindrical film the axis
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of which coincides with the rotation axis the intersections of the cones

with the cylindrical surface give a series of circles (see Fig. 10) which

become straight lines when the film is flattened out. The central line

is termed the ‘^equatorial'' or “zero" line. The succeeding lines are

termed the first, second, third, etc., “layer" lines. Throughout this

chapter the term “layer line" will be used broadly to include the corre-

sponding hyperbolas on the plane photographic plate.

2not layer line

tef layer line

T

1

'2

fquaioria! line

• • • • +
2e

[ 1

*2

/sf layer line

2nol layer line ^ \

Fio. 12.—Schematic rotation diagram on a cylindrical film.

Dimensions of the Unit-crystal.—From the theory so far presented it

will be seen that measurements of the positions of layer lines on the

photograph may be used to determine the spacing between equivalent

positions along the crystallographic axis about which the crystal has been
rotated. Thus the primitive translation along the Z-axis of the crystal

lattice is given by Eq. (3) to be

where the values of /4i, iU 2 ,
/X 3 ,

etc., are determined from the layer lines of

the photograph taken with rotation about the Z-axis. Similarly, the

primitive translations may be found along the X- and the F-axes. Hence,
to determine the true dimensions of a unit-crystal, it is necessary only

to measure a rotation photograph about each coordinate axis of the crystal

which has a distinctive primitive translation.

When a cylindrical film is used, the angle /Xn is found from the spacing
of the layer lines by the equation

tan A*. = ^ (7)

where e„ is half the measured distance from the nth layer line above to
the nth layer line below the equatorial line, and where R is the radius of

the cylindrical film.
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For the case of a plane photographic plate perpendicular to the x-ray

beam, the value of sin nn may be calculated conveniently from Fig. 13

as

B
sin Un = Z—

+ Z>2

or

sin iin sin 26 cos ^ (8)

where tan 26 = rjD and cos if/
- B/r. /.' is the perpendicular distance

from crystal to plate, and ?.4, 2iS, and 2r are measured on the photograph,

as shown in Fig. 12i, between positions of the four spots corresponding to

diffracted beams iiom ;; single plane. ^ is the angle shown in the figure

Fig, 13.—Schematic rotation diagram on a piano photographic plato.

and 26 is, as usual, the angle at the crystal between the incident and

diffracted x-ray beams.

The rotating-crystal method is superior to any other x-ray method in

its ability to determine the dimensions of the true unit of structure of a

crystal. In other methods, where diffracted beams are observed from

only a limited number of planes, one may mistake diffraction of the second

order for first-order diffraction from a unit-crystal having only half the

true dimension. In the case of the rotation method, such a mistake is

much less likely to occur since the rotation about a coordinate axis brings

together on a single layer line diffracted beams from planes having a

common intercept on the rotation axis (fe., a common Miller index) but

having widely different orientations. With such a wide variety of planes

it becomes quite unlikely that whole layer lines will be missed on the

diagram even though’they may be quite faint. Such possible faint layer

lines should be looked for carefijlly, especially in the higher orders where
they appear to best advantage, since to miss such lines involves assigning

to the unit-crystal a dimension only half the true one.
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The very simple diagram of the sodium chloride crystal rotated about

its cube-edge (Fig. 3) illustrates this principle. If one were to consider

the stronger hyperbolas on the diagram as those of first-order diffraction,

then the edge of the unit-cube would have to be given as 2.8lA. A closer

inspection, however, brings out a faint intermediate hyperbola. Assum-

ing this to be the first-order hyperbola and the strong one to be the second-

order hyperbola, the edge of the unit-cube would be calculated to be

5.63A. This is the true unit-crystal for sodium chloride, i,e., the unit

which repeats itself in space throughout the whole crystal. (In this

connection see Chaps. I, V, IX.)

Assignment of Indices to Spots on Rotation Diagrams.—In the deter-

mination of the dimensions of the unit-crystal, use was made only of the

spacings of the layer lines, and no attempt was made to identify any

individual spot on the diagram as proceeding from a plane of a given set

of indices. To go further with the analysis of the crystal, such identifi-

cation is necessary. The methods of accomplishing this will now be

discussed.

We know the crystal system and symmetry from optical goniometric

measurements (and possible Laue patterns), and we know the size and

shape of the unit-crystal from the x-ray measurements which we have

just discussed. This information enables us to pick the appropriate

equation for interplanar spacings from Chap. III. The seemingly most

straightforward method of assigning indices would be to follow the general

procedure adopted in the case of the powder method, namely to calculate

the interplanar spacings corresponding to the equation and to compare

these calculated values with values obtained from direct measurement

of the photograph. Such a method is perfectly valid, though at times

laborious. When a plane photographic plate is used, the interplanar

spacing for a given family of planes may be calculated at once exactly

as in the case of the powder method in terms of the distance of the

diffraction spot from the central spot.

The equations are (see Fig, 13)

:

tan2<? = ^
[

(9)

n\ = 2d sin 0)

When a cylindrical film is used, the geometrical relations are shown in

Fig. 14. C is the center of the rotating crystal, F a section of the cylindri-

cal film, and R the radius of the camera. The direct x-ray beam passes

through the crystal and makes the central spot at 0. At some point in

the course of the rotation, a given plane diffracts x-rays along the line CS
and causes the spot S on the film. The angle 2B between the incident

ray CO and the diffracted ray CS is given by the relation

cos 2B ^ cos <l> cos jjL (10)
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where is the horizontal angle measured between CO and CS', the pro-

jection of CS upon the equatorial plane. On the film, and /x are

measured by the relations

,
arc OS' X

^ = ~-R-=R

From measurements of e and x (Fig. 12) on the film the values of </> and m

are obtained, and hence the value o!* B can be found from Eq. (10).

Knowing 6, the interplanar spacing corresponding to the spot in question

may be determined from Bragg's law. The computations are somewhat

simplified in that the value of e is constant for a given layer line on the

film if the crystal is properly set. This permits a single value of tan /x to

serve for all the spots on a given layer line. For the equatorial line,

/X = 0 and cos /x = 1, so that Eq. (10) reduces to

2« = « = I (12)

which is the relation for the powder photograph dsing a cylindrical film.

In this manner it is possible to prepare a list of the interplanar spacings

corresponding to all the spots on the rotation photograph. A comparison

of this list with a list calculated from the equation used from Chap. Ill

will, by the closeness of the check between the values, fix the Miller
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line, respectively. The closeness of check between columns 3 and 5

identifies the diffraction spots listed in column 3. It will be seen that

certain diffraction spots, viz.^ (100), (3 00), (4 00), (410) on the equa-

torial line, (321) on the first layer line, and (4 22) on the second layer

line, are apparently missing on the photograph. The absence of such
spots is frequently of importance in the determination of the space-group,

(see Chap. VIII and Appendix III). Especial care should be taken to

determine whether important spots are truly missing, merely faint, or

perhaps only beyond the range of the photograph.

The method of assigning indices which has just been outlined is

essentially the same as that employed in Chap. VI for the powder method.
There are, however, two limitations for the planar indices for the rotating

crystal which make the assignment much more certain than in the powder
method. The first of these, already mentioned, is that one index remains
constant over a given layer line when the crystal is rotated about a
coordinate axis. * Such a relation obviously rules out a large number of

planes which might otherwise have to be considered. The second limita-

tion, which applies only to rotations about a coordinate axis which is

orthogonal to the other two, is illustrated in Fig. 5 for the case of the

rotation of urea about the ^?-axis. It will be noted that except for spots
far from the center of the diagram there is a tendency for spots charac-

terized by a constant value of hk on the various layer lines to lie almost
vertically above one anc'ther. Thus spot (201) lies directly above
(200); (211) above (210); and (212) above (211). Such lines of

constant hk are termed “row lines’’ in contrast to the layer lines. The
row lines are not truly vertical lines, especially at the edges of the photo-
graph. Thus, in Fig. 5, (4 2 1) is not directly above (4 20) nor is (102)
just above (101). The accurate trace of such row lines is given in

Fig. 20 for the plane photographic plate and in Fig. 21 for the cylindrical

film. The general shape of these curves enables one to know approxi-
mately where to look for the spot corresponding to a plane of a given index
when the spot with a related index has been located. This serves as a
rough check on the correctness of the indices assigned.

The whole method just outlined of indexing the diffraction spots on a
rotation photograph is very satisfactory for rotation photographs involv-
ing comparatively few spots. When the number of spots on a single

photograph becomes of the order of 100 or 200, then the computations
involved become much too laborious for such a large number of spots and
a graphical method is to be preferred. Of several such methods probably
the most satisfactory is one due to Bernal.® An account of this method
will be outlined in later sections of this chapter.

* More generally, for a rotation about any zone axis [w v w\ the indices of all diffrac-
tion spots on a given layer line satisfy the equation hu + kv -\'lw —

n, where n is an
integer corresponding to the order of the layer line.
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THE RECIPROCAL LATTICE

The Concept of the Reciprocal Lattice.—Before taking up a discussion

of BernaPs graphical method it will be necessary to make a digression and
consider certain phases of a concept which has been most helpful in the

study of crystal structure, especially in the case of the rotation method.

This is the concept of the reciprocal lattice^' (often called in this chapter

by the simple term lattice”) first developed by Ewald.^ Suppose 0
in Fig. 15 to be the origin of a lattice network and let 0 be situated in one

of the atomic planes of a crystal, l^et d be the iaterplanar distance from
O to the adjacent plane A, With the origin as center, let a sphere be

described of radius equal to an arbitrary constant K. The plane A may
then be represented by a point . I ' which lies on the perpendicular from 0

Fkj. 15.—l)iaj;ram of the r<‘iation l>etweeri a crystal piano and tho corresponding point

ill tho reciprocal lattice.

to the plane A and whose distancefrom O is given by p = K^/d. Thus the

greater the interplanar distance d, the closer to O does the corresponding

point representation lie. Similarly for any other plane of interplanar

spacing d', there is a corresponding point with distance p' = K^/d' which

is its representation. Following such a procedure, it is possible to build

up from a given crystal lattice a space array of points, each point repre-

senting a plane in the old lattice. The total array of points builds a new
lattice which is called the “reciprocal” of the old lattice. If the same

method of representation is reapplied to the planes of the new lattice, the

original lattice is again obtained. Each of the two lattices is thus

reciprocal to the other.

If a lattice, built up from the unit vectors a, 5, and c with correspond-

ing angles a, is transformed into its reciprocal by the process

described above, the unit vectors d*, h*, c* of the new reciprocal lattice

are defined in terms of the old by the vector equations

d a*

5 • = 0

c • = 0
(14)
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and their cyclical transformations. These relations between the two

systems may he put into convenient form thus:

5 X c

a(E X c)
(15)

a vector of scalar magnitude - and in direction perpendicular to

c X d
the plane 6c.

b* =
5(c X a)

a vector of scalar magnitude

,ca sin ^

(16)

V

and in direction perpendicular to

the plane ac,

C* = (17)
c(d X E)

a vector of scalar magnitude

^.^06 sin y

and in direction perpendicular to

the plane a6.

V is here the volume of the unit-

crystal, and a, 6, and c are the

scalar values of the unit vectors a, 5,

and c.

A graphical representation in

1

of a monoclinic dimensions of the relation
crystal lattice on the central plane per-

pendicular to the 6-axis. The correspond- between the twO reciprocal lattices
ing reciprocal lattice is also shown,

js in Fig. 16. The diagram

represents the projection of a monoclinic lattice upon a plane through

the origin perpendicular to the 6-axis.* The trace of the sphere of radius

K appears in the diagram as a circle. The projection OABC of the

original unit-crystal and the projections of the original {h 0 1) planes are

* There are two conventions for the naming of axes in the monoclinic system
:
(o)

the one used by Wyckoff in his “Analytical Expression of the Results of the Theory of

Space Groups” (and therefore used in most of this book), in which the X- and F-axes

are at some angle to each other, not 90® or 120®, and in which the Z-axis is perpendicu-

lar to the plane of the X- and F-axes; (6) the one used by British and German crystal

analysts, by mineralogists and crystallographers, and in Chap. XI of this book, in

which the o- and c-axes correspond to the X- and F-axes, respectively, and in which
the 6-axis corresponds to the Z-axis. Figure 16 is lettered in accordance with this

latter convention. This means that a plane which would be called the (230) plane

according to the Wyckoff convention is called the (203) plane in Fig. 16.
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shown by heavy lines. The black circles represent the lattice points in the

corresponding reciprocal lattice. In Fig. 16 the indices of the planes of the

original lattice are designated in the usual way; those in the reciprocal

lattice have a bar above them thus, (20l). It should be noted that each

plane of indices (hOl) has as its counterpart in the reciprocal lattice a

point of the same indices (hOl). This point lies on the perpendicular

from the origin to the plane (hOl). Its distance p from the origin is

related to the interplanar spacing of the h 0 I planes by the equation

0 I

A reciprocal monoclinic Ia1 'ice such as is shown in Fig. 16 would be
completed in spac(^ by n tl ird v(^ctor T* perpendicular to the ar plane.

Thus the and C*-axes .-vancioe in direction for this type of lattice.

Each reciprocal point {hll) lies directly above its corresponding (hOl)

point and lies in a plane whicli is situated a distance from the (hOl)

plane. Similarly the (hll) reciprocal points lie in a plane which is

below the (hOl) plane. A three-dimensional diagram of a reciproeal

network derived from an orthorhombic lattice is shown in Fig. 22.

Because of the orthogonal relations, d* coincides in direction with a,

5^ with 5, and c* with c.

The Reciprocal Lattice and the Diffraction of X-rays.—Since the

reciprocal lattice is only a geometrical concept, a real physical picture of

the diffraction of x-rays by such a lattice is impossible. Bragg^s law,

however, makes it possible to build a picture of the geometrical relations

governing a point in the reciprocal lattice when diffraction by the real

lattice plane takes place. If, in the equation X = 2^ sin the value of

d/n in terms of the reciprocal lattice is substituted, t.e., d/n = K'^/p,

then

X = 2— sin B (19)
P

A representation of the geometrical conditions which this equation implies

is given in Fig. 17.

Let the origin of the diffracting crystal lattice be at the point 0, and

let the normal to the advancing x-ray wave front be XO. Any system of

crystal planes of spacing d in a position to diffract the oncoming x-ray

beam must make an angle B with XO. Let P be the reciprocal lattice

representation of such a system of diffracting planes. Then PO is a

perpendicular to the diffracting planes and, when n is taken as 1, p = K^/d.

Let the plane XCBB' be drawn through the point P perpendicular to

PO. The original ray XO makes then an angle B with the plane XCBB\
The diffracted ray OC makes an angle 2B with XO. The plane XCBB'
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cuts the line of travel of the incident and diffracted rays, respectively, at

X and C, where XO = OC.* From Fig. 17, p = XO sin 6 , By compari-

son with Eq. (19), XO = 2K^/\, Since the angle XPO must always be

7r/2, the equation p = XO sin 6 is that of a sphere drawn on a diameter

XO = 2K^/\. Hence the locus of all points in the reciprocal lattice which

are in a position to diffract is the surface of a sphere of diameter 2K^/X
The concept of this sphere of diffraction'^ (often called in the literature

the ^‘sphere of reflection") is due first to Ewald.^ The graphical treat-

ment of the problem here follov/s the method of Bernal.^

Fig. 17.—Diagram illustrating the geometrical conditions for “diffraction” by a point in

a reciprocal lattice. {After Bernal,)

So far in our discussion there has been no restriction on the value of

K'^. Bernal introduced the simplification of making equal to X, the

wave length of the x-rays used. The radius of the sphere of diffraction

then becomes unity. Such a simplification will be adopted in this dis-

cussion at this point. If the crystal is assumed to revolve about a rota-

tion axis which is perpendicular to the incident beam, then any point P
in the reciprocal lattice rotates also and diffraction for the corresponding

plane will occur as such a point passes, in the course of this rotation,

through the surface of the sphere of diffraction. This will, in general,

occur twice during a complete rotation, once as P cuts the surface enter-

ing the sphere and again as it cuts the surface in leaving the sphere.

* In AXOCf ZX'OC — /OCX -}- /CXO = 2d (exterior Z of A = sum of two

opposite interior angles). Since /CX() = (9, then /OCX is also 6 and AOCX is

isosceles. Hence, OX = OC, so that X and C lie on a sphere of radius OX = 2K^/\,
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Since P of indices {h k 1) has its negative counterpart P' of indices (h k 1)

centrosymmetrically situated with regard to the origin of the reciprocal

lattice, P' also cuts the surface of the sphere of diffraction in two similar

points below the equatorial plane. This geometrical construction thus
accounts for four diffraction spots which are observed from a given plane

on the rotation photograph. When P and P' lie in the central equatorial

plane in the reciprocal lattice, they cut through the sphere at the same
points so that there are but two spots on the eciuatorial (center) line of

the photograph. If, during the rotation of the lattice about a given

Rotarlon crx/s

Fiq. 18.—Cross-acftion through the torus formed by the rotation of the sphere of diffrac-

tion. {After Bernal.)

rotation axis, P is in such a position that it cannot touch the surface of

the sphere of diffraction, then no diffraction is possible during this rota-

tion for the crystal plane represented by P.

Since the question is one of relative motion, it is immaterial in the

geometrical construction whether we consider the x-ray beam stationary

and the crystal rotating, or whether we consider the crystal stationary

and the x-ray beam to revolve about the rotation axis in the opposite

sense. If we adopt this latter view, then the sphere of diffraction, rotat-

ing with the x-ray beam, traces out a ring-shaped solid figure (shown in

projection in Fig. 18), called by mathematicians a within the

volume of which lie all the points in the reciprocal lattice which can

give diffraction spots during the course of the rotation about this particu-
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lar axis. For the investigation of planes outside of the region included

in this torus, rotation photographs about some other axis must be

employed so that these points of the reciprocal lattice may fall inside of

the new torus corresponding to the new rotation axis.

Whatever the rotation axis, there are some planes which must lie

outside the region of possible diffraction for a given x-ray wave length.

The points P for such planes obviously lie outside the “limiting sphere”

of Figs. 17 and 18, whose radius is 2K‘^/\ (or 2, if is put equal to X).

These are, of course, the planes whose grating spaces are so small that in

Bragg's law 2d becomes less than nX so that sin 6 acquires physically

impossible values greater than unity.

The Relation between Coordinates in the Reciprocal Lattice and the

Corresponding Diffraction Spots on the Rotation Photograph.—The

Fit}. 19.—Cylindrical coordinates for the point P in reciprocal space.

position of the point P in reciprocal space may be expressed best in terms

of cylindrical coordinates f, co, as shown in Fig. 19. The axis of the

coordinate system is chosen to coincide with the axis of rotation of the

crystal. The origin of coordinates lies at the center of the crystal and

coincides with the origin of the reciprocal lattice network, f is the

coordinate which measures the radial distance of the point P, while f

measures the distance of P above or below a central plane through the

origin perpendicular to the axis of rotation, w, measuring the azimuth

angle of rotation of the crystal, is indeterminate in the case of a complete

rotation and may be neglected for the moment in the discussion.

The problem now is to relate these coordinates f and f in the reciprocal

lattice to the coordinates of the diffraction spots corresponding to P
on the photographic plate or circular film. Trigonometric equations

for this purpose have been worked out® somewhat as in the case of Eqs.

(9), (10), (11), and (12). These equations are, however, very laborious

to use for the large number of diffraction spots commonly occurring

on a photograph, and a graphical method is usually employed. Figures

20 and 21 represent charts for the plate and cylindrical film, respectively.

Such charts, when reduced to the proper scales on a piece of photographic

film, can be laid over the photograph and the values of f and f correspond-
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ing to all the diffraction spots can be read off directly and listed. The
lines of constant f on the charts have the form of the familiar layer
lines on the photograph, namely, a system of hyperbolas for the photo-

graphic plate and straight lines for the cylindrical film. All diffraction

spots on a given layer line have a constant value of f as read on the chart.

Assume that, for any given layer line on the photograph, f has a given

value fo. Then all planes contributing spots to this layer line have

their representations in the reciprocal lattice as lattice points lying

in the same geometrical plane. This plane is perpendicular to the rota-
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tion axis and at a distance ta above or below a similar plane through the

origin. Thus in Fig. 22 the reciprocal lattice points in the basal plane

ilo5o correspond to diffraction spots on the equatorial line of the photo-

graph. Lattice points in AiBi and AiBi give rise to spots on the first

layer lines, respectively above and below the equatorial lines. ^42^2

and A 2 B2 correspond to the second layer lines above and below on

the photograph. The complex curves of constant ^ on the chart corre-

spond to the row lines previously mentioned. Such lines in the reciprocal
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Fig. 21.—A chart for reading values of ^ and ^ from a cylindrical film. In the original the
radius of the camera is 5 cm. The length of the original chart is 12^4 q in. (After Bernal.)

lattice are parallel to the rotation axis, for example, the line between

points (2 1 1) and (2 1 1) in Fig. 22.

ASSIGNMENT OF INDICES BY THE GRAPHICAL METHOD

The steps in the use of the charts are briefly as follows:

1. The primitive translations for the crystal are determined from the requisite

number of rotation photographs.

2. The scalar values a^, 6^, c* of the unit-vectors 5^, are determined for the

reciprocal lattice.

3. By means of the chart the values of { and f are read from a photograph and
listed.

4. This list is compared with a list of values of { and f obtained from the reciprocal

lattice for all possible diffracting planes, and the agreement between the two sets of

values is used to index the diffraction spots.
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We shall now discuss these steps for the special cases of orthogonal|
monoclinic, triclinic, and hexagonal crystals.

Case of an Orthogonal Crystal.—In the case of such a crystal there is

the simplification that the reciprocal unit-vectors a^, 5*, c" coincide in

direction, respectively, with the vectors a, E, c of the original lattice.

Fig. 22.—Diagram of the reciprocal lattice derived from an orthorhombic crystal

lattice. (For the sake of simplicity in the drawing, the bars are omitted from the designa-

tions of the points.)

If a rotation photograph is taken about each of the axes X, Y, and Z,*

then the dimensions of the unit-crystal, a, 6, and c, along each of these

axes can be determined as already described in the discussion of Eq. (6).

From the values of a, b, and c the values of a*, b^, and may be deter-

mined at once from the relation:

* Strictly speaking, the axes are called X, Y, and Z, and the unit-distances in the

crystal along these axes are called a, b, aiid c, respectively. Crystallographers often

use a, b, and c to represent not only the distances but also the axes along which these

distances are measured.
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More easily still, a^, 5*, and c* may be determined graphically by

reading from the chart the values fo, fb, and fc for the layer lines of the

rotation diagrams. If fa is the mean value of f for the nth layer line

as read from the chart from the o-axis rotation photograph, then

Similarly,

n

from the 6-axis rotation photograph.

from the c-axis rotation photograph.

(21 )

From these values of a*

,

and the reciprocal lattice may be con-

structed. In an orthogonal system, only a basal network is necessary

for the determination of the value of f and f for the various lattice points.

This basal network is repeated for the upper layers since for rotations

about coordinate axes in an orthogonal system the lattice points lie

on lines parallel to the rotation axis, i.e., on lines of constant f. This

is brought out in Fig. 22. From such a network, laid off to scale, the

values of ( for all the reciprocal lattice points may be measured with

sufficient accuracy. A comparison of such values with the corresponding

values of f from, let us say, the a-axis rotation photograph, identifies

the diffraction spots on the diagram. Analytically, of course, for the

a-axis rotation,

{2 = ^25*2 + I
2c
*2

f = ha* (22)

The simplicity of this graphical method, as compared with the analyti-

cal method of Eq. (2), may be illustrated by a redetermination of the

indices of the diffraction spots on the rotation photograph of urea (Fig. 5).

The results are shown in Table II. In the second and third columns are

recorded the values of ( and f for each diffraction spot on the photograph

as read directly from the chart. The values of f for the first and second

layer lines give at once the value of c* = 0.330. Similarly, the rotation

photograph about the a-axis givea the value a* = 0.273. Since the
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crystal is tetragonal, we have then = 6^ = 0.273; and the basal net-

work for the o-axis rotation consists of a network of squares of side

a* = 0.273. From this network the values of { in the fifth column are

calculated analytically or are scaled graphically. A comparison of the

calculated and observed values identifies the various diffracting planes.

Table II.—Finding Indices of Diffkaction Spots by the Gkaphical Method
FOR THE C-AXIS ROTATION OF A CUYSTAL OF UrEA

Values of coordinates from Values from reciprocal net-

chart for various diffraction w ir ; for possible planar
Indices of

Intensity
SDOtS diffraction snots

Radiation diffracting

plane

i

1

I

f

Equatorial line K i

m 0.3ft0 a

V9 0.390
;

0 a 0.389 0 (110)

T'/ 0.600
i

® fi

U 0.555 0 a 0.546 0 (200)

0.620 0 a 0.614 0 (210)

to 0.710 0 a
a 0.780 0 a 0.778 0 (220)

ma 0.876 0 a 0.864 0 (310)
m 1.000 0 a 0.988 0 (320)

to 1.065 0 a

to 1.116 0 a

« 1.170 0 a 1.167 0 (3 30)

a 1.236 0 a 1.226 0 (4 20)

0.273 0 (100)

0.819 0 (300)

1.092 0 (400)

1.128
1

0 (410)

First layer line

va 0.280 ±0.330 a
1

0.273 ±0.330 (101)

va 0.395 ±0.330 a 0.389 ±0.330 (111)

a 0.650 ±0.330 a 0.546 ±0.330 (2 01)

m 0.610 ±0.330 a 0.614 ±0.330 (211)

a 0.780 ±0.330 <* 0.778 ±0.330 (2 21)

m 0.830 ±0.330 a 0.819 ±0.330 (301)

a 0.875 ±0.330 a 0.864 ±0.330 (311)

to 1.110 ±0.330 a 1.092 ±0.330 (401)

vw 1.140 ±0.330 a 1.128 ±0.330 (411)

vw 1.170 ±0.330 a 1.167 ±0.330 (3 31)

mw 1.240 ±0.330 a 1.226 ±0.330 (4 21)

0.988 ±0.330 (321)

Second layer line

va 0.276 ±0.660 a 0.273 ±0.660 (102)

ma 0.390 ±0.660 a 0.389 ±0.660 (112)

to 0.550 ±0.660 a 0.546 ±0.660 (202)

m 0.620 ±0.660 a 0.614 ±0.660 (212)

to 0.780 ±0.660 a 0.778 ±0.660 (222)

vw 0.825 ±0.660 a 0.819 ±0.660 (302)

to 0.870 ±0.660 a 0.864 ±0.660 (312)

to 1.000 ±0.660 a 0.988 ±0.660 (322)

vw 1.100 ±0.660 a 1.092 ±0.660 (402)

vw 1.140 ±0.660 a 1.128 ±0.660 (412)

vw 1.160 ±0.660 a 1.167 ±0.660 (3 32)
1.226 ±0.660 (422)
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Case of a Monoclinic Crystal.—For a monoclinic crystal which is

rotated about its 6-axis the situation is similar to the orthogonal case.

The basal network is repeated for the upper layer lines so that the values

of f are the same for the various layers. Since the basal network is not

orthogonal, it must be drawn through a range of at least 180° to include

the f's for all the combinations of positive and negative values of h and 1.

Such a network is shown in Fig. 25. In the monoclinic case, Eqs. (21)

become:

n

n sin ^

n sin p

where /3 is the angle between the a- and c-axes, and fo, ft, and fc are,

respectively, the values for the nth layer line on the a-, 6-, c-axis rotation

photographs. Analytically,

— 2hla^c* cos ^ . v

f = kh*

The rotation photographs about the a- and c-axes of a monoclinic

crystal dre seldom used for the general identification of planes correspond-

ing to diffraction spots. They are, of course, necessary in the deter-

mination of the dimensions of the unit-crystal. In the case of rotation

about the a- or the c-axis, the row lines of constant f vanishand the compu-

tation of the values of | is more awkward than in the case of rotation about

the perpendicular 6-axis. If for any reason it becomes desirable to deter-

mine in a monoclinic crystal a large number of diffraction spots which do

not appear to advantage on the 6-axis rotation photograph, then, rather

than use an a- or a c-axis rotation, it is often more advantageous to take a

rotation photograph about the a*- or the c'^-axis. Reference to Fig. 16

shows that a rotation about a* is equivalent to a rotation about a normal

to the 6-c plane. Similarly, a rotation about c*" is equivalent to a rotation

about a normal to the a-6 plane. In such a photograph the layer lines

disappear and the spots are spread more uniformly over the whole photo-

graph, on row lines of constant f. This greater distribution renders the

overlapping of spots less probable. Such a photograph is shown in Fig. 6.

Case of a Triclinic Crystal.—^The interpretation of rotation photo-

graphs for crystals of the triclinic system requii;es somewhat the same
procedure as for monoclinic crystals. The interpretation is, however,

much more complicated. For a full treatment of the interpretation the

reader is referred to the literature on the subject.®
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Case of a Hexagonal Crystal.—For crystals belonging to the hexagonal
system the interpretation of the rotation photographs is much simplified

by the use o.: orthohexagonal coordinates (see Fig. 10, Chap. II), by
which the hexagonal space-lattice is expressed in terms of three mutually
perpendicular axes of unit-length: a, a\/3, c.

USE AND INTERPRETATION OF OSCILLATION PHOTOGRAPHS

So far we have considered only the interpretation of complete rotation

photographs. In some cases such interpretations result in ambiguities,

and the rotation photograph must be supplemented by one or more
oscillation photographs. Quite often in crybtals of complex structure,

especially in organic crystals with their large interplanar spacings, the

diffracted beams on tl<i ]*iyfer lines overlap and difficulties arise in the

assignment of indices w:th any degree of certainty. The oscillation

photograph, because of its more limited range of possible diffractions,

lea*\‘. to a correct determination of the indices in such cases. Because

of the possibility of greatly increased intensity of the recorded diffraction

spots, the oscillation photograph is also of great use in bringing out weak
spots which might be overlooked on the less intense rotation photograph.

Such weak spots may be very important in the determination of the

space-group.

In making the oscillation photograph, the motion of the crystal is

limited to a turning to and fro through a definite small arc. Any diffrac-

tion spots which may appear upon the photographic plate or film can

come only from planes in the crystal which pass through a diffracting

position as the crystal moves within this given arc. In order that such

planes may be determinable, it becomes necessary to know the orienta-

tion of the crystal with regard to the direction of the primary x-ray beam.

This is usually accomplished by bringing one known vertical face of the

crystal exactly perpendicular to the x-ray beam. The exact method to be

employed will depend upon the nature of the crystal and the form of the

apparatus. Where bright, well-developed crystal faces exist, one of the

optical methods described at the beginning of this chapter is particularly

suitable. With the crystal in this known position, the position of the

pointer on the fixed azimuth circle of the instrument is read. The orienta-

tion of the crystal with regard to the direction of the beam may then be

determined at any phase of the rotation by means of a new reading on

the azimuth circle.

From the known orientation of the crystal it is not difficult to deter-

mine graphically what planes will pass through a diffracting position

during an oscillation over a given range. It was shown in the discussion

of Fig. 17 that diffraction can take place only when the point in the

reciprocal lattice representing the plane in question intersects the surface
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of Ewald^s sphere of diffraction. It was also shown to be quite logical

to assume that the reciprocal lattice network remains stationary while the

x-ray beam and the sphere of diffraction revolve about the rotation axis

in the opposite sense. The solid figure cut out in space by the surface

of the sphere was found to be a torus and all the points in the reciprocal

lattice which can diffract during the complete rotation were found to lie

within the torus. Instead of moving through a complete revolution,

the x-ray beam in the oscillation photograph moves through only a small

angle with regard to the stationary reciprocal lattice. The solid figure

thus cut out by the spherical surface consists of two cup-shaped solids.

The interiors of these include all points of the reciprocal lattice which

can diffract within the oscillation limits.

Figure 23 illustrates a 3Q° oscillation about the a-axis of the ortho-

rhombic lattice pictured in Fig. 22. Figure 23a shows as a great circle

the trace of the sphere of diffraction on the basal plane through the origin.

Let XO be the direction of the beam and let S'OT be the intersection of

the sphere with the plane at the beginning of the oscillation. If the crys-

tal moves counterclockwise about the axis 0, this is equivalent to a

clockwise rotation of the Xrray beam through the same angle XOX' with

regard to a stationary lattice. The final position of the great circle

at the end of the oscillation is SOT\ The surface of the sphere has

therefore swept out on the basal plane the two portions which are shaded

in the figure, and all the lattice points lying in the plane and included

within the two shaded lunes have passed through a diffracting position.

Their diffraction spots are to be found on the equatorial line of the

oscillation photograph. The points in the lune MSOS' will diffract

to the right of the central spot and those in the lune MTOT will diffract

to the left.

A plane surface, parallel to the basal plane of the reciprocal lattice and
at a distance f above or below it, will have as its intersection with the

sphere of diffraction a circle of smaller radius, corresponding to the circle

GH in Fig. 17. The radius of the circle may be determined graphically

from an auxiliary diagram as shown in Fig. 236. The values of ri

and r2 ,
scaled from this diagram, give at once the radii of the circles of

intersection of plane surfaces at distances fi and {*2 above the central

plane. The construction for determining the possible diffracting planes

for the second layer line for the given oscillation of the reciprocal lattice

is shown in Fig. 23c. The shaded lunes, embracing fewer points than

in the case of the basal plane, enclose all possible diffracting points

in the reciprocal lattice for the second layer line. If the oscillation is

about a coordinate crystal axis, orthogonal to the other two, the same
basal network may be used throughout for the equatorial line and all

layer lines. The only change is that of one Miller index in going from
one layer line to another. This is brought out in Figs. 23a and c.
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Figure 24 is an oscillation photograph of a crystal of monoclinic

stilbene about the b-axis. The (100) face was first set perpendicular

(^7 056 OSS 054 053 052 OSt 050

Fio. 23.—Diagrams for the determination of possible diffracting planes for the oscillation

photograph of an orthorhombic crystal, (a) Network for the basal plane; (6) auxiliary

diagram ; (c) network for the second layer line.

to the x-ray beam by the optical methods already described. This

setting is equivalent to putting the a*-axis parallel to the x-ray beam.

Figure 25 represents the construction to determine the possible dif-

fracting planes for an oscillation where the crystal is rocked from 71® to
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Fig. 24.—Oscillation photograph of monoclinic stilbene about the 6-axis. Copper radiation

with nickel filter. Beam perpendicular to flat photographic plate.

Fig. 25.—Construction necessary to determine possible diffracting planes; limiting rocking

angles W® and 81®.
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81° with respect to the original setting. The basal network, constructed

as previously described, serves for the equatorial line and the two layer

lines visible oij the photograph. To avoid complication of the diagram

the arcs are drawn only for the equatorial line and the second layer line.

Table III shows the process of identification of the diffraction spots

actually observed. It should be noted that a few points just outside

Table III.

—

Finding Indices of Diffraction Spots on Oscillation Photograph
OF Stiihene about the /)-AXIS

Left of center
jj

Right of center

Possible spots! Sj)Ots read Possible spots Spots read

Planes ^ Planes

1

.r .

ii' 1

r f
1

Equatorial line

lOl- 0.202 0
1

300* 0.404 0

20 0.403 0 0.405 0 400 0.538 0 0.540 0

20.{* 0.480 0 0 495 0 500 0.674 0

303 * 0.605 0 601* 0.636 0

304 0.692 0 601 0.769 0 0.780 0

305 0.784 0 701 0.904
1

0

Second layer line I

022?

022i
0.210 ±0.535 0.210 ±0.535

221?
221)

0.246 ±0.535 0.250 ±0.535

T23?
123{

0.388 ±0.535 0.390 ±0.535
321?
321)

0.376 ±0.535 0.380 ±0.535

124?

124i
0.489 ±0.535 0.495 ±0.535

421?

421)
0.492 ±0.535

T25? *

125)
0.593 ±0.535 0.600 ±0.535

522?
522)

0.618 ±0.535

225?
225(

0.682 ±0.535
1

622?
622)

0.744 ±0.535

226?
226)

0.778 ±0.535

1

623?
623)

0.738 ±0.535

723?
723)

0.863 ±0.535

the area of possible diffraction have been included in the table of possible

diffracting planes and marked with an asterisk (*). This is to allow for

small inaccuracies of setting of the crystal and for possible distortions

in the crystal itself, both of which may cause diffraction spots to appear

on the photograph although the corresponding calculated points on the

diagram are as far as 1° of rotation away from the diffracting zone.

With the oscillation method just described, one is able to determine

only within the oscillation limits the exact position in the turning of the

crystal at which any given diffraction occurs. The Weissenberg x-ray

goniometer,^ a very ingenious device in which the cylindrical recording
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filiTi moves up and down parallel to the axis as the crystal turns, enables

one to read the exact angular distance

traversed by the crystal between the record-

ing of any two diffraction spots on the film.

A purely schematic diagram of the instru-

ment is given in Fig. 26. A photograph of

the actual instrument is shown in Fig. 27.

The crystal can be oscillated through any

desired range up to 180° by means of the

motor-driven wheel W, The direction of

rotation is automatically reversed by the

proper electrical contacts. As the wheel W
turns, it winds or unwinds a chain which,

passing over a pulley P moves the wheeled

carriage bearing the cylindrical film F.

The film thus moves up and down parallel

to the axis of rotation in exact synchronism

with the to-and-fro angular oscillation of

the crystal about the rotation axis. Any
series of diffraction spots which would

ordinarily be registered upon a single layer

line is thus drawn out by the motion of the

film into a spiral array of spots distributed

over the whole surface of the film. A
Fio. 26.—Schematic diagram of

Weissenberg x-ray goniometer.
. cylindrical shield S pierced with a slot L is

inserted over the stationary head H of Fig.

27 between the crystal and the film. This shield prevents the register-

Fio. 27.—Photograph of Weissenberg-Bohm x-ray goniometer.

ing of more than one layer line at an exposure. Confusion of spots from

several layer lines upon the same film is thus avoided.
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If the li]i68»r V6rtical travel of the camera film for a half-revolution
is df then c?/180 is the linear distance moved per degree of revolution
of the crystal/ .The dimensions of the instrument are such that d/180
is exactly 1 mm. Hence the linear distance in millimeters, measured
parallel to the axis of the camera, between any two diffraction spots
on the film gives at once the angular distance turned through by the
crystal between the two corresponding diffracting positions. The

Fia. 28.—Weissenberg photograph of monoclinic p-dichlorobcnzene rotated about
the c-axis with a superimposed network for interpretation. Un filtered copper radia>
tion.

Weissenberg camera film thus gives not only the measurement of the grat-

ing spacings of the planes involved, but it also gives the possibility of

measuring directly the angular relations between any two diffracting

planes in the crystal. The instrument is thus, as its name suggests,

the x-ray counterpart of the optical goniometer. For the details of the

goniometer determination in the most general case of the angle between

.

any two diffracting planes in the crystal, the reader is referred to the

references already cited.®

The Weissenberg camera may be used to good advantage in the

indexing of diffraction spots which are so thickly clustered on layer lines
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as to require otherwise a large number of oscillation photographs. Cer-

tain relations in the Weissenberg diagram aid in the ready identification

of the various diffraction spots. This is illustrated by Fig. 28 which

shows a Weissenberg diagram of the zero line of monoclinic p-dichloro-

benzene rotated about the c-axis. One half of the diagram is overlaid

with a network showing the relation of the diffraction spots to each

other on the diagram. It will be noted that the spots can be made to

lie upon two intersecting families of curves. Curves of the one family

are characterized by a constant value of the h index along each curve,

while the k index remains constant along each individual curve of the

second family. The value of I is, of course, zero throughout the diagram.

Successive orders of any giyen plane lie upon the same straight line.

These lines are made more apparent by the streaks due to the general

radiation. The diffraction spots due to the wave length are displaced

along these streaks toward the central line of the diagram and thus are

easily distinguished. As would be expected from the rectangular nature

of the basal network in such a rotation, the Weissenberg diagram exhibits

symmetry with regard to the lines representing diffraction spots of

nomenclature (A 00) and (OkO). The diagram has a center of symmetry
at each of the points where such lines cross the central line of the figure.

Such points serve as convenient datum points for measuring angular

relations between planes.

In case of any doubt as to the correctness of the indices assigned to

any spot, a measurement of angle with regard to the datum point together

with a measurement of { (see Figs. 19 and 21) serves to fix the diffraction

spot on the reciprocal basal network.

INTENSITY RELATIONS FOR DIFFRACTION SPOTS ON ROTATION
PHOTOGRAPHS

After the dimensions of the unit-crystal have been determined and the

space-group* fixed for a given crystal, the last and most difficult step

consists in fixing the positions of the various atoms in the crystal cell.

Such a determination makes use either quantitatively or qualitatively

of the observed intensities of a large number of diffraction spots from

many crystal families of planes. In using the rotation photograph for

this purpose it must be borne in mind that all diffraction spots are not

recorded with equal advantage on a rotation plate or film. In addition

to the general factors affecting intensity of diffraction, such as polariza-

tion of the beam, absorption by the crystal, and the intensity variations

dependent upon the perfection of the crystal, there are two further

purely geometrical factors which are of especial importance in rotation

photographs.

See Chaps. VIII and IX.
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The first of these factors depends upon the number of times during
the rotation that any given type of plane* makes a record on the film.

Since such records are superimposed during the course of a complete
rotation, the total blackening on the film will depend upon the symmetry
of the crystal and also upon the position of the plane with respect to the

rotation axis. Thus, in general, a single plane in a crystal of lowest

symmetry gives rise, as we have seen, to four spots on the film. When
this plane is parallel to the rotation axis, the number of spots is reduced

to two, and each spot on the equatorial line is the result of two diffracted

beams—one from the “forward'' and one from the “back" side of the

plane. Because of the symmetry relations in various crystal systems

there will be also the possibility, for certain rotation axes, of the super-

position of the diffraction spots from planes symmetrically situated with

regard to on*' another, cf, v;hen the complete rotation photograph

is used as basis for estinniting the relative intensities of the various

diffraction spots, care mus'. be taken to evaluate each spot on the film

aii thf composite of the proper number of superimposed diffracted

beams.

The second factor to be considered is that even in the case of an

oscillation photograph, where each spot on the photograph is the result

of one single planar diffraction, certain spots may be greatly intensified

because of their positions on the film. This follows from the fact that,

owing to such causes as the divergence of the x-ray beam and the imper-

fection of the crystal, no plane diffracts sharply only at the precise angle d

required by Bragg's law. The plane really diffracts throughout an angu-

lar range a which may be expressed as lying between the limits of the

angle S and a slightly larger angle ($ + a), (See first part of Chap. X.)

For any given plane the intensity recorded on the photograph will be

directly proportional to the time during which the plane remains in this

diffracting range a while the crystal is rotating. The time of passage

through the diffracting zone is constant for all planes which are parallel

to the rotation axis but increases from plane to plane as the normal to

the diffracting plane makes a smaller and smaller angle with the rotation

axis. Equation (25) states^”*^^ that the variation in intensity 7 of a

diffraction spot is inversely proportional to the rate of change of the

diffracting angle 6 as the crystal rotates. In terms of the angle /x for

the given layer line, we have

* The word “plane” is used here to represent a whole family of parallel atomic

planes, not just some one individual plane.
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where C and h are proportionality constants. For all planes parallel to

the axis of rotation, sin /x = 0 and 7 = ft. The spots on the layer lines

arise from planexs having a somewhat longer time of passage than for

spots in the equatorial plane so that their intensities are correspondingly

enhanced. Especially where sin /x is almost equal to sin 26 {i.e,, for spots

near the vertical center line of the photograph) the intensities of the

recorded spots may be enormously increased.

The correction chart^^ in Fig. 29 shows lines of constant intensity for

a cylindrical camera. Marked on each line is the correction factor by
which the intensity of a diffraction spot falling on that line must be
multiplied tc reduce it to the same relative terms as the spots on the

equatorial:! iae where the factor is unity. For most regions on the film

the judgment of the intensities c»f the spots needs no great correction,

but for spot" near the veitir d axis the estimated intensities may be five

or six timosnoo great. Such enhancement may be observed in the four

spots of the (102) plane in the rotation photograph of urea shown in

hig. 0 The apparent intensity of diffraction from such planes must
always be discounted heavily, and a more accurate judgment of the true

intensity of diffraction must be found, if necessary, from the spots of

rotation photographs about other axes.

SUMMARY

In this chapter the rotation method of crystal analysis has been

considered. A brief account of the experimental method has been given,

and the underlying theory has been discussed. A rather extended

account of graphical methods of interpreting the photographs has been

presented since without such methods interpretation becomes impos-

sibly laborious.

It has been shown that the rotation method offers unique advantages

in the determination of the dimensions of the true unit-crystal and certain

other advantages in the solution of crystal structures. It is not, however,

to be supposed that any one method is to be used exclusively in the analy-

sis of a crystal. The Laue method is indispensable in determining sym-

metry relations, and the ionization spectrometer (see Chaps. V, X, XI)

is still the most accurate instrument for determining the intensities of

diffracted beams. Information gained by the rotation method should be

supplemented by such methods and by the results of the theory of

space-groups.

We must now interrupt our discussion of experimental methods

(Chaps. IV, V, VI, and VII) in order to take up in considerable detail

the theory of space-groups and its application to the various methods of

crystal analysis which we have so far studied. After having rounded out

in this way (Chaps. VIII and IX) our knowledge of the easier methods,

we shall be ready to study in Chaps. X and XI an extension of the Bragg
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method which makes it the most powerful of all for the precise deter-

mination of atomic positions in the crystal cell.

References

1. E. ScHiEBOLD, Fortschritte Mineral., Kryst. Pelrog., 11, 113 (1927). Most
complete account of method.

2. M. PoLANYi, Zeit. Physik, 7, 149 (1921).

3. M. PoLANYi, and K. Weissenberg, Zeit. Phyaik, 9, 123 (1922); Zeit. Physik, 10,

44 (1922).

4. H. Sebmann, Phys. Zeit., 20, 169 (1919).

5. J. D. Bernal, Proc. Roy. Soc., A, 113, 117-160 (1927).

6. J. D. Bernal, Proc. Roy. Soc., A, 113, 133 (1927); Proc. Roy. Soc., A, 106 , 749

(1924).

7. Groth, Chemische Krystallographie, 3, 539. For x-ray analysis: Mark and

Weissenberg, Zeit. Physik, 16, 1 (1923).

8. P. P. Ewald, Zeit. Kryst., 66, 129 (1921).

9. K. Weissenberg, Zeit. Physik, 23, 229 (1924).

J. Bohm, Zeit. Physik, 39 , 557 (1926).

10. H. Ott, Zdt. Physik, 22, 201 (1924).

11. Cox and Shaw, Proc. Roy. Soc., A, 127, 71-88 (1930).



CHAPTER VIII

THE THEORY OF SPACE-GROUPS

We have already seen in Chap. II that crystals may be considered to

be built on an imaginary three-dimensional fr^ mework or space-lattice,

and we have become accustomed in Chaps. IV, V, VI, and VII to the

idea of havmg atoms or ions at the intersection points of such an imaginary
lattice v^i k. We must now extend this picture so as to include the

possibility )f having groups of itoms or ions associated with each point

of the latti^* 'i. Obviously ^'^e symmetry of the configuration of atoms or

ions in a gb^en group must be consistent with the symmetry of the lattice

i>n wMch the groups arc plact*d. We shall therefore have to consider

the various ways in which points may be placed in symmetrical con-

figurations, and then we shall hasre to find the coordinates of these

points after they have been placed on an appropriate space-lattice.

SYMMETRY MACHINES

In order to visualize the grouping of points in symmetrical con-

figurations, let us consider an imaginary set of machines

which we may call ^‘symmetry machines/^ It will be

the function of each symmetry machine to lay down
points in space in such a way that the whole group

of points will have some predetermined symmetry p—
characteristics. There are five possible types of simple L /^rm

symmetry machines:

1. Cyclic axis. -Axis
2. Screw axis.

3. Mirror.

4. Glide-mirror.

6. Inverter. —Cyclic

1. Cyclic Axis.T-This consists of an imaginary axis

having an arm as shown in Fig. 1. Imagine that the end of this arm is

able to lay down a point'' every time the axis stops rotating. Then, if

the axis is a single-fold axis, the arm will lay down a point every time it

has rotated through an angle of 27r. All these points coincide so that we
really have only one point," no matter how many times the axis is

rotated. The operations of all cyclic axes are represented by the general

symbol C. The operation of a siiigle-fold cyclic axis is represented by
Cl. It is represented in greater detail by {A(2ir)}, where A represents

the rotation of the cyclic axis and (2t) is the angle through which it

211
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must rotate before the end of the arm can lay down a point. Figure 2a

represents a single-fold cyclic axis passing vertically through the paper at

A and shows the single point P which the end of the arm is able to lay

down.

If the cyclic axis is a 2-fold axis, the end of the arm can lay down a

point every half-revolution. The operation of such an axis is represented

by the symbol C2 . It is represented in greater detail by the symbol

IA(2t/2)}, Figure 2h represents a 2-

fold cyclic axis passing vertically through

the paper at A and shows the two
points Pi and P2 which the end of the

arm has laid down. Similarly, we may
have 3-fold, 4-fold, and 6-fold axes (see

Fig. 2by d,e).* In general symbols, Cn —
{A{2Tr/n)].

2. Screw Axes.—If we imagine an

axis to be threaded like a screw so that

rotation is accompanied by a motion of

translation parallel to the direction of

the axis, then that axis is called a screw

axis.'^ Just as in the case of the cyclic

axis we can have 1-fold, 2-fold, 3-fold,

4-fold, and 6-fold screw axes (see Fig. 3).

The symbol for the operation of a screw

axis is Cn, where n = 1, 2, 3, 4, or 6. Its

operation is given in greater detail by

A
0

P

0 (a)

(5© (5
(b)

A
0

p,o OP3 <C)

a
A

P,0 0

0
P4

OPj
(d)

PiO 0 OP4
<e)O O

h Pb

Fio. 2.—Points laid down by 1-fold,

2-fold, 3-fold, 4-fold, and 6-fold cyclic

axes which pass vertically through the
paper at A, Point-groups Ci, C 2 , Ca,

C4 , Ce.
3. Mirror.—Imagine an infinitely

thin plane mirror which is polished on
both sides so as to reflect light from both its surfaces. Such a mirror

may be placed so that the plane of the mirror is perpendicular to a cyclic

axis or to a screw axis. The image of every point will lie as far below
(or above) the mirror as the point itself is above (or below) the mirror.

This operation is technically known as “Spiegelung’' (reflection). Since

the cyclic axis is commonly imagined as being vertical, the mirror is

horizontal and the symmetry operation is given by the symbol Sh*

yk 6-fold, 7-fold, 8-fold, etc., axis would have no crystallographic significance

because its points could not be duplicated indefinitely in all directions to form crystals

without leaving voids where the fundamental structures would not fit together. This
may be illustrated in two dimensions by saying that a floor cannot be laid with five-

sided tiles nor with any tiles of more than six sides and still have each tile in contact
with its neighbors on all its sides. Still other structures which have no crystal-

lographic significance will be found later in this chapter.
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Similarly, a mirror may be placed vertically so that the cyclic axis lies

in the reflecting plane. The image of every point is now as far behind
(or in front of) the mirror as the point itself is in front of (or behind) it.

This operation is given by the symbol When the action of a horizontal

mirror is combined with the action of some other symmetry machine such

as Cn, the combination is represented by Cnh or C*. Similarly, a combi-

nation of Sv with Cn is represented by Cnv or C^, It is evident that a

mirror may be called a plane of symmetry. This term is often used in

crystallographic literature.

I- Fold screw oixis 2-Fold screw axis 3- Fold screw axis 4*Fo Id screw axis 6-Fold screw axis

Fig. 3.—Perspective view of the action of 1-fold, 2-fold, 3-fold, 4-fold, and 6-fold screw
axes. Point-groups Ci, C2 , Ca, C4 . Ce.

4. Glide-mirror.—Imagine a magic mirror which has the property

not only of reflecting the image of a point in the ordinary way but also of

shifting that image by a motion of translation over a definite distance

parallel to the plane of the mirror. Such a symmetry machine is called

a “ glide-mirror'^ or a glide^plane of symmetry. The reflection-transla-

tion must be specified by giving the position of the glide-mirror

and the length and direction of the motion of translation, for

instance, /Sa(r,).

6 . Inverter.—An inverter is a machine which operates on a given

point, or configuration of points, by means of a reference point called a

“center of symmetry." The machine draws an imaginary line from

each of the original points to the center of symmetry and then extends

each of these lines for an equal distance behind the center of symmetry.

The center of symmetry therefore bisects each of these imaginary lines.

At the end of each extended line the machine lays down a point. This

operation is called an “inversion" and is denoted by the symbol I or i.

The combined action of I and some other symmetry machine such as

Cn is represented by Cm or C^.
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POINT-GROUPS

Symmetry machines may be used either singly or in combination

with each other. It is evident that certain configurations of points may
be obtained in more than one way. For instance, a 2-fold cyclic axis C2

will produce the same effect as gives identically the same configura-

tion of points as Sh\^2 gives identically the same configuration of points

as /.

If we list the results of the operations of each of the symmetry
machines acting alone, and the results of the operations of the various

possible combinations of machines, we shall find a large number of

duplications similar to those pointed out above. Counting each con-

figuration only once, and excluding configurations which have no crystal-

lographic significance, we have a total of 32 configurations of points.

These are called the 32 point-groups. It is possible, because of the

large number of duplicate results obtained by combining various sym-

metry machines, to dispense with certain of the machines entirely. For

instance, it is easy to obtain all of the 32 point-groups by the use of only

the cyclic axis, the screw axis, the mirror, and the inverter. It is pos-

sible to obtain them all by using only the cyclic axis and the inverter.^

It will be worth our while to study in detail one of the several possible

systematic schemes by which the 32 point-groups may be built up by the

action of symmetry machines.

A point-group may be designated by the same symbol which desig-

nates the machine or combination of machines which produced it.

Five point-groups, Ci, C2, C3, C4, and Ce, may be obtained by the use of a

single cyclic axis by the operation Cn = {i4(27r/n)}, where n may be

1, 2, 3, 4, or 6. They have already been illustrated in Fig. 2.

Four more groups, £>2, £^3, and £>6, may be obtained by a combina-

tion of an Tz^fold cyclic axis with n 2-fold ax^ which are all symmetrically

arranged in a plane which is perpendicular to the n-fold axis. The
value of n may be 1, 2, 3, 4, or 6, but, when n = 1, the point-group

becomes identical with C2. Obviously, C2 and Di yield groups composed
of only two points each, so that the two groups can differ only in terms of

the orientation of the lines which join the points. This leaves four new

groups as a result of the combination of symmetry machines. This

particular combination of cyclic axes may be given the name of ‘‘dihedral

combination^' and the four point-groups produced by the four dihedral

combinations are called the “dihedral groups" (German, Diedergruppen).

The. operation of a dihedral combination is given by

- {^(i>
where U (German, Umklappung)^ represents the operations of the n
2-fold axes. The ri-fold axis is called the “principal" axis. The n 2-fold
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axes are called the secondary" axes. Figure 4 shows the secondary
axes when n = 2, 3, 4, and 6. From these the reader may obtain the
configuration^} of points corresponding to 1)2, Da, 2)4, and Z)«. The
special case for n = 2 is given the name of the quadratic group," Q
(German, Vierergruppe, V),

One additional point-group is obtained by adding to the three 2-fold

axes of the quadratic group four 3-fold axes as follows: Let the quadratic

<^4

-7
% ^
^ n>4 n»6

Fio. 4,—i^ondary axes of diJiedral combinations. The principal axis in each case is

perpenJicttlar to the paper. These yield the point-groups D 2 •-= V, Da, Da, D®.

axes Uy Vy W of Vig. 5 pass through the centers of the edges of a tetra-

hedron; then the four 3-fold axes A, Ai, A 2 y Az must be made to pass

from the point of intersection of the three 2-fold axes to the four corners

of the tetrahedron. This point-group is called the tetrahedral group

(symbol T),

The octahedral group (symbol 0) is produced by three 4-fold cyclic

axes which are mutually at right angles to each other (like the altitudes

of a cube), four 3-fold cyclic axes which correspond to the body-diagonals

Fiq. 6.—The tetrahedral point-group T.

of the cube, and six 2-fold axes which are parallel to the face-diagonals of

the cube. All 13 axes pass through a conunon point which corresponds

to the body-center of the cube.

Point-groups and Ci are obtained by the use of single-fold and 2-

fold screw axes of symmetry, respectively. is evidently identical

with C? and with CJ. Since the configuration of points represented by
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Cl may also be obtained by using a combination of cyclic axis and nyrror,

it is sometimes expressed by the symbol (7„ or Si. C2 is identical with

C{. The effect of a 2-fold screw axis is the same as the composite action

of a 2-fold cyclic axis and a horizontal mirror, so that C2 — S^-

Point-group S4 is arrived at by the composite action of a 4-fold

cyclic axis and a horizontal mirror. This composite action must be

carefully distinguished from the successive action which is indicated by
the symbol Cj. The operations symbolized by Sa are as follows:

1. Let the arm of a cyclic axis deposit a point with the coordinates xyz,

2. Reflect this point in the horizontal mirror. Since the mirror lies in the X-Y
plane, the reflection will lie at xyz. Move the arm aloiiR the axis until its end coin-

cides with xyz, rotate the arm through 90°, and lay down a second point. The coor-

dinates of the second point will therefore be yxl.

Fia, 6.—The octahedral point-group 0,

3. Reflect the second point in the mirror. This reflection will lie at yxz. Move
the arm along the axis as before, rotate it through 90°, and lay down a third point.

The coordinates of the third point will be xyz.

4. Reflect the third point in the mirror. This reflection will lie at xyl. Move
the arm along the axis as before, rotate it through 90°, and lay down a fourth point.

The coordinates of the fourth point will be yxz.

It is evident that in the two point-groups Si and S2 the composite

action of the cyclic axis and the mirror produces the same configuration

of points as is obtained by the successive actions indicated by Cj and C2,

respectively.

The three types of point-groups, CJl, CJ, and are easiest discussed

together because of the duplications which they present. They call,

respectively, for the successive action of an n^fold cyclic axis and a

horizontal mirror, an r^-fold cyclic axis and a vertical mirror, and an
w-fold cyclic axis and an inverter. When n = 1

,
Cj and C\ are identical

in configuration and differ only in orientation (see Fig. 7).* We have

* For simplicity Fig. 7 shows only the special case in which the point lies directly

on the end of the arm of the cyclic axisl In the general case, the point would be
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already seen that Cj is identical with Ci, and that d is identical with C*.
Similarly, C\ = CJ; Cj = C\', C* = Cg. When n = 3 there are no'

duplications. , We therefore have the point-groups C\ = Ci, C\, C\ = Cl
a = Ci, Cl, Cl, Cl Cl and Ci

Six more point-groups may be obtained by adding a mirror to the
various dihedral combinations. When the mirror is horizontal, we obtain
the groups Z)* = F*(= Q*), Dj, Z)^, Z)J. When the mirror is vertical

and lies in the X-Z or Y-Z plane, no new configurations of points are

Fio. 7.—The action of the mirror and the inverter.

obtained. When the mirror is vertical and bisects the angle between

the X- and F-axes, the resulting configurations have no crystallographic

significance except when n = 2 or 3. These give rise to the point-groups

— Q^) and Dg in which the superscript d indicates the operation

of a diagonal-vertical mirror.

By adding a horizontal mirror to the combination of symmetry

machines which produced the tetrahedral point-group T, we obtain

the point-group if we replace the horizontal mirror by a diagonal-

vertical mirror,* we obtain the point-group T^, By the addition of a

arrived at by going from the end of the arm along two directions such that, when the

arm is parallel to the X-axis, these other two directions are parallel to the Yr and

^-axes respectively. These three distances together, then, represent the coordinates

of the point. (The general case is employed in Fig. 10, p. 238.)

* This mirror contains the ^-axis and passes through a line which is at 45® to the

X- and F-axes.
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Table I.—The

Hilton

Schoenflies Wyckoff Schoenflies Dana

I II

Triclinic system

1 Cl Cl A 1C Hemihedry Asymmetric

2 = Si = C‘ Cl a ICi Holohedry Normal

Monoclinic system

3 Cl = c\^ c. C2 b 2c Hemihedry Clinohedral

4 Ci Ci B 2C Hemimorphic hemi-

hedry

Hemimorphic

5 C‘ Vi Ba 2Ci Holohedry Normal

Orthorhombic system

6 Di = 7 = g D c 2D Enantiomorphic Sphenoidal

hemihedry

7 c\ ^2 c 2e Hemimorphic hemi- Hemimorphic

hedry

8 c* = F* = Q* Ca 2Di Holohedry Normal

Tetragonal system

9 Cl Cl D 4C Tetartohedry Pyramidal hemimor-
phic

10 Si Ca d 4c Tetartohedry of the Tetartohedral

second sort

11 Di Di DB 4D Enantiomorphic Trapezohedral

hemihedry

12 Ci Ya Do 4^Ci Paramorphic hemi- Pyramidal

hedry

13 C\ '
fi4 A 4e Hemimorphic hemi- Hemimorphic

hedry

14 = F<* = Q* di 4d Hemihedry of the Sphenoidal

second sort

15 D\ A4 d. 4Di Holohedry Normal

Cubic system

T T T Tetartohedry Tetartohedral

I
0 0

1
0 Enantiomorphic

hemihedry
Plagihedral

1
r» e

1
Ti Paramorphic hemi-

hedry

Pyritohedral
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32 POINT-OBOXJPS

Groth (Grolh-Uoldirew) Friedel Miers (Miers-Phillips)

Asymmetric pedial (mono- H^mi^drie Asymmetric 1

hedral)

Pinacoidal Holo^Sdrie Centrosymmetric 2

Domatic (dihedral anaxial) Antih^mi^drie Equatorial (planar) 3

Sphenoidal (dihedral axial) H6mi^(lr. hobaxe Digonal polar (digonal

alt(5rnating)

4

Prismatic % IfliWno Digonal equatorial 5

Rhombic bisphcr'oidal Hemiedr. holoaxe Digonal holoaxial 6

(rhombic tetrahedral)

Rhombic pyramidal Antih6mi6drie Didigonal polar (didi-

gonal alternating)

7

Rhombic bipyramidal Holoddrie Didigonal equatorial 8

(rhombic dipyramidal)

Tetragonal pyramidal T<Starto6drie quat. Tetragonal polar 9

Tetragonal bisphenoidal T6tarto6drie sphen. Tetragonal alternating 10

(tetragonal tetrahedral)

Tetragonal trapezohedral H6mi6drie holoaxe Tetragonal holoaxial 11

Tetragonal bipyramidal Parahi5mi6drie Tetragonal equatorial 12

(tetragonal dipyramidal)

Ditetragonal pyramidal Antih6mi6drie quat. Ditetragonal polar 13

D i d i g 0 n a 1 scalenohcdral Antih6mi6drie sphen. Ditetragonal alternating 14

(tetragonal scalenohcdral)

Ditetragonal bipyramidal HoloiSdrie Ditetragonal equatorial 15

(ditetragonal dipyramidal)

Tetrahedral pentagonal T4tarto^drie Tesseral polar 16

dodecahedral (pentagonal

tritetrahedral)

Pentagonal icositetrahedral IR^mi4drie holoaxe Tesseral holoaxial 17

(pentagonal trioctohedral)

Diacisdodecahedral (or py-

ritohedral hemihedral) (di-

dodecahedral)

Parah4mi4drie Tesseral central 18
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Table I.

—

Hilton

Schoenflies Wyckoff Schoenflies Dana

I II

I
e Tk Te Hemimorphic herni-

hedry

Tetrahedral

1
Ok n Oa Oi Holohedry Normal

Hexagonal system

Rhombohedral division

21 Ct c. E 3C Rhombohedral tetar- 24 (trigonal tetar-

tohedry tohedral)

22 Dt D, EB 3D EnantiomOrphic Trapczohedral

hemihedry

23 Cl Si Ek 36 Hemimorphic horni- Rhombohedral hemi-

hedry morphic (ditrigonal

pyramidal)

24 Ci rs e SCi Hexagonal tetarto-

hedry of the second

sort

Trirhombohedral

25 Di As eB 3Di Rhombohedral holo- Rhombohedral
hedry

Hexagonal division

26 CJ C6 f 6c Trigonal parainor- 23 (trigonal bipyra-

phic hemihedry midal hernihedral)

27 D* d. fB 6d Trigonal holohedry Trigonotype

28 C. . c. F 6C Hexagonal tetarto- Pyramidal hemimor-

hedry phic

29 D, D, FB 6D Enantiomorphic Trapczohedral

hemihedry

Ci Tfl F. 6Ci Paramorphic hemi-

hedry

Pyramidal

31 CJ Ft, 66 Hemimorphic hemi- Hemimorphic
hedry

32 lA Ae. fC 6Di Hexagonal holohedry Normal

horizontal mirror to the combination of symmetry machines which

produced the octahedral point-group 0, we obtain 0^.

We have now described all of the 32 point-groups in terms of a
systematic use of the symmetry machines. The Schoenflies system

which we have used is, however, by no means the only possible system.

For instance, if we had used only cyclic axes and the inverter, we should

have arrived at the same 32 point«groups, but in this case the operations
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(ConcliLded)

Groth (Groth-jb6ldirew) Friedel Miers (Miers-Phillips)

1
Hexacistctrahedral (hexte- Antih6mi4drie Ditesseral polar 19

trahedral)

Hexacisoctahedral (hcxoc- Holo4drie Ditesseral central 20
tahedral)

Trigonal pyiamidal T4tarto4drie

,

.ni4dT«e holoaxe

Trigonal polar 21

Trigonal tr|,n( zohodral Trigonal holoaxial 22

Ditrigoaal pyramidal Antih4Tni4drie Ditrigonal polar 23

Trigonal rhonibohcdral Parah4mi4drie Hexagonal alternating 24

Ditrigonal scalenohedral

(dihexagonal scaleno-
hedral)

Holo4drio Dihexagonal alternating 25

Trigonal bipyramidal (tri- Antit6tarto6dr . trigon

.

Trigonal equatorial 26

gonal dipyramidal)

Ditrigonal bipyramidal (di- Antih6mi6dr. trigon. Ditrigonal equatorial 27

trigonal dipyramidal)

Hexagonal pyramidal T6tarto4drie sen. Hexagonal polar 28

Hexagonal trapezohedral H4mi4drie holoaxe Hexagonal holoaxial 29

Hexagonal bipyramidal Parah6mi6drie Hexagonal equatorial 30

(hexagonal dipyramidal)

Dihexagonal pyramidal Antih4mi4drie sen. Dihexagonal polar 31

Dihexagonal bipyramidal Holo4drie Dihexagonal equatorial 32

(dihexagonal dipyramidal)

of these symmetry machines would have led to a set of symbols* (not

widely used in this country) as follows;

1. Groups (Cn or nC), which have a single w-fold axis of symmetry.

2. The dihedral groups (2>« or nX>), which have a principal axis and 2-fold rotation

axes perpendicular to it.
^

3. Groups (C^ or nCi), which combine an n-fold axis with a center of symmetry

lying in it.
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4. Groups (D^ or nDi), which contain the axes of the dihedral groups nD with

centers of symmetry situated at the intersection of these axes.

6.

Groups (nc)f which contain a single w-fold axis of rotary inversion.

6. Groups (nd), which combine an n-fold principal axis of rotary inversion with

perpendicular 2-fold axes.

7. Groups (ne), which consist of an n-fold principal rotation axis and perpendicular

2-fold axes of rotary inversion.

8. The groups T and 0 and the groups Ti, Te, and Of, obtained by adding inver-

sions and axes of rotary inversion to them.

Unfortunately almost every pioneer in this work seems to have

worked out his own set of names or symbols for the 32 point-groups.

Efforts at simplification have resulted in the confusion of additional

symbols.^ Table I gives a tabulation of the 11 sets of names and symbols

most commonly found in the literature. The point-groups characteristic

of each crystal system are listed in the order of their symmetry with the

least symmetrical group first in each case. Of the four sets of symbols

listed in the table it is recommended that only the Schoenflies and the

Wyckoff be used. The Wyckoff symbols are by far the easiest to set up
in type. The Schoenflies symbols have the great advantage of world-

wide use.

COORDINATES OF TjHE 32 POINT-GROUpS

It is now necessary to find the coordinates of each of the point-groups.

This is done by starting with a point having the coordinates xyz and

finding for each point-group the new coordinates which result from the

actions of the appropriate symmetry machines. Each point-group

evidently has the symmetry characteristics of some one of the six crystal

systems (see Table I). The 32 point-groups will be discussed in the order

of ascending symmetry for each crystal system. Each point-group will

be named according to the Schoenflies system of symbols, which we have

already studied in detail in this chapter, except that the superscript

symbols will be written along with the subscript symbols; i,e,, we shall

use Cih instead of C5, etc. The reason for this change will be obvious

when we take up the study of the symbols for the 230 space-groups at the

end of this chapter. The Schoenflies symbol will be followed by the

Wyckoff symbol in parentheses. In giving the coordinates of points in

the following discussion, we shall follow the ordinary conventions used

by crystal analysts, viz., (1) the letters x, y, and z refer respectively to

three distances which are fixed by the arm of the axis (Cn or Cn) of a

symmetry machine, and (2) when these three letters are put together to

form the symbol for the coordinates of a point, the first letter gives the

distance corresponding to the x-coordinate, the second letter gives the

distance corresponding to the ^-coordinate, and the third letter gives

the distance corresponding to the-^-coordinate.
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Triclinic System^

1. Point-gxmp Cl (1C).—This point-group has the lowest possible

sjnnmetry, for it consists of only a

single point. If a single-fold cyclic

axis starts with a point at xyz, it

must lay down all its other points

on precisely the same spot. The
operation is therefore an identity

(symbol, 1).

Operations of symmetry; 1

Coordhiates of oqui -alent

points; xyz

2. Point-group C2
= = Ci

(ICi).—Using the inverter to obtain

this point-group, we have two opera-

tions, the identity and the inversion.

Operations of symmetry;

1 I

Coordinates of equivalent points;

xyz 2^2

Monoclinic Syst

3. Point-group Ci = Cu(= C,) (2c).—A horizontal mirror (i.e., a

mirror lying in the X-Y plane) can-

not change the oj- or t/-coordinates of

a point but will reverse the sign of

the z-coordinates.

Operations of symmetry;

1 Sh

Coordinates of equivalent points;

xyz xyl

4. Point-group C2 (2C).—A 2-

fold cyclic axis changes the signs of

the X- and ^-coordinates but does not

alter the z-coordinates.

Operations of symmetry;

1 A(t)

, Coordinates of equivalent points;

xyz 3tpz

* Based on the convention that the Z-axis is perpendicular to the X-Y plane.
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6. Pointrgroup C^h (2Ct).—This contains four points, two from the

operation of the 2-fold cyclic axis

and two from the operation Sh on
each of the first two points.

Operations of symmetry;

1 A{7r) Sh A(t)Sh

Coordinates of equivalent points;

xyz 2yz zy2 3cyz

Orthorhombic System'^

6. Point-group V = Q = D2 (2D).—We have three mutually per-

pendicular 2-fold cyclic axes whose operations are denoted by

U == A (t) for the Z-axis.

V = A(v) for the F-axis.*

W = A(t) for the Z-axis.

After the operation U is completed,

restore the original state and then per-

form operation V. After the oper-

ation V is completed, restore the

original state and perform operationTF.
Operations of symmetry;

1 U

Coordinates of equivalent points;

xyz xy2

7. Point-group C2V (2e).—A vertical mirror in the Y-Z plane will

reverse the sign of the x-coordinate. A vertical mirror in the X-Z plane

will similarly reverse the sign of the

^-coordinate. It is evident that the

same sets of coordinates are obtained

in either case.

Operations of symmetry;

1 A(ir) Sv A(ir)Sv

Coordinates of equivalent points;

xyz 3cyz xyz xyz

* The operation V should be carefully distinguished from the German designation

V of the point-group. It is unfortunate that the two have the same symbol in existing

literature. To try to introduce a new set of symbols would only complicate matters.

xy2 xyz
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8. Point-group Vh = Qh (2Di),—The effect of the horizontal
mirror is to reverse the sign of the

9. Point group ( tC, The* 4-fold cyclic axis interchanges the

X- and ^-coordinates and reverses the

sign of the new ^-coordinates every

time the axis revolves through t/2.

Operations of symmetry;

^(jr) <l)
Coordinates of equivalent points;*

xyz yxz Zyz y^z

10. Point-group Si (4c).—This point-group requires the composite

action of a horizontal mirror and a 4-fold cyclic axis. It should be

remembered that the operation of Sh

on Sh results in a nullification of the

reflection.

Operations of symmetry;

Coordinates of equivalent points;

xyz yxl 2yz yxl

11. Point-group Di (4Z>).—Figure 4 shows that the four 2-fold

secondary axes in the X-Y plane are 45° apart. The 4-fold principal

axis lays down four points. If these are operated on by any one of the

* It has already been stated that the letters a?, y, z represent lengiha. Their posi-

tion in the sequence of coordinates indicates the axis to which they refer The first

of the three letters is the coordinate measured along the iC-axis; the second letter is

the ^-coordinate; the third letter is the z-coordinate.
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four secondary axes, the configuration of points is identical with that

obtained by the use of any one of the remaining secondary axes.

If we choose the secondary axis which coincides with the Z-axis, then

2 Z>4 = {C,U\.

xyz yxz

xys yx2

Operations of symmetry;

I x(l) AW a(|)

U a(^U A{7r)U

Coordinates of equivalent points;

Syz yxz

xyz yxz

12. Point-group Cak (4Ci).—The horizontal mirror changes the sign

of the z-coordinate.

Operations of symmetry;

1 a{^ A{t)

Sn a(^Sh AMSh

Coordinates of equivalent points;

xyz yxz

xy2 yxl

13. Point-group (4e).—As in the case of point-group C2V it makes
difference whether the mirror is in

5 X-Z or Y-Z plane.

Operations of symmetry;

1 a(i) aw a^)

S, a(^S, A(t)S,

Coordinates of equivalent points;

25* ySz

Syz yxz

14. Poinirgroup Va = Qa (4d).—^The diagonal mirror interchanges
the X- and ^-coordinates. ^

xpz gxz
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Operations of symmetry;

I U V W
Sa USa VSa WSa

Coordinates of equivalent points;

xyz xyl fyl sgz

yxz yxz y$2 y2z

15. P(y ' it-group (4ZW). —This point-group contains not only the

eight points of D4 but, beflideis, ^ second set of eight points laid down by
the horizon! al mirror. ^

Operations of symmetry;

1 <1)
A(t)

u > >
8h 4 AW)8h XI
USh 4 Ahc)SHV XIfjSnU

Coordinates of equivalent points;

xyz ^xz yiz

xyl m Xyg yxi

xyi m yXi

x%z ’Qiz Syz yxz

Cubic System^

16. Poinlrgroup T {T),—The points in this group require the com-
bined operations of the three 2-fold axes and the four 3-fold axes shown
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in Fig. 6. First, one of the 3-fold axes A is operated as shown in the first

vertical column. Then the original position is restored, the Umklappung

Z-axis, and the fourth 3-fold axis

Operations of symmetry
;

operation U is employed about the

Z-axis, and the second 3-fold axis A i

is operated. The original position is

again restored, the Umklappung
operation V is employed about the

F-axis, and the third 3-fold axis ^2 is

operated. The original position is

again restored, the Umklappung
operation W is employed about the

A3 is.operated.

1 V V W

Kl) ^(1) <r) ^•(t)

^(¥) 4t) <t)
Coordinates of equivalent points;

xyz 3cyS xyz

zxy Sxy SSy zxy

yzx yS2 yzx

17. PoinUgroup 0 (0).—The 2-fold axes U, F, W of Fig. 5 are

now 4-fold in Fig. 6, so that to the operations 1 and U in point-group T
we must now add B{ir/2) and B{3Tr/2) ;

to the operations 1, F we must add

Bi(7r/2) and Bi{3t/2) ;and to the operas

tions 1, W we must add B2 {ir/2) and
-B2(37r/2). We still have the same
3-fold axes as in point-group T, In

addition we have six 2-fold axes (see

Fig. 6) whose operations are Z7i, t/2,

Fi, F2, Fi, F2.

Operations of symmetry;
All 12 operations of point-group T and, in addition,

Kl) Ki) Kt)
Ut . Vi Vi Wi Wi

Coordinates of equivalent points;
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All 12 coordinate positions of T and, in addition,

. yXz yxz yx2

Xzy xzy xiy

2p zyi zgx 2yx

The order of writing these coordinates has been changed from the order

given above for the additional operations of symmetry so as to make it

conform to the treatment of Wyckoff.^

18. Point-group Th (Ti).—This point-gro ip uses all the symmetry
machines of T and has, in addition,

the horizontal mirror. The same
effect mi.y be had by adding an
inverter t<j T. In other words,

The jidditional coordinates are listed

in the logical order for { T, 5*1

.

Operations of symmetry;

All 12 operations of point-group T and, in addition, 12 more, each

of which is a mirror image (Sh) of one of the original 12,

Coordinates of equivalent points;

All 12 coordinate positions of T and, in addition.

xyl xyz 2yz m
zxy Ixy Sxy z2y

yz^ ylx ySx yzx

19. Point-group Td (Te).—The coordinates are those of point-group

T and, in addition, those produced by the diagonal mirror. The addi-

tional points are listed in the logical

order for a mirror which bisects the

angle between the X- and F-axes.

These same points would have been

obtained if the mirror had bisected

the angle between the F- and X-axes,

but the logical order for writing down
these points would havebeen different.

Operations of symmetry;

All 12 operations of point-group T
and 12 more from the action of Sd-

Coordinates of equivalent points;

All 12 coordinate positions qf T and, in addition,

yxz yx2 p2 pa
xzy xsg 2iy Xzp

zyx SQx lyi ap
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20. Pointrgroup Oh {Oi).—The point-group 0 has already been

described as including the 12 points of point-group T and 12 additional

points due to the operation of 5(ir/2), . . . , C/i, (72 . . . Obviously,

then, the horizontal mirror of Oh will add to these 24 points of 0 the 12

additional points listed under Th and an additional set of 12 points which

are the mirror image, Sh (i-e,, with

the sign of the z-coordinate reversed)

of the points listed under point-group

0 as being due to the operations

of B(t/2), . . . , (7i, (72 . . . Inspection

shows that this fourth group of 12

points is identical with the 12 listed

under Td-

Operations of symmetry;

Oh = {0,Sh] = {0,7}

Coordinates of equivalent points;

All the 48 sets of coordinates listed under point-groups T, 0, Ta,

and Td.

Hexagonal System^

It was stated in Chap. II that a rhombohedron could be considered

in terms of equal rhombohedral (distorted cubic) axes or in terms of

X.

Fia. 8.—The three rhombohedral axes Fia. 9.—The X- and F-hexagonal axes,

of a rhombohedron.

hexagonal axes. Figure 8 shows the rhombohedral axes, symmetrically

placed about a vertical 3-fold axis. This 3-fold axis becomes the Z-axis

when the rhombohedron is considered as a hexagonal structure (Fig. 9)

;

in such a case the rhombohedron becomes a special case of the monoclinic

system in which the angle v between the Z- and F-axes is 120®. An
extra axis may be placed in the Z-F plane in such a way that its positive

direction makes an angle of 120° with the positive directions of both

the Z- and the F-axes. Such an aids is inherent in the effect of the 3-fold
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and 6-fold principal hexagonal axes of the hexagonal system. It was
shown in Chap. Ill that this extra axis is not necessary in the calculation
of interplanai spacings. This extra axis is, however, inherent in the
symmetries of some of the point-groups of the hexagonal system. Coor-
dinates of point-groups in the rhombohedral division of the hexagonal
system are listed in terms of both the rhombohedral axes (I) and the
hexagonal axes (II). Coordinates of point-groups in the hexagonal
division are listed only in terms of hexagonal axes.

RHOMBOHEORAT^ DIVISION

21. Point^group C9 (3C).

Operat ons of syminetr ^

;

‘ '<!)

Coordinates of equivalent points;

I. xyz zxy yzx

II. xyz y — XyX,z y^x — y^z

22. PoinUgroup D3 (3D).—This point-group has a principal 3-fold

axis and three secondary 2-fold axes. These 2-fold axes may coincide

with the three horizontal hexagonal axes of the Z-F plane or may lie

D3 = (C3U0,) D3=(C3Us)

midway between them, thus making an angle of 30° to these axes. All

three of the secondary axes produce identical end results on the three

points laid down by the principal axis. When the secondary axes

coincide with the three horizontal hexagonal axra, the rotation about

one of them is symbolized by {/.. When the secondary axes make an
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angle of 30° to the horizontal hexagonal axes, the rotation about one

of them is synjibolized by Us, This gives rise to two different sets of

coordinates for the six equivalent points when hexagonal axes are

employed.

Operations of symmetry;

Z>3 = {Ca, U]

Coordinates of equivalent points;

I. xyz zxy yzx yx2 xly zy3c

II. When Da = {Ca, Ua\;

xyz y — Xy z y, x — y, z x — y, y, z yxz x, y — x, z

11. When Da = {Ca, C/.};

xyz y — Xy X, ^ yyX — yyZ y — Xy yy z yxz x, x — y, z

23. Point-group Czv (3e).—When hexagonal axes are used, the

vertical mirror may lie in a plane determined by the Z-axis and any one

of the three horizontal hexagonal axes. The effect of the mirror is the

same no matter which horizontal hexagonal axis is used. The mirror

may, however, lie in a plane determined by the Z-axis and a line which
bisects one of the angles between the horizontal hexagonal axes. The
effect of the mirror is the same no matter which angle is bisected. We
therefore have two sets of coordinates for the six equivalent points

when hexagonal axes are employed. The operation of the mirror is

symbolized by Sa and S, for the two positions, respectively.

Operations of symmetry;

Ca. =-{C3, ^.1
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Coordinates of equivalent points;

I. xyz zxy yzx yxz xzy zyx

II. When Cz, = [CzSa];

xyz y - x,^,z y,x - y,z x - y,g,z yxz 2,y - XyZ

II. When C3. = {CsS.};

xyz y - XyXyZ y^x - y^z y - x^ y^z Zyz XyX - y^z

24. Point-group Czi (3Ci).

Operations of symmetry;

Cz^ = fCa, n
('oorfjBt! .i.tes of er tii VL\le

points;

T xyz zxy yzx

xyz zfy yzx

II. xyz y-- Xy JCyZ VyX- yyZ

xy2 X - ViV-XyZ

25. Point-group Du (3Z)^).—Since with hexagonal axes there are

two possible sets of coordinates for the point-group D 3,
there must be

two possible sets of coordinates for Dza-

^3d"(^3UoiI) DsoisfCsUsD
Operations of symmetry;

I>3 = {2>8, S,] = {Dzy I] = {C3, Uy 8,} = {Ca, Uy I]

Coordinates of equivalent points;

I. xyz zxy yzx yTl 2yS

SyS 2Sy y22 yxz xzy zyx
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II. When Dm = {C3, J7a, /};

xyz y - x,X,z g,x - y,z x - y,^,S yxi S, y - x, S

sgi X — y, x,S y, y — X, S y — x, y, z pg x,x — y,z

II. When Dm = £/„/};

xyz y - x,i,z g,x -y,z y - x,y,i ’yU x,x-y,l
Sp X — y,x,i y,y — x,i x — y,y,z yxz i,y — x,z

HEXAGONAL DIVISION

26. PoinUgroup Czh (6c).

Operations of symmetry;

= {Cs, Sh]

X Coordinates of equivalent points

;

xyz y — X, S, z g, x — y,z

xyl y - x,x,z y,x - y,z

27. Point-group D^h (fid),—Since there were two sets of possible

coordinates for D3 ,
there must be two sets for Z> 3a.

Operations of symmetry;

D,h = {D,Sh} = {C3, U, Sh}

z

D3h”(C3t^«Sh) D3|,s(C3UsSh)

Coordinates of equivalent points;

When Dm = {C„

xyz y — x,X,z ^, x — y, z x — y, 1 yxi S, y — x, S

xyS y — x,X,S 9,x — y,~t x — y, g, z yxz f,y — x,z
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WhenD« = {C», U„Sh];

xyz y -x,i,z ‘S,x-y,z y - x,y, I 5*2 x,x-y,i
xyi y — x,x, I ^,x — y, I y — x,y,z 5*z x, x — y, z

28. Point-group Ct (6C).

Operations of symmetry;

* Ki) Xf)

Xt) Kt)
Coordinates of equivalent pointb;

xyz y — Xy z y x, ;r, z

fyz y, X - y,z x - y, x, z

29. Point-group —The
six secondary axes all lie in the

X-Y plane. The first coincides with

the X-axis; the third with the F-axis;

etc. The operation of every one of

these secondary axes gives identically

the same result as the operation of

any other.

Operations of symmetry;

A = {Ce, U]

Coordinates of equivalent points;

xyz y,y - x,z y-x, eg, z Syz y, x—y, z x—y, x, z

x,y-XyZ y-x,y,l yxl x,x-y,l x-y, y, 2

30. Point-group Cah (OCi).

Operations of symmetry;

Coordinates of equivalent points;

^y^ y, y — y — ^

^y^ y, y s y — ic, ic, 2

5^2 ^,x—y,z X — y,x,z *

3ty2 yy X — y, 2 x — y^ Xj 2

Y
, f

\ AV
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31. Point-group Cev (6e).

Operations of symmetry;

Ce. = {Ce, S.}

Coordinates of equivalent points;

y — x,XyZ

xyz ’y^x-y.z x - y,x,z

x,y-x,z y — x,y,z yxz

x,x—y,z x — y,y,z yxz

32. Point-group DeA (6Z)i).

Operations of symmetry;

D,h = {A, Sn] = {Cey Uy &}

Coordinates of equivalent points;

xyz y^y—XyZ y-x,x,z
3Cyy - x,2 y-x, y, 2 yx2

y,x-yy2 x-y,Xy2
x,x - y,z x-yy y, z yxz

^yz yyX - yyZ x-y, x, z

X, x—y, S X - y, y, 2 yS2

^2/2 y,y — Xy2 y— x,x,2

y-x, z y - x,y,z yxz

SPACE-^GROUPS

We have up to this point listed the coordinates of each of the 32
point-groups. It now remains to place each of these groups in turn at

the ‘lattice points” (which may in general be visualized as intersection

points) of such of the various space-lattices (see Chap. II) as have
appropriate symmetry characteristics. The combined configuration

of points which results from a superposition of a point-group on a space-

lattice is a “space-lattice point-group” or, in shorter and more con-

venient terminology a “space-group.”

Except in the simplest cases the perspective drawings representing

these space-groups are hopelessly complicated, so that the coordinates

of each of the points in a space-group are most conveniently determined
analytically as the algebraic sum of the coordinates of the point-group
and the primitive translations (or multiples of the primitive translations)

of the space-lattices. The case of point-group C2A placed on the simple
monoclinic lattice Fm (see Table II) is shown in Fig. 10a and b. The
point A is arrived at from the origin O by the primitive translation 2tx.
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Table II.

—

Primitive Translations of the Fourteen Space-lattices

Lattie< Symbol Primitive translations
Coordinates of

typical points

Triclinic system:

1. Simple Vtr

1

2rx; 2ry; 2t* 0, (000)

Monoclinic system:

2. Simple Ttn 2t*; 2ry; 2Tt 0, (000)

0, (000)

P, (0, T„ T.)

3. Side-centered Tm'

Orthorhombic system

:

4. Simple i

5(a). Ba. '
- centered

1

1

Vo

lV(a)

V(h)

To"

To'"

Sr,; 2t„; 2r,

TyJ Try 2t*

T,; Tyy T*

Iff ^ f ^^f

0, (000)

0, (000)

Pl| (rxf Ty, 0)

0, (000)
P, (0, Ty, T,)

0, (000)

P, (0, Ty, Ty)

Pi, (t*, Ty, 0)

(r*, 0, r.)

0, (000)

Ps, (r„ Ty, Ty)

5(ft\ -ntered

j

6. Face-centered

7. Body-centered

Tetragonal system:

8(a). Simple r,(a)

l'<(b)

r.'(o)

2rx; 2ry; 2r* 0, (000)

0, (000)

Pi, (r*, ry, 0)

0, (000)
P, (0, Ty, Ty)

P 1, (jxy Ty, 0)

P2 , (“^X, 0, Ty)

0, (000)
P 8, (ri, Ty, Ty)

8(6). Base-centered Tx, Ty\ 2rt

2tx\ 2Tu; 2Tz; Tx, Tyj T,

9(a). Face-centered

9(6). Body-centered

Cubic system:

10. Simple Ve 2rx ; 2Ty ;
2r* 0, (000)

0, (000)

P, (0, Ty, Ty)

Pi, (rx, Ty, 0)

P2 , (tx, 0, Ty)

0, (000)

Ps, (r„ Ty, Ty)

1 1 . Face-centered Tc' Ty, T*; Tgf Tg] Tzf Ty

2rx; 2Ty; 2r«; tx, Ty, t*12. Body-centered r/'

Hexagonal system

:

13. Rhombohedral Trk

Tk

2tx; 2Ty; 2t( 0, (000)

0, (000)14. Hexagonal 2tx; 2Ty; 2t,

0 represents the corner of the unit-prism which is used as the origin of coordinates;

P, the center of a side; Pi, the center of the base; P2, the center of an end; Psi the

body-center; 2r*, 2rv, and 2r, represei^t the lattice parameters along the X-, F-, and

Z-axes, respectively. By Ty, tm is meant a>translation of ry'along the F-axis followed,

by one of length along the Z-axis.
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Since the coordinates of the four points of C2A, referred to A as the origin,

are xyZj ^yz, xy2, 2y2j it is evident that the coordinates referred to 0
as the origin must be a;+2T*, y, z; 2tx—x, y, z; a:+2T«, 2/, 2; 2t*— a;, y, 2.

Similarly the coordinates of the four points to be placed about Ai,

C, Z>, Ef etc., may be determined. In general symbols, if m, n, and p

(fe)

Fig. 10(a).—;The point>group Ca*. (5) The point-group Ca* on the simple monoclinic
lattice Fm, giving the space-group For convenience of reference this figure is lettered

to correspond to Fig. 15, p. 28, of Wyckoff.‘

are any integers, including zero, the generalized coordinates of the points

of this space-group are:

2mTx + X 2nTy + y 2prz + z

2mr» — X 2nry — y 2pT* + z

2mrx + X 2nTy + y 2pr, — z

2mTx — X 2nTy — y 2pr* — z

It was pointed out in Chap. II that it is inherent in the symmetry
characteristics of a space-lattice that any lattice point may be used as

the starting point for constructing the whole lattice.^ It is customary

to use the point in the point-group corresponding to A in Fig. 106 as

the starting point in building up the crystal lattice. In this way a

crystal structure may be built up hy hanging some point-group on succes-
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sive points of the appropriate space-lattice in such a way that the centers

of gravity* of the various repetitions of the point-group correspond
to the latticevoints A, Ax, 5, C, D, E, etc., of Fig. 106, and so that

the point-groups are properly oriented with respect to the space-lattice.

A still more complicated type of crystal may be built up by hanging on the

lattice points, not one of the simple 32 point-groups, but an aggregate
of points which is derived from a simple point-group and which has,

taking the aggregate as a whole, the symmetry corresponding to the

simple point-group. These aggregates of points are derived from the

simple point-groups by adding to the translations of the space-lattice

the operation of either an n^fold screw axis or a glide-mirror. Portions

of the fol: wing tabulations of the 230 possible space-groups will serve

to make this more clear.

The 230 space-groups <^ ;e ordinarily tabulated in such a way that

all the sp.^o^oups in a given crystal system which require the same
symme try machine are listed together. The nomenclature for space-

group -j is in ahoni as chaotic a condition as that for the point-groups.

Every attempt at simplification has so far resulted in just one more set

of symbols which have to be correlated with those previously in use.

For the sake of uniformity in the literature it was only natural to have

hoped that only the Schoenflies system would remain in common use

since it has been so widely used in both the English and German lan-

guages. However, the ^‘International Critical Tables'' (1926) are

written in terms of the Wyckoff symbols, f and in 1929-1930 an inter-

national committee decided to adopt still a new set of symbols (the

Hermann-Mauguin) which it hoped might find for itself a place in the

literature of the future to the exclusion of all other systems. The number
of systems to be learned is therefore increased by still one more. Appen-

dix III gives the Hermann-Mauguin symbols which correspond to the

various Schoenflies symbols. A glance at this table shows how poorly

the Hermann-Mauguin symbols are adapted to ready reference. They
follow no system by which they may be readily indexed and still retain

* Center of gravity” is here applied to the center of the configuration of points,

all points being given the same weight.

t Space-groups are listed in the “International Critical Tables” by writing the

Wyckoff symbol (see Table I) for the point-group followed by the Schoenflies serial

number for the listing within that point-group, thus CJJ becomes 2e — 10. The
Hermann system gives first the Schoenflies symbol for the point-group; then the

Hermann symbol for the space-lattice; then such additional information in code form

as may be needed to completely identify the space-group. Thus means point-

group C2 on the simple monoclinic lattice p, in which the ^-axis is a 2-fold axis. The
Hermann symbols for the 230 space-groups are listed along with the corresponding

Schoenflies symbols in Wyckoff,^ “Thfe Anal3d)ical Expression of the Results of the

Theory of Space-Groups” (2d ed.) to whick the reader is referred for further details.

It should be noted that these Hermann symbols are quite different from the Hermann-
Mauguin symbols.
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any logical crystallographic grouping. For purpose of tabulation they

must be placed after the corresponding Schoenflies symbols. A single

usable system, widely represented in the literature, even though it is not

ideal, is better than a variety of systems each of which approaches ideality

in some one or more directions.^ Considerations of this sort are responsi-

ble for the use of the Schoenflies system in the discussion of space-groups

in this chapter. In this system each space-group formed with the aid of a

given point-group is designated by the Schoenflies symbol for the point-

group (see Table I), to which is added, in the exponent position, a number
which distinguishes that space-group from others formed with the aid

of the same point-group. Thus CH is the tenth space-group listed by
Schoenflies as being derived from the point-group C2V.

The 230 space-groups are listed together for reference in Tables I

to XXXII of Appendix III in tabular form giving (1) the serial number
of the space-group;* (2) the Schoenflies space-group symbol; (3) the

Schoenflies code for the derivation of the space-group; (4) the space-

lattice; (5) the number, n, of asymmetric molecules required to produce

the symmetry of the structure; (6) Astbury and Yardley^s statement of

the value of s of Eqs. (3), (5), (7), etc., of Chap. Ill; (7) the value of p,

where n/p is the number of molecules of symmetry p required to produce

the symmetry of the structure,!

The following discussion is intended to aid the reader in visualizing

the derivation of each of the 230 space-groups as given in- the accompany-

ing tabulations! and to serve as a guide in the use of the tables of space-

groups in Appendix III.

A. Triclinic System (Space-groups 1 to 2)

I. Triclinic Hemihedry; Asymmetric ,—The point-group Ci is placed at

each lattice point of

1. C\ CiTtr Ttr

II. Triclinic Holohedry; Centrosymmetric ,—The point-group Ci is

placed at each lattice point of Ttri

2. C\ CiTtr Ttr

The triclinic lattice is the most general of all lattices. All the primitive

translations are independent of each other in both magnitude and direc-

* It should be noted that the serial number is not a characteristic property of the

space-group; it will vary from author to author. Its justification lies in making cross

reference easier between tables in reading a given author.

t A discussion of the symmetries of ions and molecules will be given in Chap. XIX.
The eighth column in the tabulations of Appendix III relates to material presented

in Chap. XIX.

t In these tabulations the serial number of the space-group is followed by the space-

group symbol, its derivation, and the syrnbol of the space-lattice to which it belongs.
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tion. Ci differs from C[ by having a center of symmetry. Unfortu-
nately, in the Laue method, the x-rays themselves always introduce into

the diffraction*pattern the effect of a center of symmetry in the crystal.

It is therefore impossible on the basis of the symmetry of the Laue pattern

alone to distinguish between C\ and CJ, and a complete solution of the

crystal structure by the Laue method can be made only by bringing in

other data to supplement the x-ray data. Tables A of Appendix III

show that space-group C\ permits the presence of only one chemical

‘‘molecule” per unit of structure; space-group requires the presence

of two asymmetric molecules or of one ruolecule which possesses a center

of symmetry. When a second molecule is present, its position is not

definitely ' xed by space-group CJ. The periodicity, s, of the planes

(see Chap, III) in triclinic cry«itals must, therefore, always be unity.

This meaiuB h^t the pov^e* method will yield no fractional values of s

which wil! J^iolp distinguish between C} and CJ. If the density of the

crystal requires two molecules per unit of structure, (i.e., requires that n
of Apj^endix Il f be 2), we can safely assign the crystal to space-group CJ.

If, however, the den;*ity requires on^y one “molecule” per unit of struc-

ture, the crystal might belong to C\ if the molecule is asymmetric, or to

C\ if the molecule has a center of symmetry. Any choice between these

two crystal structures must then be made in the light of still other data

such as the external symmetry of the crystal, etch figures made under

the proper precautions,® or some chemical evidence as to the nature of

the “molecule.”

B. Monoclinic System (Space-groups 3 to 15)

III. Monoclinic Hemihedry; Equatorial ,—We shall designate the con-

figuration obtained by putting the point-group Ci on the space-lattice Tm
by the symbol of this lattice alone, i.e., Tm- Similarly the configuration

obtained by putting Ci on Tm' will be represented merely by Tm'- Space-

groups are obtained by combining one or the other of these with a

horizontal reflection Sh (i.e., a mirror in the Z-F plane) or with a hori-

zontal glide-mirror S/»(r). r is the primitive translation of the glide-

mirror in the X~Y plane. It may be taken parallel to either the Z- or

the F-axis, i.e., it may be either r* or Ty,*

3.

4.

6 .

6.

Cl r^, Sh Tm

Cl Tm, Sh(j) Tm

Cl Tm', Sh Tm'

Ct Tm', Snir) Tm'

IV. Monoclinic Hemimorphic Hemihedry; Digonal Polar.—The point-

group C2 differs from Ci in havirig a, 2-fold cyclic axis, A(t). We may
* The Z-axis is here the principal axis of tlie crystal. It corresponds to the 6>axis

of ordinary crystallographic practice. The X-Y plane of this book and of Wyckoff's

tables is the a-c plane of ordinary crystallographic practice.
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therefore designate the configuration obtained by putting the point-

group Ci on the space-lattice Tm by the symbol Cl = Fm, A{ir). Simi-

larly the configuration obtained by putting C2 on Fm' will be represented

by Fm', A(ir). Configurations belonging to the same class of symmetry

can be obtained by replacing Cs by Ct. The translation components t

of these screw axes are one-half the lattice parameter along the Z-axis of

the crystal.

7. Cl Fm, Fm
8. Cl Fm, 1(t) =Fm, 4(x,T,) Fm
9. Cl Fm', = Fm', A{ir, T,) Fm'

V. Monoclinic Holohedry; Digonal Equatorial .—The first three of this

family of six space-groups can be obtained by combining the operations

of a horizontal mirror with the operations which led to the three members
of the C2 family of space-groups. Three more are obtained by sub-

stituting a horizontal glide-mirror for the simple horizontal mirror.

10. cIk Cl, Sh = Fm, A{v), Sh Fm
11. C\h cl, Sh = Fm, A(w, r)Sh Fm
12.

riZ
Cl, Sh = Fm', A(ir), & Fm'

13.
pi

Cl, Sh(r) = Fm. Air), Shir) Fm
14.

pb 11 Fm
15.

pb
^2h Cl, Shir) = Fm', Aiir), Shir) Fm'

Inspection of a model shows that there are three ways of regarding

the lattice Vj all of which require that one edge of the chosen unit of

structure be perpendicular to the other two. It may be considered as; (o)

a body-centered monoclinic lattice; (61) a monoclinic lattice with points

at the centers of the (100) faces; (62) a monoclinic lattice with points

at the centers of the (001) faces; (c) a face-centered monoclinic lattice.

Figure 11 shows that these are merely three ways of looking at the same
structure.

These three subdivisions appear in the tabulations for the monoclinic

system in Appendix III wherever the Vm lattice is used. For instance,

the unit of structure of C\ contains two molecules, the second of which

can be obtained from the first by a reflection Sh plus a definite transla-

tion (r) in the Z-F plane. The translation may be parallel to the

Z-axis, r*; or to the F-axis, ry. If we choose the position of any charac-

teristic point A of the first molecule as our origin of coordinates, and if

we use the crystallographic axes as axes of coordinates, then the coordi-

nates of the corresponding point B in the second molecule are either

(|.t»,o) or or

where v is indeterminate. The particular coordinates to be used depend
only on the choice of the unit of structure, for all three sets of coordinates
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represent the same space-group. Subdivision (a) makes the periodicity «
equal to one-half if the second molecule B occupi^ the position (a/2, v, 0)

;

subdivision (6) makes s = ^ when is at (0, v, c/2); subdivision (c)

makes s = when B is at {a/2, v, c/2).

We have already seen in our discussion of the triclinic system that it

is not always possible by x-ray diffraction methods alone to distinguish
between certain space-groups even though they may be formed with the
aid of different point-groups. Still other illustrations may be found
in the other crystal systems. Foi instance, io the monoclinic system
the tabulations in Appendix III show that the rules for s = are the

Fio. 11.—Dashed lines, body-centered monoclinic lattice. Dotted lines, monoclinic
lattice with one pair of opposite rectangular faces centered. Full lines, face-centered
monoclinic lattice.

same for C] and for C\)^, If it is found that there are four ‘‘molecules''

per unit of structure, and if the lattice is r,a, it is reasonable to assume
that the point-group is If, however, there are only two “molecules"

per unit of structure, then there are two possibilities open: either the

molecules may be asymmetric so that the crystal belongs to space-group

CJ, or the molecules may have a 2-fold symmetry (by reason of an axis

of symmetry or a center of symmetry) so that the crystal belongs to the

space-group C24. If the external symmetry of the crystal, or the sym-
metry shown by deep etching under the proper precautions,® shows that

the crystal is monoclinic holohedral (digonal equatorial) and belongs to

space-group Cthy if is still not possible by x-ray diilraction methods to

decide whether the molecule has an axis of symmetry or a center of

symmetry or both.

C. Orthorhombic System (Space-groups 18 to 74)

The orthorhombic space-groups are based on:

a. The simple orthorhombic lattice, To,

b. The orthorhombic lattice with points at the centers of one pair of opposite faces,

To'.
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c. The face-centered orthorhombic lattice, To".

d. The body-centered orthorhombic lattice,

VI. Orthorhombic Enantiomorphic Hemihedry; Digonal Holoaxial.

—

The quadratic point-group V{= Q) has already been described as being

made up of a 2-fold principal cyclic axis, C2 ,
and two 2-fold secondary

cyclic axes, each represented by C2,
which are at right angles to each

other and to the principal axis. In the simplest possible case of the

space-group V’", the effect is that of placing three space-groups C\ (for

which the angle between the X- and F-axes is given the special value of

90°) so that their axes are parallel to the X-, F-, and Z-axes, respectively,

of an orthorhombic space-lattice. Still other groups, all having this

same class of symmetry, can be formed by substituting space-groups

C\ or Cl in place of one or more of the Cl groups. ' These all lead to the

following:

16. 71 C\, c\, c\ r.

17. 72 /nrl /nrl /^2
^2> ^2 r„

18. 73 /nr2 /nr2 /nrl

02, v^2> ^2 r„

19. 74 /nr2 rf2
^21 ^21 ^2 r.

20. 76 /nf3 /nr3 p2
t/2, O2, ^2 To' (a) (see Table II)

21. 76 /nr3 /nr3 /nrl

^2, t/jr, 1^2 r.'(o)

22. V’ ^3 fiZ
^2, V2, ^2 To”

23. yn riZ riZ f^Z^ 2 } ^2> ^^2
p ft/

0

24. 78 /yz fiz riz^ 2 * ^2> ^2
Tl ///
A 0

These last two space-groups, F® and differ only in the manner of the

distribution of their axes. A complete picture of the difference between

these groups may be obtained by studying the coordinates of the points

as listed by Wyckoff in his ^^Analytical Expression of the Results of the

Theory of Space-Groups.

VII. Orthorhombic Hemimorphic Hemihedry; Didigonal Polar,—In the

monoclinic space-group C^, the axes of all the C2 point-groups are parallel

to each other. If we put all three crystallographic axes at right angles

to each other, the crystal is no longer monoclinic but is orthorhombic.

We shall choose the crystallographic axis which is parallel to the axes of

the C2 point-groups as the Z-axis of the orthorhombic lattice. Then we
can form the CS, space-groups by adding to these C? groups a vertical

mirror or a vertical glide-mirror. Obviously there are three possible

positions for the mirror (or glide-mirror); (1) it may be placed in the

X-Z or F-Z planes; (2) it may be placed midway between pairs of adja-

cent X-Z or F-Z planes; (3) it may be placed diagonally so as to lie in the

(1 1 0) or (T 1 0) plane. These three cases are designated by 8, >Sm, and

Sd, respectively. The choice of which of the two horizontal crystallo-

graphic axes is X and which is F rests entirely with the observer, so that
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the space-groups based on S and Sm are completely described by assuming
that the mirror (or glide-mirror) may be located by reference to the
X~Z plane alor^.

25. ^2v Cl,s To
26.

ri2
^2v CIS To

27. CL Cl, S(t.) To
28. (^2v Cl, S(r.) T.
29. ^2v Cl Sir.) r.
30. CL cl. Sir. + Tj'i r.
31. Cl Cl Sir. + Tf) r.
32. ^2v Cl Sn.(T.) r.

33. CL Cl SJr.) To
34. Cl

, C’i, S.^ir. + r.) To

35. fiU
^2v

"
* 1, s„ To'ia) (see Table II)

36.
pi2
^2v Cl s. ro'(a)

37. ffi:i Cl s,(t.) r/(a)

38.
/il4
^2v Cl s To'ib)

39. ^2if Cl Sir.) To’ib)

40. ^2v Cl Sir.) To'ib)

41. ^17
^2v Cl Sir. + r.) To'ib)

42.
rtis
^2v CIS r "

1 0

43. ^2v Cl SJAir. + r.) r."

44.
/^20
^2v Cl Sa p nr

A 0

45.
/nr21

^2v Cl S,ir.) P fff
A o

46. ri22
^2v Cl S,ir.) p ///

l 0

VIII. Orthorhombic Holohedry; Didigonal Equatorial .—This family
of space-groups can be obtained by combining a horizontal mirror or a

Fig. 12.—Inversion points and nairrors for tabulations VIII, XIV to XIX.

horizontal glide-mirror with the space-groups V^. They are more easily

visualized as combinations of 'V”*’ with various inversions. These inver-
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sion points are shown in Fig. 12 and are represented by subscripts to the

inversion symbol, thus /m.

47. n = -DJa V\I To

48. VI v\ To

49. VI V\I„ To

50. Vi v\h To

51. VI V*,I To

52. VI V\In, To

53. VI V\I„ r„

54. VI v\h r„

55. VI V\I r.

56. To

57. V\ Ik To

58. Vi^ V\I^ To

59. Vi^ vMo To

60. Vi* v*,i, To

61. Vi* V\I To

62. Vi* V*,I, To

63. Vi^ V\I To'ia) (see Table II)

64. Vi* r/(a)

65. Vi* V\I r/(a)

66. vr V\I„ r.'(o)

67. VI' V\Iu r„'(a)

68. VI* VO, If r„'(o)

69. vr J To"

70. VI* v\ 7™ To”

71. vr 7 To'”

72. vr F», 7„
Ti ,n
-* O

73. vr F», 7 p fff

74. vr Vo,h p fff
A 0

The following discussion of x-ray studies of orthorhombic crystals

assumes that the space-lattice of the crystal has been found, employing

the methods described in Chaps. IV, V, VI, and VII. The tabulations

of the orthorhombic system in Appendix III show that quite frequently

the values of the periodicity, s, will be the same for space-groups formed

with the aid of different point-groups, for instance, see Ctv, Vl*; Cl„,

V^, Vl; etc. Here, as in the monoclinic system, x-ray diffraction data

alone will not decide between such space-groups without the assistance of

other evidence such as the s^^mmetry of the exterior of the crystals,

etch figures, physical properties, etc. If, in addition to the space-lattice,

we can decide upon the class of symmetry, i.e., upon the point-group, then

we can distinguish between the various space-groups derived from
* Note that we have complete freedom of choice of axes in V and Vh.
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that point-group (F® and F® excepted) entirely in terms of the values

found for s. For example, x-ray diffraction methods should distinguish

between space-groups belonging to the F point-group in the case of

crystals which show s 3^ for one or more of the axial planes and which
show at the same time s = 1 for all other planes in the axial zones.

Similarly, x-ray methods should distinguish between crystals belonging to

the Vh point-group for which s = in all three axial zones and other

crystals belonging to the same point-group which show s = 3^^ for the

general planes {hkl). In practically e\’ery case reported in the literature

the unit of structure appears to contain the minimum number of molecules

rather than an integral multiple of that number.

We h. .e seen that in space-groups derived from the C^v point-group,

the Z-axi' is taken parallel to fche 2-fold axis. This means that the

glide-pla uv must be pa/ab 1 to (100) and (0 1 0) but not to (001). The
.Y- and i^’-yxes are not determined by convention as is the Z-axis. We
may vherefore interchange h and k in the tabulations of Appendix III

for t
>int-grou>) C2 ,., care being taken that the changes are all consistent.

For instance, if the structure contains one plane of symmetry and one

glide-plane of symmetry as in the glide-plane may be taken arbi-

trarily parallel to (100), as was done in making the tabulation; this

makes s = 3'^ for (0 k 1) when I is odd. But we may, instead, take (0 1 0)

as the glide-plane. This would make $ = for (hOl) when I is odd.

Similar alternatives are possible in CJJ, etc. For

instance, if it is found experimentally that « = 3^^ for hOl when I is odd

[instead of (0 k 1) as listed in the tabulation], then we must use (0 1 0) for

the glide-plane of symmetry in the crystal instead of (100) as listed in

the tabulation.

As was shown in Table II, there are two possible cases of To\ one in

which the pair of centered faces is (001), as in CJi, etc., the other in

which the centered faces are (100) as in CJJ, etc.

D. Tetragonal System (Space-groups 75 to 142)

IX. Tetragonal Tetartohedry; Tetragonal Polar ,—The space-groups

CJ* can be derived by putting 4-fold cyclic axes or 4-fold screw axes on

the tetragonal lattices Tt and F/.

«
'‘(i' t)78.
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79 . Cl r/ r/

80. C! r/

X. Tetragonal Tetartohedry of the Second Sort; Tetragonal Alternating .

—

The space-groups are obtained by making all three angles between

the crystallographic axes of exactly 90° and combining with them a

rotary reflection A, i.e., a screw axis of symmetry. The axis A is made to

coincide with the axis of C2.

XL Tetragonal Enantiomorphic Hemihedry; Tetragonal Holoaxial .

—

It was stated earlier in this chapter that the

V—"TT point-group Dn is obtained by combining the

j
4-fold cyclic axis Ca with an Umklappung U
which represents the operation of n 2-fold axes

^
all of which lie in the X-F plane. In forming

the space-groups the symmetry requires only

one axis of Umklappung. This single 2-fold axis

^ Y naay be either in the line AB of Fig. 13, in

Fig. i3.~Axes of Urn- which case it is called U 8, or in the line CD, in

^rors*for which case it is called ?7c. D^ may therefore be

obtained by combining C4

2)^ may therefore be

with U 8 or with 17 c

83. D\ c\, u. r*

84. D\ C\, Uc
85. D\ Cl, u. r,

86. D\ Cl, Uc r,

87. D\ Cl, u. r,

88. D\ Cl, Uc r,

89. Dl Cl, u. r,

90. Dl C\, Uc r,

91. D\ Cl, u. r/
92. DJ" Cl, u. r/

XII. Tetragonal Paramorphic Hemihedry; Tetragonal Equatorial .

—

These space-groups can be obtained bjr combining CJ* with an inversion.

There are two possible inversions. In the first, I, the center of symmetry
lies on the 4-fold axis of Ca] in the second, Ii, it lies at the center point

of a line joining two adjacent axes of C4.

93. C\h C\,I T,

94. Cl, , Cl, I T,

95. Cl, ci,ii Tt
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96. Cl Clh Tt

97. Cl Cl I Tt'

98. Cl CIL r/

XIII. Tetragonal Hemimorphic Hemihedry; Ditetragonal Polar,—The
space-groups of this class are obtained by combining the operations for

space-groups CJ with vertical mirrors or glide-mirrors. Mirrors which
cut the X-Y plane in the direction of AB, Fig. 13, are represented by /S,;

mirrors cutting the X-Y plane in the direction of CD are represented

by aSc.

99. Cl c\, s. Vt

100. Cl Cl Sc l'(

101. Cl Cl s. r,

102. di Cl Sc r,

103. Cl Cl S.(r.) r,

104. C-ic Cl Sc(r,) r,

105. Cl Cl S.(r,) r.

106. Cl Cl Sc(r.) r,

107.
/^9 rib Q^ 4v ^ O r,'

108. C\l Cl S.(r.) r/

109. C\l Cl Sc r/

no. Cl Cl Sc(rc) r/

XIV. Tetrago7ial Hemihedry of the Second Sort; Ditetragonal Alternain

ing.—The space-groups\ of this class are obtained by combining the

operations for space-groups with the operation of a mirror or of a

glide-mirror. A mirror in the plane WMGA of Fig. 12 is represented

by Sd', a mirror in the parallel plane through F and K is represented by

Sdi,

111. II V\Sd r,

112. V\ Sd(r,) r,

113. VI VI Sd r,

114. Vi VI SdM r,

116. Vi V<>,Sd r«(6)

116. Vi VI Sd(Tc) r»(6)

117. VI v,
)

r,(6)

118. VI VI + r,(6)

119. Vi VI Sd r/(fe)

120. Vi® VI Sd(rs) r/(5)

121. vi^ V0,Sd ^

y y

r/

122. rj*
'

’t y )
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XV. Tetragonal Hohhedry; Ditetragonal Equatorial .—The space-

groups of this class are most easily obtained by combining the operations

for space-groups with an inversion. Four such inversions, /, 7^, Igj

Imy are possible about the points A, W,G, and M of Fig. 12.

123. D\, D\, I T,

124. Dl, Tt

125. Dl Dl, h Tt

126. Dl, Tt

127. Dl, I T,

128. Dl, h Tt

129. Dl, Dl, /. Tt

130. Dl, I,n Tt

131.
,

DIk Dl, I Tt

132. 7)10
Dl, T,

133. Dl, 7, Tt

134. 7)12 Dl, 7™ Tt

135.
T\n
^Ah Dl, I Tt

136. J^IA
^Ah Dl, 7„ Tt

137. 7)15
^Ah Dl, h Tt

138. D\l Dl, I,. Tt

139. Dll Dl, I Tt'

140. 7)18 Dl, I„ Tt'

141. Dll
nio r^A * a Tt'

142. Dll
nio r

y m Tt'

The tabulations of the tetragonal space-groups given in Appendix III

are somewhat more complicated than those given above. The reason

for this is as follows: It was shown in Chap. II that there are only two

possible tetragonal space-lattices, namely and F/. It was brought

out in Chaps. II, III, and IV, and again in Table II of this chapter,

that the first of these, F^, may be regarded at will as being either a simple

tetragonal lattice F<(a) (corresponding to the simple orthorhombic

lattice Fo), or an end-centered tetragonal lattice Tt{h) {i.e., with the square

faces centered, thus corresponding to the end-centered or side-centered

orthorhombic lattice F^'). Similarly it was shown that F/ may be

regarded at will as being a face-centered tetragonal lattice F/(a) (corre-

sponding to Fo") or a body-centered tetragonal lattice F/(6) (correspond-

ing to Fo'")- For each of these two lattices the various crystal forms may
be described according to either alternative, so that both are given

in the tetragonal tabulations of Appendix III except for the space-groups

derived from D2d = Vd- In the £>2^ = Vd class, the axial planes are

always taken as bisecting the angles between the symmetry planes of

the crystal, so that only one of the alternatives is possible with F^ and
only one with F/. To avoid confusion, the example of Astbury and
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Yardley is followed in Appendix III and the orthorhombic lattice with
which the actual tetragonal lattice may be compared is inserted in

parentheses in’ the space-lattice column. In order to facilitate reference

to Astbury and Yardley,^ r 4(a) and r/(6) are listed in Appendix III

as the “first alternatives^' of r< and F/, respectively. r<(6) and r/(a)

are listed as the “second alternatives."*

In using the tetragonal tabulations of Appendix III it should be
kept in mind that in the tetragonal system the form

{ 100 }
includes

both the (100) and the (0 1 0) planes. Similarly the form [Qkl\ includes

both the (Okl) and the (hOl) planes; that is. the X- and F-axes are

indistinguishable from each other. For example, Cav 1) reads for

{Okl} if (k + 1) is odd." This means not only that the periodicity s

is for [Okl] if (k + 1) is odd, but also that s is also for {A OZ} if

{h + 1) is odd. (

It has already been pointed out that when a crystal is examined

by the Laue method with “white" x-rays, there is imposed upon the

diffraction pattern the effect of a center of symmetry. In the tetragonal

system the addition of a center of symmetry to the seven classes of space-

groups reduces them to two, one showing full Cah symmetry and the other

showing full Dah symmetry. Consequently, by the use of the Laue
method, we can readily discriminate between the space-groups derived

from Saj Ca) and CaH) on the one hand, and space-groups derived from

D2d( — Vd)f Cav, Da, and Dah on the other hand. Such a partitioning of the

seven classes of tetragonal space-groups may be useful when the value of

the periodicity s is the same for certain space-groups which are derived

from different point-groups.

E. Cubic System (Space-groups 143 to 178)

XVI. Cubic Tetartohedry; Tesseral Polar .—The space-groups belong-

ing to this class of symmetry can be obtained by combining with the

symmetry operations leading to certain of the space-groups the oper-

ation of a 3-fold axis, A 3 . In the case of this 3-fold axis must lie in the

diagonal A'

A

of Fig. 12. For the other space-groups any of the body-

diagonals of Fig. 12 may be used.

143. Ti V\A^ To

144. Jf2 V\A^ Tc'

145. V^A, r."

146.
rpA V*,A, r.

147. JTS 7», A, r."

* It should be noted that the diagrams given at the end of their article by Astbury

and Yardley' correspond to alternative (1); the diagrams corresponding to alternative

(2) may be made by interchanging the (1 1 0) and (1 0 0) planes.
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XVII. Cvhic Enantiomorphic Hemihedry; Tesseral Holoaxial.—The
space-groups of this class can be formed by combining the operation of a

2-fold axis with the operations leading to space-groups T”*.

The 2-fold axis is parallel to KU of Fig. 14. If it passes through the

point A, it is denoted by 17; if it passes through M, it is denoted by

C7m; if it lies in the line BC, which bisects AM, it is denoted by Uc, if it

lies in the line DE, which bisects MA', it is denoted by U2 .

148. - TS U Tc

149. 0® T\ Tc

150. (P TS U T/
151. 0* T\ Um r/
152. O'* T^ U T/'

153. 0« T\ Ux Tc

154. O’’ T\ U2. Tc

155. 0« T‘, U Tc"

XVIII. Cubic Paramorphic Hemihedry; Tesseral Central.—In the

discussion of point-group T* it was stated that Ta could be obtained by
combining a horizontal mirror with the symmetry combination used to

form T and that the horizontal mirror could be replaced by an inverter.

Space-groups can therefore be formed by combining the operation

of Sk or I with T”. When the inverter is used, the center of symmetry is

at 4 or AT of Fig. 12. The two inversions are denoted by I and Im,

respectively.

n T\I r.

n T\in, r.

Til TV r«'

156.

157.

158.
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159. n T\I^ Tc'

160. n r*>, / Tc"

161. n T\I Tc

162. n T\I Tc"

XIX. Cubic Hemimorphic Hemihedry; Ditesseral Polar.—The space-

groups having this class of symmetry can be obtained by combining with

the operations of T™ the operation of a diagonal mirror or of a diagonal

glide-mirror. The mirror or glide-mirror lies m a (110) plane of the

cube (WMGA of Fig. 12).

163. n. T\ 8a Tc

164. n Tc’

165. n r\ Sa Tc”

166. n r\ Sa(r) Tc

167.
mU T\ Sa(T) Tc'

168. n Sa{r) Tc"

XX. Cubic HoloLedry; Ditesneral Central .—The space-groups in this

class can be obtained by combining the operation of a horizontal mirror

Sh with the operations leading to the space-groups 0^. The horizontal

mirror may be replaced by inverters /, /m, and /«' whose centers of

inversion are at Ay A', M, and ilf' of Fig. 15.

169. oi o\i Tc

170. 01 0\ In, Tc

171. 01 0\I T,

172. ot 0\ In, Tc

173. 01 0>,I T/

174 01 o\ r Tc'

175. 01 0*, In, Tc'
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176. Ol 0*, IJ r/
177. Ol (?, I r."

178. or 0*, / r."

Only three space-lattices have cubic symmetry. The first of these,

r«, is the simple cubic lattice corresponding to To and Tt but with all its

edges equal in length. The face-centered cubic lattice T/ corresponds

to To". It is not possible in the cubic system for one pair of opposite

faces to be centered and not the other two pairs (like To'), since every

cubic crystal must have four 3-fold axes of symmetry perpendicular

to the {111} planes; in other words, the Z-, F-, and 2^-axes must be

indistinguishable not only in length but in. every other respect. The
body-centered cubic lattice corresponds to To'" except that all its

edges are equal.

Since the three cubic axes are indistinguishable, the form {hkO]

includes all the three axial zones just as the form {100} includes all the

axial planes. This must be remembered in referring to the tabulations

of cubic space-groups in Appendix III. For example, when we read

**Tl; s = for {hkO] if (h -{- k) is odd,’^ we must remember that s will

be for any plane in an axial zone if the sum of th^ indices is odd, so that

our statement will apply not only to (hkO) but also to (AO/:), (OAfc),

(/:A0), (kOh), (hkO), etc.; or to take a specific example, our statement

applies not only to (120), but also to (102), (012), (210), (201),

(120), etc.

In the cubic system, white x-rays yield two types of Laue diffraction

patterns, because adding a center of symmetry to each of the five classes

of space-groups reduces them to two, one possessing full Th symmetry
and one possessing full Oh symmetry. It follows that Laue diffraction

patterns can distinguish between the T and Th classes on the one hand
and the Tdy 0, and Oh classes on the other hand. But no x-ray methods
alone can distinguish between, say, and Tl if there are 12, 6, or 1

molecules per unit of structure, nor between OS or Ol if there are

24, 12, 6, or 1 molecules per unit of structure.

F. Hexagonal System (Space-groups 179 to 230)

RHOMBOHEDRAL DIVISION

XXI. Rhombohedral Tetartohedry; Trigonal Polar ,—The space-groups

of this symmetry class are obtained by combining a 3-fold axis A (2ir/3)

or screw axis with the lattices Th and Trh- The screw axis is parallel to

the Z-axis.

179, Cl Th

'*(¥ t) '*180.
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181. c\
a/^tt 4rA
"^( 3 ' x)’

182. ct

XXII. Rhombohedral Enantiomorphic Hemihedry; Trigonal Holo-^

axial. The space-groups of this class are formed by combining a 2-fold
axis U with the operations leading to space-groups C^, When the
2-fold axis lies along the K-axi& of a system of hexagonal coordinates, it is

Fig. 16.—The X~Y plane of the hexagonal and orthohexagonal systems of coordinates
(see also Chap. II, Fig. 10).

denoted by Ua] when it lies along the F-axis of a system of orthohexagonal

coordinates (see Fig. 16), it is denoted by C7,.
^

183. Dl Cl, U. Th

184. Dl Cl, Ua Th

185. Dt Cl, u. Th

186. Di Cl, u. Th

187. Dt c\, u. Th

188. Dl Cl, Ua Th

189. Dl c\, u. T,h

XXIII. Rhombohedral Hemimorphic Hemihedry; Ditrigonal Polar ,

—

The space-groups of this class are formed by combining a vertical mirror

or glide-mirror with the operations leading to CJ. The mirror Sa lies in

the F-axis of hexagonal coordinates; the mirror S, lies in the F-axis of

orthohexagonal coordinates (see Fig. 16).

190. ^Zv Cl, Si Th

191. ^Zv Cl, Sa
,

Th

192.
riZV 31, Cl, 8.(r.) Th
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193. Cl, S,(r.) Th

194. Cl Ct,Sa TrH

195. civ C\, 8,{r,) Trh

XXIV. Hexagonal Tetartohedry of the Second Sort {Rhombohedral

Paramorphic Hemihedry)] Hexagonal Alternating ,—These space-groups

are obtained by combining an inversion with CJ*.

196. Cli Cl I r,

197. Cl Cl I TrH

XXV. Rhombohedral Holohedry; Dihexagonal Alternating ,—The space-

groups of this class can be obtained by a diagonal mirror with The
mirror may be replaced by an inverter for which the center of symmetry
may be at the intersection of a 3-fold axis and a 2-fold axis (/) or half way
between successive intersections (/').

198. I>\,I Th

199. K r Th

200.
ns Dll Th

201. n4
^3d Dl r Th

202. 7)6 Dl,I TrH

203. 7)6 Dl r TrH

HEXAGONAL DIVISION

XXVI. Trigonal Paramorphic Hemihedry; Trigonal Equatorial ,

—

This space-group is obtained by combining a horizontal mirror with the

operations of CJ.

204. d Cl Sh Th

XXVII. Trigonal Holohedry; Ditrigonal Equatorial ,—The space-

groupsdn this class are formed by combining a horizontal mirror with the

operations of DJ. The mirror may lie in a plane which contains the

2-fold axis (Sh) or it may lie midway between two such adjacent planes

(Sm),

206. dish Th

206. dIh DlSn, Th

207. Dl DISh Th

208. Dl Dl S„ Th

XXVIII. Hexagonal Tetartohedry; Hexagonal Polar,—The space-

groups in this class are formed by combining a 6-fold axis -4(7r/3) or a
6-foid screw axis with the hexagonal lattice.

c\ a(^, r* r»209.
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210. Cl 3*)’ r*

211. Cl

212. Cl t)' Th

213. Cl ^(3 ’ t)’ Th

214. Cl a(1, ra 1\ Th

XXIX. Hexagonal BnanHomorphic Hemihedry; Hexagonal Holo^
axial,—The space-groupfi of this class can be derived by combining a
2-fold axis Ua with the o,i<|^‘4.tions of C^. The 2-fold axis lies along the

X-axis of Fig. 16.

215. Dl Ci Ua Th

216. Dl Cl, Ua r*

217. Dl Cl, Ua
218. Dt Ct, Ua r*

219. Dl C\, Ua Th

220. Dl C*, Ua Th

XXX. Hexagonal Paramorphic Hemihedry; Hexagonal Equatorial.

—

The space-groups of this class can be derived by combining a horizontal

mirror with the operations of CJ*.

221. CJ, Cl Sh r,

222. Ce\ Cl Sh Th

XX^I. Hexagonal Hemimorphic Hemihedry; Dihexagonal Polar.

The space-groups of this class are obtained by combining a vertical

mirror or a vertical glide-mirror with the operations of CJ*. The mirror

Sa lies in the X-axis of Fig. 16. Its operations produce the effect of a

second mirror in the orthohexagonal F-axis.

223. C\,Sa Th

224.
ri2

Cl, Sair.) Th

225. Cl,Sa Th

226. C?, Sa{r.) Th

XXXII. Hexagonal Holohedry; Dihexagonal Equatorial—The space-

groups in this class are easiest obtained by combining an inversion

with the operations of DJ*. The center of symmetry lies in the 6-fold

axis, either at its intersection with a/2-fold axis or midway between two

such adjacent planes. The two possible inversions are denoted by I

and respectively.
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227 . Dl, D\,I r*

228 . Dl K I' I'h

229 .
7)3 D\,l Tk

230.
7)4 D\, r n

General Remarks on the Hexagonal System.—We have seen from

Table II that, although the hexagonal division of this system is based

entirely on the hexagonal lattice, the rhombohedral division is based

on both the hexagonal and the rhombohedral lattices. The hexagonal

lattice Fa is identical with a simple monoclinic lattice (see Chap. II) for

which the X- and F-axes make an angle

of 120° and for which a = b. In other

words, it is a distorted simple tetragonal

lattice for which the angle between the X-
and F-axes has been increased to 120°.

The rhombohedral lattice Fr^i is a simple cube

which has been compressed or elongated

along its body-diagonal. This body-diagonal

then becomes the unique 3-fold axis of the

rhombohedron. The rhombohedral lattice

occurs as an alternative to the hexagonal

lattice in Cs, Csi, Cat,, Da, and Du- This

introduces a peculiar difficulty in the

examination of crystals belonging to any of

these five point-groups, for such crystals are

usually referred to the Miller axes (distorted

cubic axes) irrespective of whether the basic

lattice is rhombohedral or hexagonal. These

rhombohedral axes are no more suitable for the description of a crystal

which is based on the hexagonal lattice than the Bravais-Miller hexagonal

axes would be in describing a true rhombohedral crystal. This difficulty

may be avoided by reserving the Miller (rhombohedral) axes for the true

/hombohedral crystals and the Bravais-Miller hexagonal axes for the

crystals which are based on the hexagonal axes. The following discus-

sion, adapted from Astbury and Yardley,^ shows how this may be done.

It is not completely possible by examination of the external form

alone to find out on which of the two lattices the crystal under examina-

tion is built, but, in general, a crystal tends to betray its basic lattice

in its external form or habit.'' In rhombohedral (‘‘trigonal") crystals

based on F* we should expect simple trigonal prisms and pyramids,

white in those based on Trk the development of rhombohedra is more

likely. Consider now a crystal developed as a simple trigonal pyramid

only (see Fig. 17). A face of this pyramid would be taken as the parame-

tral plane and for F^ would correspond to ABC in Fig. 17. For Fr^ it

Fio. 17.—Simple trigonal

pyramid.
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would correspond to an extended rhombohedral face such as

of Fig. 18. In the first the ratio c/a = OC/OA‘, and, iq the second,
c/a = OW/OX\. If the lattice is r*, the crystallographic and experi-

mental values of c/a will agree in the simplest case (CJ, say), but should
the lattice be really rhombohedral (CJ) the observed ratio will be

2 r
__ c

3 2a 3a

Unfortunately this is only the simplest case, and such a test would not

distinguish immediately between C\ (or Cj), in which there are screw

Fiq. 18.—Rhombohedron showing relation between rhombohedral axes and hexagonal
axes.

axes of translation 2rx/3, and C\ which is based on a simple rhombohedral

lattice.

There are, however, always certain planes which can be used as an

aid in identifying the underlying space-lattice. Such planes are the

prism faces (121) or (1010) and (1 10) or (1 120). A glance at the

tables shows that the spacings of these planes are unaffected by the dis-

positions of the molecules. Figure 18 shows the relation between the

rhombohedral axes (parallel to CX, CF, CZ) and the hexagonal axes

(OX, OF, 02, Off). The volume of the rhombohedron is

while the volume of the corresponding hexagonal cell is a®c\/3/2; the

ratio between the two is Thus the dimensions of a rhombohedron

with % molecules per cell will correspond crystallographically to those

of a hexagonal cell with one molecule per cell, that is, the dimensions

in the two cases are based on the same values of c and a.
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Suppose now in a given rhombohedral (trigonal) crystal the chosen

parametral plane is the true parametral plane of either or F^. The
possible numbers (A^, say) of molecules per cell can be obtained from

the tables, and from the above we know that the dimensions of a rhombo-

hedron containing 8iV/3 molecules per cell will correspond to the dimen-

sions of a hexagonal cell of N molecules per cell. Hence we can calculate

and compare the corresponding spacings of these two corresponding cells.

For the hexagonal cell, dioio = a\/3/2 and duso = «/2; but for the

corresponding rhombohedral cell, di 2 i
== a/y/Z and = a. Thus in

a rhombohedral crystal based on a hexagonal lattice, but referred by
convention to rhombohedral axes, provided that the crystallographic

parametral plane is the same as the parametral plane of the hexagonal

lattice, we can detect the hexagonal lattice by testing the (121) and

the (110) of a rhombohedron containing ZN/Z molecules per cell,

where N is either equal to n, the number of asymmetric molecules given

by the class, or to some submultiple of n. We shall find that the observed

spacing of (1 2 1) is % times that calculated for a simple lattice, while

for (110) it is 3^^ the calculated value. Additional information is

afforded (a) by the (1 1 1), the observed spacing of which is normally

% times the calculated but which by a thirding or halving may be reduced

to 3^ or times the calculated value; and (6) by the (100), the observed

spacing of which is normally the calculated value but which by a

halving may be reduced to of the calculated value.

If the above treatment leads to anomalous results, the inference is

that the crystallographic parametral plane does not correspond to

the true parametral plane of the lattice, in which case it is necessary

to repeat the examination using the face of another general form [hkl]

as parametral plane and making the new angular element^' D equal to

the angle between {hkl) and (111).* (Note that c/a = tan D cos 30°.)

When agreement is found, the crystallographic nomenclature should be

abandoned and the crystal referred to the true structural axes.

Another difficulty, similar to the one discussed above, arises in the

examination of crystals based on F* from the frequent discrepancy

between the conventional relations between crystallographic axes and

elements of symmetry and the true structural relations. For instance,

in the Czv and Dzh classes, the conventional crystallographic axes (rhombo-

hedral, since the class is trigonal) lie in the symmetry planes, and the

hexagonal axes derived from these are perpendicular to the symmetry
planes. Thus these derived hexagonal axes correspond to the true

structural axes in groups Cl^ and but are perpendicular to them in

groups C\^ and C\^, In the two last mentioned, the crystallographic

angle 2), equal to the angle between (100) and (1 1 1), is not the true

* In the symbols of crystallography, D ^ (hkl) A (11 1).
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structural angular element (jDo, say). The two are connected by the

equations o/a = tan Dq • cos 30° = tan D sin 30°, where c and a refer

to the true structural values. It must be distinctly understood that

all the tabulated data of Appendix III refer exclusively to the true

structural axes, ^.e., to the edges of the true unit-cell. If there is any
discrepancy between the conventional and structural axes, it is necessary

to first localize this difficulty, as far as is theoretically possible, and then

apply the tabulated results. This sort of problem occurs in many of

the crystal classes in addition to those belonging to this system,® and
no general rules for guidance can be offered. With regard to other

classes of the systems now being discussed h should be noticed that

in the clw-.ses and Did crystallograjihers always take the 2-fold axes

as hexagonal axes^ whereas the true structural axes may be parallel or

perpendicular to the 2-fok axe^. By referring to the tables it will be

found thii only in a ver;> limited number of cases is it possible without

complete examination to distinguish between groups in which the true

3tru^ (Ural hexagonal axes lie in the symmetry planes (Cg^,, CL DL DL
and the corresponding groups in which they are perpendicular to the

symmetry planes (C^^, DJ,,, For example, we can distinguish

between Cl^ and Cl^ if there are two molecules only per cell, for then the

molecule itself must possess a 3-fold axis and this is only possible in

C\^) but the tables alone do not distinguish between them if there are

one, three, or six molecules per cell. Similar considerations hold with

regard to the pairs of groups in which the true hexagonal axes are parallel

and perpendicular, respectively, to the 2-fold axes of the structure

{D\ and D\] D\ and Z)|; D\ and D|; and Z)^ and D'L.
In Laue photographs of crystals belonging to these two systems classes

Cs and Cu appear as Cu] Czv, and D^a appear as Du] Cu, Cc, and C%h

appear as C%h\ Duy D%, Ce^, and D%h appear as thus the twelve classes

are reduced to four.

A method of detecting the underlying lattice, based on the study of

Laue diagrams has been suggested by Wyckoff. It will be discussed

in Chap. IX.

Derivation of Coordinates.—We have shown how the 230 space-

groups may be arrived at. It remains to show how to obtain the coordi-

nates for the points in each of these space-groups. The process may be

illustrated in terms of the space-group C\h which has already been pictured

in Fig. 106. Figure 106 shows the monoclinic unit-prism (or unit-cell)

OAFCGBDE. This contains the points Af, Af', Af", and Af'", whose

coordinates are:

2r» — a:, 2t,^ — y, z

X, y, 2t, - z

2tx ~ Xf 2Ty — y, 2r, — z
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Since it is inherent in a space-lattice that any point may be used

as the starting point in building up the lattice, we may move this unit-

prism bodily so that the point 0 lies at its center. Instead of the original

points Af, Af', Af", and Af'", the unit-prism now contains the four points

My Piy Phy and Pe whose coordinates

xyZy 2yZy xyzy xyl

are the simplest possible since they do not involve r*, and These

simple coordinates will be used to typify the coordinates of all the points

in the crystal, for the crystal itself is merely an endless succession of unit-

prisms so placed as to share all their edges and faces with their neighbors.

It is evident from Fig. 106 that the space-group cannot possibly

contain more than four equivalent points, but it is easy to imagine how
it might contain only two points or even only one point.

(1) The point xyz will coincide with the point xyZy when x == Xy

y = yy and z = z; that is, when a: = 0 or a/2, y = 0 or 6/2, and z = wcy

where w is any fractional part of c. (a, 6, and c are the units of measure

along the X-, F-, and Z-axes, respectively, as in Chap. II.) These same

conditions will cause the points xy2 and 2yz to coincide so that the original

four equivalent points have become two.

(2) The points xyz and xy2 will .coincide when x — Xy y — yy and

z = 2; that is, when x = aa, y = vby and 2; = 0 or c/2, u and v are any

fractional parts of a and 6, respectively. These same conditions will

cause the points xyz and lyl to coincide so that again the original four

equivalent points have become iwo.

(3) The points xyz and xyz will coincide when x — Xy y = yy and

z — 2; that is, when x = 0 or a/2, 2/
= 0 or 6/2, 0 = 0 or c/2. These

same conditions will cause the points xyz and xy2 to coincide with xyZj

so that the original four points have become one. These values of

Xy y, and z lead to the following possible coordinates of points, expressed

in terms of fractions of a, 6, and c.

(1) When
When X

When X

When X

(2) When x

When X

(3) When x

When X

When X
' When X

When X

When X

0, 2/
= 0, and 2 = tc, we obtain OOic and OOic

0, 2/ = I'iy and 2 == ic, we obtain and

yij 2/
~ a-nd 2 = tc, we obtain and }'iOw

y = Hy and z = Wy we obtain }^mw and

Uyy^Vy and 2 = 0, we obtain uvO and UvO

Uy y = Vy and 2 = we obtain uv}''^ and

0, 2/
= 0, and 2 = 0, we obtain 000

yiy y ^ ^y and 2 = 0, we obtain 3^00

0, 2/ = yii and 2 = 0, we obtain 03^^0

0, 2/
= 0, and 2 = 3^, we obtain 003^

and 2 = Yiy we obtain 03^ 3^
3^, 2/

= 0, and 2 = 3^^, we obtain 3^03^
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When ^ and ;? == 0, we obtain

When = K, y = and « = 1^, we obtain }4}^m

It is evident that any further attempt to consolidate points by trying
to make the equivalent points of (1) or (2) coincide leads to coordinates
already listed under (3). We may therefore list as the possible coordi-

nates of equivalent points of C\h in the order given by Wyckoff, giving

to each set of coordinates the standard Wyckoff code letter:

One equivalent position:

(a) 000 (e) Ohli
(b) 00’^' if)

(c) 1^00 ^g) Hlio
(<f') 0} jO ih) ViliH

Two equivalent positions:*

(t) OOw; 005) (i)

(i) (m) uvO; 8i)0

(k) }i0w; J^055 (n) uv}^i ;

Four equivalent positions;

(o) xyz; xyz; xpS

If this same procedure is followed for all the rest of the 230 space-

groups we shall arrive at a tabulation of all the coordinates (expressed in

their simplest forms) possible for equivalent points in crystals. Such a

tabulation has been made by R. W. G. Wyckoff. It has been published

as Publication 318 by the Carnegie Institution of Washington under the

name of ‘^The Analytical Expression of the Results of the Theory of

Space-groups'' (2d ed.). This book should be in the hands of every

crystal analyst. It is used in crystal analysis as a convenient table of

reference to the same extent that a table of logarithms is used in

trigonometry.

For convenience of reference in Chap. IX, the numbers of equivalent

points which can be associated with each of the various point-groups are

tabulatedf in Appendix III. These values may be picked off from the

space-group tables of Wyckoff, or they may be found from the values of

n and p given in the Astbury and Yardiey tables of Appendix III.

* It is customary in writing these coordinates to use u when there is only one

undetermined (i.e.y variable or adjustable) coordinate, so that OOw would appear

as OOw, etc.
'

t This tabulation follows the form of similar tables in Wyckoff but uses the order

of Table I of this chapter and of the Astbury and Yardiey tables of Appendix III.
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CHAPTER IX

THE APPLICATION OF THE THEORY OF SPACE-GROUPS

In Chaps. IV, V, VI, and VII we carried our discussions of the meth-

ods of crystal analysis up to the point where a knowledge of the theory of

space-groups was required. We are now in a position to complete those

discussions with the aid of Chap. VIII and Appendix III. This will be

done by p'*/ing in detail the determination of the structures of rock salt

(NaCl), qj calcite (CaCOs), and of tricalcium aluminate (SCaO.A^Oa).

We shall in the first o with the Laue method and the third with

the powdej method. In rlie light of these illustrations, further applica-

tions of the theory of space-groups should be obvious.

DETERMINATION OF THE STRUCTURE OF NaCl BY THE LAUE METHOD

It was stated in Chap. IV that a typical investigation of crystal

structure by the Laue method consists of three steps

:

1. The selection of the type of symmetry required by the exterior of the crystal.

This limits the possible marshaling of atoms (or molecules) to those space-groups

which are consistent with this symmetry.

2. The determination of the dimensions of the unit-crystal and from those the

determination of the number of atoms (or molecules) in the unit-crystal. This

serves to limit further the number of space-groups found in 1.

3. The selection from the structures found in 2 of the one (or ones) which can be

shown to be most consistent with the Laue pattern.

Step 1. NaCl crystallizes in the cubic system. The crystals show a

cubic exterior when the salt is pure; certain impurities tend to bring out

the {1111 faces at the expense of the 1 1 00) faces. Etch figures on the

crystals of the salt in its ordinary state of purity show hemihedral

symmetry, but deep etching on extremely pure crystals shows holohedral

symmetry. * NaCl must therefore be assigned to the symmetry

class Oh. Any attempt to assign a definite space-group in the Oh class

must depend upon the results of steps 2 and 3.

Step 2. The determination of the number n of “molecules” of NaCl
in a unit-cube may be made in various ways depending upon what we
are willing to take as a starting point. We shall discuss three ways of

determining n which do not include the lines of reasoning used in Chaps. V
and VI for the Bragg and powder methods.

a. We may assume that the wave length of characteristic x-rays may
be determined approximately by measurements of the angle of diffraction

from a ruled grating. Within the precision of these measurements
266
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of wave length we can make an absolute determination of the lattice

parameter of NaQl by using a technique like that employed in the Bragg

or powder methods (see Chaps. V and VI). Such a measurement does

not involve a solution of the structure of the cryst*al; the work is only

carried far enough to give the length of the edge of the unit-cube.*

Knowing the density of NaCl we can now solve Eq. (1) of Chap. II for

the number n of molecules of NaCl per unit-cube. Evidently this num-
ber should be an exact whole number, but, because of the nature of the

wave-length data obtained from ruled gratings, n will differ somewhat

from a true integer. It will, however, be so much closer to 4.00 than to

3.00 or to 5.00 that there can be no doubt but that there are four ^^mole-

cules'' of NaCl per unit-cube, f

6. We may assume that the value of the wave length of the x-rays

used in step 2 is given in terms of the calcite standard. This wave
length enables us to find directly the length of the edge of the unit-cube

of NaCl. By substituting this value into Eq. (1) of Chap. II we arrive

at a value for n which is within experimental error (about 0.3 per cent)

of 4.00.

c. Since we know from step 1 that NaCl has the symmetry of the

Oh family of space-groups, we may list for each of the Oh space-groups the

possible values of n and of n/p (see Table XXXVII of Appendix III).t

It is a matter of experience that small values of n or of n/p are much more

probable than are large values. We therefore have a series of values

* Strictly speaking, this statemenjt is not necessarily true. The exact state of

affairs may be illustrated as follows. If we assume that we are dealing with a cubic

crystal and that the interplanar spacing dioo represents the length of the edge of

the unit-cube, then our calculated value of n represents the exact facts. But the

crystal may be actually body-centered cubic, or face-centered cubic, or some other

cubic structure such that the dioo spacing is half the cube edge. In such a case the

true spacing of dioo would give a diffracted beam at an angle equal to that correspond-

ing to the second-order diffraction from the simple cubic spacing; t.e., it would corre-

spond to d/n, where n is the order of diffraction and d is the interplanar spacing for

the simple cube. This will not affect our final result, for such a value for dioo gives

not only one-eighth the volume but also one-eighth the number of “molecules,^^ so

that the number of “molecules'^ in the actual unit-crystal is the same as before.

It is evident that, so long as we do not run into fractional numbers of “molecules"

per unit of structure, we are justified in terms of the end result in pretending that our

measurements represent the actual parameter of the crystal.

t This value of 4.00 may then be substituted back into Eq. (1) of Chap. II so as

to give, with the density, the true value of the lattice parameter of NaCl. The same
answer may of course be obtained by using, in the manner described above, some
characteristic wavje length determined by the quantum relation. The parameter

of calcite, determined in much this same way, is now our primary standard of length

in ci:ystal analysis.

t It will be shown in Chap. XIX that for ionic compounds, in which there is no
true “molecule," p cannot be regarded as an index of “molecular symmetry," but the

quotient n/p still represents a possible value of n in Eq. (1) of Chap. II.
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such as 1, 2, 4, 6, 8, 12, etc., each of which may be tried in turn with
each of the Oh space-groups, using the procedure outlined below. Trial

will show that qnly the value 4 will survive the final test of step 3.

We shall therefore assume for the purposes of this discussion that we
have settled on the value of 4.00 as the number of “molecules'' of NaCl
in the unit-cube.* We now have to place four Na+ ions and four Cl“

ions in a unit-cube which has a symmetry corresponding to the Oh

space-groups.

This gives five possibilities open for Na“^:®

(1) All four Na‘^' ions occupy positions in the unit-cube which are

crystallographically indistinguishable. For instance, any one of the

four might f erve equally well as i corner of the unit-cube. In crystallo-

graphic lai^ lage, all four ions are “indistinguishable," “equivalent,"

“alike," or ‘‘of one sort.’’ o '‘'hie may be denoted by the symbol 4.

(2) Thni^ of the Na“^ ion.^ are equivalent to each other, and the fourth

is crystaliogiaphically distinguishable from the three others. This may
be denoted by the symbol 3-1.

(3) Two of the ions are equivalent to each other, and the other

two are equivalent to each other, but one pair is crystallographically

different from the other pair. This might be expressed by saying that

two were of one sort and two of a second sort. Such a condition of

affairs may be denoted by the symbol 2-2.

(4) Two of the Na+ ions are equivalent to each other, but the other

two are crystallographically distinguishable from this pair and from

each other. This may be denoted by 2-1-1.

(5) All four of the Na*^ ions are crystallographically different from one

another. This may be denoted by the symbol l-l-l-l. The same five

possibilities may be assumed for the Cl~ ions. This gives us 25 cases

which must be considered, namely:

(Na+ 4 4 4 4 4

)ci- 4 3-1 2-2 2-1-1 l-l-l-l

fNa+ 3-1 3-1 3-1 3-1 3-1

ici- 4 3-1 2-2 2-1-1 l-l-l-l

/Na+ 2-2 2-2 2-2 2-2 2-2

ici- 4 3-1 2-2 2-1-1 l-l-l-l

* In accordance with modern physicochemical theory, we assume that there are

no true “molecules” of NaCl but that we have instead a crystal made up of Na*^

and Cl” ions. Although it turns out that crystal-structure methods alone cannot

distinguish between an orderly geometrical assemblage of Na and Cl atoms and a

similar assemblage of ions, still the results are not at all inconsistent with the ionic

pictures. It would be unthinkable ch^lmically to picture NaCl as being made up of

neutral Na and Cl atoms, and the crystal structure data are quite inconsistent with the

picture of NaCl “molecules.” .This leaves us with Na"*" and Cl” ions as the only

remaining alternative.
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Na+ 2-1-1 2-1-1 2-1-1 2-1-1 2-1-1

ci- . 4 3-1 2-2 2-1-1 l-l-l-l

'Na+ l-l-l-l l-l-l-l l-l-l-l l-l-l-l l-l-l-l

Cl- 4 3-1 2-2 2-1-1 l-l-l-l

These 25 possibilities must now be considered in the light of Table

XXXVII of Appendix III.

iV’a+4, CZ“4. This combination is possible, since Table XXXVII of

Appendix III shows that we can have two complete sets of positions of

four points each in both space-groups 0^ and Oj. In each of these space-

groups one of the sets of coordinates may be used for Na+ and the other

for Cl“. Reference to Wyckoff’s tables' shows that for 0\ we have the

coordinates

Na+ (or C1-) HVM-, HHH; HHA
Gl-

and for 0\

(or Na+) AHA; AAH

Na+ (or C1-) 000; AOA; AAO
Gl- (or Na+) AOO; OAO; OOA

These two sets of coordinates represent the same configurations of Na"^

and Cl"“, for they can be made identical by shifting the origin of coordi-

nates of 0l to the point For our purposes they may therefore

both be expressed by the coordinates for space-group OJ.

iNra+4, CZ-3-1. Table XXXVII of Appendix III shows that Oi is

the only space-group in the Oh class which permits us to have three equiva-

lent points. But 0l does not permit of four equivalent points, so that

the grouping Na+4, Cl“3-1 is impossible. Similarly the grouping Na+3-1,

Cl“4 is impossible.

iVa+4, CZ~2-2. Table XXXVII of Appendix III shows four space-

groups each of which permits of one ‘‘set'' of two equivalent points, but

there is no space-group in the Oh class which permits of two sets of two

equivalent points each. Na+4, Cl‘^-2 is therefore impossible. Similarly

Na+2-2, Cl~4 and all other groupings containing 2-2 are impossible.

iVa+4, CZ~2-1-1. Table XXXVII of Appendix III shows no possi-

bility in any of the Oh space-groups of having 2-1-1.

iVa+4, CZ-1-1-1-1. Table XXXVII of Appendix III shows one

space-group which permRs of two sets of one point each, but there is

no space-group which permits of four sets of one point each. Na+4,

Cl“l-1-1-1 is, therefore, impossible. Similarly all other groupings

containing l-l-l-l are impossible.

Ara+3-1, CZ-4. See Na+4, Cl-3-1.

JVa+3-1, CZ“3-1. Space-group 0l permits us to have two sets of three

equivalent points each, and two sets of one point each. We may there-

fore use one of the sets in each casefor Na^ and the other for Cl~. There
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is nothing which requires us to choose which of the two sets of three

equivalent points shall go with a given set of a single point. We have
therefore two pc-ssible configurations of Na+ and Cl". Reference to

Wyckoff’s tables shows that we may have

Na+ (orCl-) 000 and 0}m, J^OK,
Cl- (or Na+) and >^00, 0>^0, 00

or

Na+ (or C1-) 000 and OJ^O, 00>^
Cl- (orNa+) and ^0^^, >^3^0

The first of these is identical with the coordinates listed for 0\ and is

therefore also indistinguishable from 0\.

JVa+3-Ut 7-2-2. See Na+4, Cl 2-2.

JVo+3-1, € -2-1-1. See K +4
,

( '1-2-1-1.

Aro+3-l,’!L/-l-l-l-l. See Na+4, Cl-1-1-1-1.

Wa+2-2, tl-i. See Na+4, Cl-2-2.

iVa+2-2, Cl-%-1. See Na+4, Cl-2-2.

Na+2-2, Cl-2-2. See Na+4, Cl-2-2.

Na+2-2, 01-2-1-1. See Na+4, Cl-2-1-1.

Na+2-2, CM-1-1-1. See Na+4, Cl-2-2; also Na+4, CM-l-l-l.
Ara+2-1-1, Cl-4. See Na+4, Cl-2-1-1.

No+2-1-1, Cl-3-1. See Na+4, Cl-2-1-1.

No+2-1-1, Cl-2-2. See Na+4, Cl-2-1-1.

^0+2-1-!, Cl-2-1-1. See Na+4, Cl-2-1-1.

Na+2-1-1, CM-l-l-l. See Na+4, Cl-2-1-1.

Na+1-1-1-1, Cl-4. See Na+4, CM-l-l-l.

Wa+1-1-1-1, Cl-3-1. See Na+4, CM-l-l-l.

No+l-l-l-l, Cl-2-2. See Na+4, CM-l-l-l.

Na+1-1-1-1, Cl-2-1-1. See Na+4, Cl-2-1-1.

Na+1-1-1-1, Cl-1-1-1-1. See Na+4, CM-l-l-l.

We have now covered all the possibilities permitted by the theory of

space-groups for a crystal of the holohedral class of cubic symmetry

with four “molecules” per unit-cube. The end result has been that we
have two sets of coordinates for Na+ and C1-:

Na+ (or C1-) 000; OMM; MOM; MMO
ci- (or Na+) V2Hy2-. HOO; OMO; ooy

Na+ (or C1-) 000; MOO; OMO; OOJ^

Cl- (or Na+) OMM; MOM; MMO
both of which are equally probable in the light of the theory of space-

groups. If any criterion is to be found at all by which we may distinguish

between these two sets of ionic coordinates, it must be furnished by step 3

in our analysis.
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Step 3. Equations (14) and (16) of Chap. IV stated that the intensity

of a ^'spot'^ in the Laue pattern is proportional to

= [SiVi cos 2Tn(hxi + kyi + fei)

+ 2iV'2 cos 2Tn(hx2 + ky^ + IZ2)

+ [SiVi sin 2Tn(hxi + kyi + Izi)

+ 1̂ X2 sin 2Tn(hx2 + ky2 + IZ2)

+

Nif N2 • • • are the atomic (or ionic) numbers of the atoms (or ions)

in the crystal; n is the order of the diffracted beam; A, k^ I are the Miller

indices of the diffracting plane; XiyiZi, X2y2Z^y etc., are the various possible

atomic (or ionic) coordinates of atoms (or ions) 1, 2, etc. We substitute

into this expression the coordinates of Na"*" and Cl“ as given, first by 0^,

and then as given by those coordinates for which did not make 0\
merely a repetition of 0^. In this substitution Ni becomes and

N2 becomes 2/ii become in turn the various possible coordinates

of Na"^, and X2 , 2/2 ? ^2 become in turn the various possible coordinates

of C1-.

For 0l Eq. (1) becomes

2
^

2)

+ Ncr\ cos

+ cos + CO®

+ sin 2wn^ +

+ -Va-j^si;

+ sin 27rn

Since the sine of an integral multiple of tt is zero, the second term of our

equation is zero.

When n is even, our equation reduces to

+ •|^N»+j^sin 2Tn(0)

+ cos 2jrn^| +

Vn»+| cos 2irn{0) + cos 2irn^ 2x71

^

R = N^A^] + iVcr[4]

so that the diffracted beams of even order are all strong.

When n is odd, if h, k, and I are all odd,

* = JVn.441 + iVa-[~4]

and these diffracted beams are all weak.
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When n is odd, if h, k, and I are one odd and two even,

R = N^AO] + JVcr[0]

and these diffractfed beams are absent.

When n is odd, if A, A, and I are two odd and one even,

R = N^AO] + N^AO]

and these diffracted beams are absent.

If, therefore, NaCl crystallizes with the structure 0l the diffraction

pattern will show strong second-order diffractions for all its crystal

planes, but the only first-order diffracted beams will be from planes whose
indices are all odd and these beams will all be weak in intensity. The
Laue pattei i, as interf)reted by the gnomonic projection, shows that

NaCl diffrah- x-rays in exactly this way. 0\ therefore remains a possible

structure fo|* N^aCl. We mti; t how try out 01 in the same way in order

to see whelii^r it, too, remains a possible structure for NaCl.

For Ol our equation becomes

jVcrj^cos 2irn^

=

+

+ COS

+ sin

+ sin 27rn|

cos 2^n(0) + cos 2vi*n( + cos 2irn(\ ) + cos 2vn\
It

+ COS 2irn\
i)
+

2Tn(^ + j| + jATM.+j^sin 2irn(0) + sin

0)]

(i
+

-2)

in + sin + ATc-j^sin
|

Here again the second term of our equation is zero.

When n is even, our equation reduces to

R = + Arcr[4]

so that the diffracted beams of even order are all strong.

When n is odd, if h, k, and I are all odd,

R = N^A-^] + Arcr[2]

and these diffracted beams are all weak.

When n is odd, if h, k, and I are one odd and two even,

R = Ar^.+[2] + JVa-[-2]

and these diffracted beams are present but weak. In this respect 0*
differs from OJ.

When n is odd, if h, k, and I are two odd and one even,

R = Ar^.+[0] + ATc-lO]

and these beams are absent.
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The Laue pattern, as interpreted by its gnomonic projection, shows

that the first-order beams are absent from planes having one odd and

two even indices so that space-group OJ is eliminated as a possible

structure for NaCl.

We have, therefore, completed step 3 and have found that the struc-

ture of NaCl can be represented only by assuming that four Na*^ and
four Cl~ ions are marshaled on the space-group 01 with the following

coordinates

:

Na+ (orCl-) 000; 0>^K; 3^034;
Cl- (orNa+) >^00; 03^0; 00>^

and that it cannot be accounted for on the basis of any other coordinates.

We have, therefore, arrived at a unique solution for the structure of

NaCl. It is identical with that already given by the Bragg and powder
methods in Chaps. V and VI.

DETERMINATION OFTHE STRUCTURE OF CALCITE BYTHE LAUE METHOD

Step 1. For calcite this step is more complicated than was the

corresponding step for NaCl. Calcite has the external symmetry of the

Du class, rhombohedral division of the hexagonal system. Table XXV
of Appendix III shows that in the Du class of symmetry we must choose

between space-groups which are built on a hexagonal lattice and other

space-groups built on a rhombohedral lattice. We can make this

choice in terms of the indices Of the spots of the Laue pattern as deter-

mined by the gnomonic projection.

It was shown in Chap. II that the Bravais-Miller indices {H KL) were

the natural indices for the hexagonal axes and that the Miller indices

{hkl) were the natural indices for the rhombohedral axes. These two

sets of indices are connected by the equations

:

h^2H + K + L
fc = X - H +L
I = -2X - H +L

It is inherent in crystal structure that planes having the greatest inter-

planar spacings must have small indices. If planes of a rhombohedral

lattice which have small Miller indices are referred to hexagonal axes and

are expressed in terms of the Bravais-Miller indices, then 2H + X + L,

X — X -f L, and L — 2X — H are all exactly divisible by 3. For most

planes of a hexagonal lattice having small Bravais-Miller indices)

2X + X + L, X — X + L, and L — 2X — X are not exactly divisible

by 3. When white x-rays are passed parallel to the 3-fold axis of calcite,

and Bravais-Miller indices are assigned to the Laue spots by means of the

gnomonic projection, the large nTlijority of spots show 2X + X + L,
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K — H + L, and L — 2K — H, all exactly divisible by 3. We must
assume therefore that the structure of calcite is based on a rhombohedral
lattice. This linyts us to space-groups D\^ and

Steji 2. Now that we have settled upon a rhombohedral space-lattice
for calcite, we must determine the number n of “molecules'^ in a unit-

rhombohedron. Calcite cleaves into rhombohedra whose edges are
ordinarily taken as the crystallographic axes. The interaxial angle is

101° 55'. Measurements on the cleavage faces by the Bragg method
show an apparent lattice constant of 3.028 X 10^ ^ cm. We have already
seen in our discussion of NaCl that, depending upon the actual crystal

structure, this apparent spacing may be the acti.al spacing d or some
exact fraction* of it, d/n. We could, of course, follow the procedure used
with NaCl apd pretend that n is unity. It will be of interest, however, to

follow the met hod used in fiisL complete determination of the struc-

ture of calcit^ by the Laue ir^.thod.^

The volume of a rhombohedron whose lattice constant for planes

p;ii allel o the face is d and whose interaxial angles are 101° 55' is 1.0963d\

If n is the number of “molecules" in this rhombohedron, M is the weight

in grams of one chemical molecule ( = molecular weight X 1.649 X 10“^'^),

and p is the density of calcite, then

1.0963d‘’ = nM/p

If, now, we use an edge of d/n instead of d, thus corresponding to the nth
order of diffraction, we must write

1.09631
nM
pn^

In this equation we do not know the values of either n or w, but we do

know that they both must be integers.

_ M
¥ ” im^pWnV

1.649 X 10-24 X 100 _ ,,

n 1.0963 X 2.710 X (3.028 X

Assuming various integers for n and n, we arrive at the following values

of n®/n

:

n n = 1 n = 2 n = 3 n * 4 n = 5

1 1 0.50 0.33 0.25 0.20

2 8 4.00 2.67

3 27 13.50 6.75 5.40

Evidently n^/n corresponds to a second-order diffraction from the faces

of a rhombohedron which contains four “molecules."
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It can be readily shown, however, that such a unit of structure as we
have described, with the interaxial angles of 101° 55', cannot be correct.

When a diffraction pattern is made with, say, 50-kilovolt white x-rays,

calculations of 2d sin 0 (see Bragg’s law. Chap. I) show that values of

n\ are obtained which are less than are permitted by the quantum

equation

, _ 12,336 X 10-8
Aniln.

where V is the number of volts employed across the x-ray tube.* We
therefore must find a new unit of structure, related

to the first, for which the calculated values of nX will

be at lep-st as great as those permitted by the

quantum equation. Trial shows that this may be

obtained by using a rhombohedron whose edges

are the face-diagonals of the original rhombo-

hedron (see Fig. 1). It may be shown that the

volume of the new unit of structure is one half

that of the old. Since the cleavage rhombohedron

contained four ^^moleculeiS,” the new rhombohedron

must contain two. We must therefore find places,

if possible on or D\d for two Ca, two C, and

six 0.

Using the type of notation employed in our

study of NaCl, Table I shows the various group-

ings of equivalent positions and shows whether,

in the light of Table XXXVIII of Appendix III,

they are compatible with space-groups D\^ or

Djj. Of the 30 types of equivalent positions

listed in Table I, only five survive the test of

Table XXXVIII of Appendix III. They are

:

For D\,:

(1) Ca (or C), 2;

(2) Ca (or C), 2;

(3) Ca (or C), 2;

(4) Ca (or C), 2;

For Z> 3̂ :

(5) Ca (or C), 2;

eV X 10«

where Xmia. = the minimum possible wave length in centimeters.

h « 6.647 X erg sec.

c a 3 X 10^® cm. per second.

. e « 1.691 X 10“*® abs. e.m.iu of charge.

V * volts across x-ray tube ~ 10® X V abs. e.m.u. of potential.

C (or Ca), 2; 0, 6

C (or Ca), 1-1; 0, 6

C (or Ca), 2; 0, 3-3

C (or Ca), 1-1; 0; 3-3

C (or Ca), 2; 0, 6

Fia. 1.—Full lines,

one-eighth of the cleav-

age rhombohedron of

calcite. Dashed lines,

one corner of the new
rhombohedron which
gives possible values
of X. See also Fig. 9
of Chap. II for a view
of the. new rhombo-
hedron inscribed in the
actual cleavage rhom-
bohedron.
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Reference to Wyckoff’s Tables^ shows that these five types of equivalent

positions lead to the following atomic coordinates:

or

or

or

(1) Ca (or C), UxUxUx

C (or Ca), ‘W2^2'W2 ) U2U2U2

0, UsUsO; UzOuz] 0U3U3

uzUsO; UzOuz
^

0U3U3;

uzuzH; uz}iuz; M“3M3

UzUz^if Uz/ 2̂,Uz) MM3M3

' UzUzv; umn; vuiUi

UnUsVf UzVUz) VUtUi

(2) Ca (or C), UiiixUi; UxUxUx

C (or Ca), 0()0
;

0
,

as in (1)

(3) Ca (or C), UiUxUx] UxUxUx

C (or Ca), '(12^2112) U2U2U2

o, OOH; oyo; MOO
ViVzO; MOM: OMM

(4) Ca (or C), uiUiUi; UlUiUi

C (or Ca), 000
; MMM

0
,

001 ^; OMO; >^00

VzHO; MOM; oy2H
(6) Ca (or C), HHH

C (or Ca), 000 ; ^ 2 ,' 2/2

0 , / 4:/ 4:^ 4 >

3-/.S/ 1 /.
4 4^ 4f HHH

/4/4/

4

7 /4/4 '4
7

uuX}] uOu; Ouu

u,u + y2,}i; u +y2,}i,V2 - u; M, M - w,UyU +

Step 3. The Laue pattern shows that, except for a few weak spots,

all spots due to diffracted beams of the first order correspond to planes

with one even and two odd indices. This indicates an atomic con-

figuration which is closely related to a body-centered structure. Of the

four types of coordinates listed above for Dl^, type (4) is obviously most

closely related to a body-centered structure. It is pictured in Fig. 2.

Such a structure would contain a network in which each C (or Ca) would

be surrounded by six equidistant 0 situated at the centers of the faces

of the rhombohedron, and by twelve other equidistant O situated at the

centers of the edges. Each of the six 0 would be held jointly by two

C (or Ca) spaced equally on each side of it. Each of the twelve O would

be held jointly by four C (or Ca) spaced equally around it in a plane.

Such a structure finds no justification in chemistry, for, although there
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is plenty of chemical evidence for the existence of the CO3— ion, there

is absolutely no chemical evidence for a continuous network of C and 0.

If type (4) of the D\^ coordinates must be discarded for chemical reasons,

it is easy to see that types (1), (2), and (3) must also be discarded.

Although these structures may be discarded solely on chemical grounds.

Table I.

—

Groupings of Equivalent Positions for Ca, C, and 0 in Calcitb

Ca (or C) C (or Ca) 0
Compatible with

2 2 6 Yes Yes

2 2 4-2 No No
2 2 4-1-1 No No
2 2 3-3 Yes No
2 2 3-2-1 No No
2 2 3-1-1-1 No No
2 2 2-2-2 No No
2 2 2-2-1-1 No No
2 2 2-1-1-1-1 No No
2 2 l-l-l-l-l-l No No
2 1-1 6 Yes No
2 1-1 4-2 No No
2 1-1 4-1-1 No No
2 1-1 3-3 Yes No
2 1-1 3-2-1 No No
2 1-1 . 3-1-1-1 No • No
2 1-1 2-2-2 No No
2 1-1 2-2-1-1 No No
2 1-1 2-1-1-1-1 No No
2 1-1 l-l-l-l-l-l No No
1-1 1-1 6 No No
1-1 1-1 4-2 No No
1-1 1-1 4-1-1 No No
1-1 1-1 3-3 No No
1-1 1-1 3-2-1 No No
1-1 1-1 3-1-1-1 No No
1-1 1-1 2-2-2 No No
1-1 1-1 2-2-1-1 No No
1-1 1-1 2-1-1-1-1 No No
1-1 1-1 l-l-l-l-l.l No No

it is interesting to note that they would have had to have been abandoned

anyway as soon as a quantitative study had been made of the intensities

of the spots of the Laue pattern. This disposes of space-group D\^ and

leaves us with only the two sets of coordinates for space-group Dl^

listed above under (5).

Type (6) gives fixed positions for Ca (or C) and for C (or Ca) but

gives us two alternatives for the ^ordinates of O. The first of these
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alternatives gives us fixed positions for the O also. If we place the

Ca'*"*’ at 34)4/4 and ?4%M) Eq. (1) becomes*

= |iNrca-[cos 2irn{^ + 5 + 0 + cos 2im(^ + T f)]

+ iVc^+++|^cos 27m(0) + cos 2irnQ + 0 j

^ Ar r o A I
3*

,

3A
, _ l^h,3k,l\+ COS 27rn(

j
“1“

'4' )
2irnl -- + j )

+ cos + I ) 5:^) + cos 27r«(^ + 4 + i)

+ cos 2r >(~ + I
4 -1- c<-s 2ir«0 + ^ + j)]|

-f 'corresponding terms with sin substituted for cos)‘^

Fia. 2.—The structure calcite would have had if it had crystallized according to type (4)

(see text). ^ represents Ca (or C); O represents C (or Ca); • represents O.

Both the X- and the F-terms of this expression become zero for all first-

order diffracted beams (i.e., if n = 1) when A, fc, I are all odd or when

one is odd and two are even. This result is inherent in the trigonometry

of the equation and is independent of any assumptions we may make as

to the values for iVca++, and iVo— ;
it will be unaltered if we inter-

change the coordinates of Ca+”*" and This set of coordinates

must therefore stand or fall on the presence or absence of spots in the

Laue pattern corresponding to planes having one odd and two even

indices or all odd indices. Actual experiment shows a few weak first-

order spots corresponding to planes having one odd and two even indices.

It is necessary, therefore, to discard the first alternative for the coordi-

* The calcium, carbon, and oxygen of calcite are represented by Ca'^'*',

and O
,
respectively. This is in accoi'dancc with modern chemical theories of the

electron nature of chemical combinations. Similar charges are assumed on these

atoms in Chap. XIV in calculating the indices of refraction of calcite.



278 CRYSTAL STRUCTURE

nates of O in Dg^. This leaves us with only one possible set of coordi-

nates. We shall,, therefore, calculate the intensities of our diffracted

beams for these remaining coordinates in order to justify completely

our final solution of the crystal structure of calcite.

For the second alternative of coordinates of (5) our intensity equation

becomes (if Ca++ is at 34/4/i and :

7^2 = + 72

= |iVc..-[co8 + cos 2Tr>(^ + ^ j

+ 0 ]

+ iVo—j^cos 2Tn(hu — few + 0) + cos 2irn{— hu + 0 + Zw)

(

h k I

+ cos 2Tn^hu "t”
2 2 2

~ 27rn^2 + 2
"1“

2^
+ {corresponding terms with sin substituted for cos}^

+ iVc++++ cos 27rn(0) + cos 27rnl5^n(^2 + 2

The last three subterms in each of the two terms Nq— [
. . . ] can each

be written as the functions of the difference of two angles as follows:

cos + 1 +

0

= cos2Tn(^ + ^+0
+ sin 2irn[

cos

cos

cos 2fKn{hu — ku)

Q + I +^ sin 2irn(Aw - ku)

^”[(1 + I + J)
-

= cos 2irnQ 2im(lu — hu)

+ sin 2irnQ
^

2trn(J,u — Am)

^”[(1 + i + i)
“

= cos 2»rn^^
^

2irn{ku — lu)

+ sin 2irM^^
5

2iim{ku — lu)
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in 2»-n|-Q
^

~ ~
j

*(2 2
2im(hu — ku)

(2 f
^ 2Tn(AM — ku)

.in 2xn[Q + Aw)]

sin 2wn\

— cos 27rn(

= sin 2irn

— cos 2vr^

+ - +2^2

Hin

(h ^k
,

l\ .

COS 2Tn{lu

sin 2wn(lu

- sin 2xn(| + | + ^)

cos 2tw(| + I + ^)
si

COS 2Tn{ku

sin 2irn(ku

hu)

hu)

- lu)

- Zw)

When these expanded expressions are substituted in our equation for

it becomes evident that if all the indices are odd, or if one of them is

odd and two are even, then (considering n = 1),

= 0 + {2iV'o— [sin 2Tru(h — k) + sin 27rt^(Z — h)

+ sin 2Tu{k — l)]]^ (2)

and the diffracted beam will be present but weak in intensity. This

agrees with the experimental facts. When the indices are all even, or

two odd and one even, then (considering n = 1),

R^ = {2Wc++++ ± 2iVt;.++ + 2No— [cos 27ru{h — k)

+ cos 27rt^(Z — h) + cos 2Tru(k — Z)])^ + 0

When (A + A; + Z) is divisible by 4, the sign of iVc,^+ is positive and the

diffracted beam will be strong; but, if (A + fc + Z) is only divisible by 2,

the sign of is negative and the diffracted beam will be considerably

weaker. This again agrees with the experimental facts. If Ca"*""^ is

placed at 000 and I'hen iV’c++++ and must be interchanged

in the above equations. In this case the calculated intensity does not

fit the experimental data for the {111} planes.

Our second alternative for coordinates in D\^ with Ca“*^ at

and is therefore the only ^et of coordinates which is completely

consistent with the experimental data, and we are justified in assigning

to calcite the coordinates
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ct+++, 000;
0—,

uuO; uOu; Ouu
— w, w + w + Mt }'i “ K “ w, + K

The structure represented by the above coordinates is shown in Fig. 3.

Aided by considerations of a purely chemical nature, and by a

qualitative study of the intensities of the various diffracted x-ray beams,

the theory of space-groups has given us

very definite coordinates for the positions

of Ca++ and With respect to the

coordinates of the O we are not so fortu-

nate, for the theory of space-groups has left

us with an undetermined parameter u. We
must now attempt to evaluate w by a quan-

titative study of the intensities of some of

the diffracted beams.

We have seen from our calculations of

intensity [see Eq. (2)] that the diffracted

Fio. 3.—The structure of
^eams are due entirely to Q— for planes

caicite. ® representa Ca++; o whose indiqes are all odd or are one odd and
represents C;# represents o. twoeven. For such planes the amplitude

of the waves in the diffracted beam is

A cr -y// oc R = 2iVo— [sin 2Tu(h — k) + sin 2tu{1 — /i) +
sin 2Tu{k — 1)] (3)

yi\i}4

I
I

Table II.—Oxygen Planes in Calcitb Which Abe Oriented to Give Spots in

THE LaUE PaITBUN

(a) Spots present (6) Spots absent

Plane
Relative

spacing

Curve No.

(Fig. 4a)
Plane

Relative

spacing

Curve No.

(Fig. 46)

02T 0.436 1 13T 0.325 1

241 0.254 2 540 0.224 2

052 0.244 2 351 0.206 3

342 0.202 3 261 0.179 4

610 0.196 3 551 0.179 5

896 0.175 1 443 0.154 6

1r20 0.174 3 085 0.149 7

461 0.173 4 751 0.149 8

601 0.173 5

245 0.170 5

294 0.156 4

702 0.139 7.

28T 0.137 6 -
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A tabulation is therefore made of all such planes which are so situated

in the crystal that their diffracted beams, if any, would hit the photo-
graphic film and thus contribute to the Laue pattern. In the tabulation

they are sorted out into two groups (see Table Ila and 6) according to

(ft)

Fig. 4.—Intensities for calcite for successive values of u. (a) Spots present; (ft) spots

absent. (Wyckoff, *)

whether or not they actually do show spots in the Laue pattern. Succes-

sive values of u are systematically substituted into Eq. (3) for each

plane of Table II, and the calculated amplitudes are plotted as in Fig. 4.

An inspection of Fig. 4a and h shows that only in the immediate neighbor-

hood of w == 0.23 — 0.29 will all the planes of Table Ila show a measura-
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ble intensity of diffracted beams. The optimum is at w = 0.25. Only
at tt = 0.24 — 0.26 can all the planes of Table II5 show substantially

zero intensity. At w = 0.25 these planes show actually zero intensity.

Of course there is nothing in the nature of our calculations to prevent

us from assuming for O the symmetrical positions corresponding to

u = 0.75, but such an assumption would place 0— near Ca’^+ and would
destroy the CO 3 ion which is demanded by chemistry. We are there-

fore justified in assuming that, if Eqs. (14) and (16) of Chap. IV hold

at all, u = 0.25.

Our final coordinates for calcite are therefore

Ca++, HHli;_000
; ^

0— 0.25, 0.25, 0; 0.25, 0, 0.25; 0, 0.25, 0.25

0.25, 0.75, 0.50; 0.75, 0.50, 0.25; 0.50, 0.25, 0.75

These coordinates are illustrated in detail in Fig. 13 of Chap. V.

DETERMINATION OF THE STRUCTURE OF TRICALCIUM ALUMINATE BY
THE POWDER METHOD

Tricalcium aluminate (SCaO.AUOs) is known to be optically isotropic,

thus showing that its crystals have cubic symmetry. It is said to melt

incongruently at 1535°C. giving a melt of the two oxides with an excess

of CaO. No method is known by which crystals of tricalcium aluminate

can be grown of such size as to permit of goniometric measurements.

This necessitates the use® of a very general method of the application

of the theory of space-groups to the powder method of x-ray crystal

analysis.

X-ray diffraction patterns of the powder of tricalcium aluminate show

strong lines characteristic of a body-centered cube, of edge a = 3.812A.,

and, in addition, three weak lines corresponding to interplanar spacings

of 3.1A., ^2.20A., and 1.79A. Experiment shows that these extra lines

are not due to impurities but clearly belong to the diffraction pattern of

tricalcium aluminate. They may be derived from a cube whose edge is

twice that corresponding to the body-centered cubic pattern. The
interpretation of the crystal structure of tricalcium aluminate therefore

resolves itself into a search for those structures which can quantita-

tively account for the body-centered cubic pattern and for the three

faint lines mentioned above. The first step is the determination of the

number of ‘‘molecules'' per unit-crystal cell.

The Number of “Molecules” per Unit-cell.—Since tricalcium alumi-

nate can be made only in a finely divided and relatively impure condition,

a precision measurement of its density is not possible. An approximation

sufficiently close for the determination of the number of “molecules” per

unit-cell may be made, however, by^observing the behavior of the sub-
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stance in liquids of various densities. In the original work, the observa-
tions were made by filling a fine capillary tube with a suspension of the
powder in a mixture of methylene iodide and mesitylene of previously

determined density. A petrographic microscope was mounted with
its optical axis horizontal, and the tube containing the suspension was
mounted vertically on the microscope stage. With a liquid whose density

was 2.89, most of the tricalcium aluminate particles moved downward,
and those of the chief impurity, SCaO.fiAUOs, moved upward. Complete
separation could not be obtained because of the mechanical union

between particles due to the sintering process bj \vhich the material was
made from CaO and AloO.,. A partial separation cf the two was obtained

by centrifue*.ag the suspension. The relatively pure SCaO.AUOs thus

obtained wat dried and used in subsequent determinations. This powder
was found to ‘all in a liquid cT density 2.94 and to rise in one of density

3.07. In li ii^iuid of densit’ 3 OOd the particles went up and down in

about equiiJ humbers. The density of SCaO.AUOa is therefore between

2.94 and 3.07 and is probably very close to 3.00. The number of mole-

cules per unit-cube (a ~ 3.812A.) is given by the density and molecular

weight as 0.373 ± 0.004. This is very nearly equal to % = 0.375. No
other common fraction whose numerator and denominator are small

integers comes within the precision of the data. Since the number of

“molecules'' in a unit-cell must be a whole number, it is evident that the

edge of the unit-cell must be a multiple of 3.812A. A cube of twice these

dimensions (z.c., a = 7.624A.) would contain three “molecules." A
smaller cell cannot possibly contain a whole number of “molecules"

without conflicting with the x-ray data. Furthermore, there are no data

from the diffraction patterns which require that it be larger. This means

that for crystallographic purposes the formula of tricalcium aluminate

should be 9Ca0 .3Al203 . The three faint lines mentioned above might

be accounted for quantitatively within the precision of the data by assum-

ing that they are caused by first-order diffraction from (211), second-

order diffraction from (111), and third-order diffraction from (110),

respectively. It will appear later that all three can be accounted for

in this way.

The Crystal Structure.—Since the body-centered cubic pattern from

the tricalcium aluminate is on the basis of a cube of one-half the dimen-

sions of the unit-cell, it must be considered to be essentially an accidental

result of the atomic arrangement within the unit-cell and, as such, it

imposes no symmetry limitations upon the cell as a whole. Since no

crystals large enough for symmetry observations or Laue photographs

could be made, none of the usual methods for establishing the space-

group is available. This means that, every possible arrangement of the

atoms consistent with the cubic symmetry must be considered as a

possibility until it is shown to be in conflict with known facts or data.
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The procedure used in writing down the possible arrangements is

essentially the so-me as that used by Wyckofif in his treatment of calcite,®

except that the process is greatly complicated by the fact that all cubic

space-groups must be considered and that there are many more atoms to

place in the unit-cell. In considering the possible combinations of groups

of equivalent points occupied by a given kind of atom, it is obviously

necessary to consider only those numbers which represent groups of

equivalent points in cubic symmetry, namely, 1, 2, 3, 4, 6, 8, 12, and 16.

Furthermore, those which do not have variable parameters, namely,

1, 2, and 3, need not be considered more than once. Bearing these

limitations in mind, the possible combinations for the six A1 ions are

found to be 6 all alike, 4 of one kind and 1 each of the two others, 4 of one

kind and 2 of another, 3 of one kind and 3 of another, and 3 of one kind

2 of another and 1 of another. The possible combinations for A1 are,

then, 6, 4-1-1, 4-2, 3-3, and 3-2-1. Reference to the summary table of

equivalent points in the various space-groups of the cubic system

(Appendix III) shows that all of these are possible except th6 last. The
3-2-1 combination is impossible because there is no one cubic space-group

which contains arrangements of both two and three equivalent points.

A similar treatment of the nine positions required for the Ca ions leads

to the combinations 8-1, 6-3, 4-3-1-1,- and 4-4-1. Each combination for

A1 must now be considered with each combination for Ca, and the space-

groups compatible with both are written down. As may be seen in

Table III, the entire list includes only five space-groups. This whole

process is then repeated for the possible combinations for the eighteen 0

—

ions. The results are listed in Table IV. Although there are only five

space-groups involved, there are so many combinations possible within

each space-group that the total number of possible arrangements is very

large. For instance, if Ca is taken at 8c and la,* and A1 at 6a, there are

over 30 configurations of 0 possible. Since A1 may also be at 66, 6c,

or 6d, this number is increased 4-fold. Placing Ca at 8c and 16 again

doubles this figure. Such a systematic procedure involves a number of

duplications, but it was followed rigidly in the original investigation to

lessen the chances of error. The total number of possibilities tabulated

was about 1,500. It is found that most of these possibilities can be

eliminated by a consideration of the packing-sizes of the ions involved

(see Chap. XIII) and of the space available in the unit-crystal. Ionic

dimensions have been published by W. L. Bragg^® and by the author.

According to Bragg the packing-radii are Ca++ = 2.lA., A1+++ = 1.45A.,

and O— = O.oA. The corresponding values from Chap. XIII are

Ca++ = I.4A., A1+++ = O.9A., andO = l.oA. These latter values will

be used in our study of tricalcium aluminate for two reasons: first, that

they give the distance from A1 to O in AI2O 3 as 1.9A., in agreement with

* These arrangements are expressed Ih the code used by Wyckoff (reference 7).
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the published data of Bragg; and second, that they give a smaller total

distance for Ca + O and for Ca + Al, so that they tend to retain certain

of the possibiliti< js which would have been thrown out on the basis of

Bragg's values. Thus any error introduced by our limited knowledge
of the packing-dimensions of ions is clearly on the safe side. The
procedure of finding whether or not space is available in a given configura-

tion is greatly facilitated by drawing each of the arrangements of equiva-

Table III.

—

Space-ououps Possible foh Various Arrangements op Ca and Al

Combinations

for calcium
,

i

Aluminum at 6
Aluminum at

4-1-1

Aluminum at

4-2

Aluminum at

3-3

8-1
1
n, o\ o\ Nouo None

6-3 T\, T\, 0‘, 0. tS None
4-3-1-1 T\ r. None None
4-4-1

\
T\ ?'i None None

Table iV. -t’PACt. groups Possible for Various Arrangements op O with
CoMBINATlOIsS OF Ca AND Al ALREADY FoUND POSSIBLE

Combina-
tions for

oxygen

Ca and Al

6-8-1 6-6-3 6-4-3-1-1 6-4-4-1 8-3-3-1 4-4-3-3-1

12-6 rioiol 2'lr‘rio‘oi
j-lyl T^r\ rio’ol ylyi

12-4-1-1 None T'T\ None None None None
12-3-3 no'o\ None None None None
8-8-1-1 None T\0‘0\ None None None None
8-6-3-1 T\0^0\ T\0'0\ None None None None
6-6-6 T\OW T^T\T]p^0\ T^T\ TiO^Ol T^Ti
6-6-3-3 rjo'oi None None ylyl None None
6.4-4-3-I None T^T\ None ylyl None None
6-6-4-1-1 None j-lyl None None None None

There were no possibilities with oxygen at 16-2, 16-1-1, 12-4-2, 8-8-2, 8-6-4, 8-6-2-2,

8-4-4-2, 8-4-4-t-l, 6-6-4-2, or 6-4-3-3-1-1.

lent positions involved on tracing-cloth. In this way any combination

of arrangements can be superimposed and viewed against a bright light,

and the ions to be placed along any one dimension of the cube can be

picked out readily.

As an example of this procedure, consider the structure in which Ca
is at 8c and la, Al at 3a and 36, and O at 6a and 12d. This places J^Ca,

1 0, and >^A1 along half the cube-edge. This requires a space of

1.4 + 2.0 + 0.9 = 4.3A.

where only S.sA. are available. The structure is obviously an impossi-

bility if the ions have anything like the packing-radii assigned to them
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above. In making these eliminations, the packing-dimensions assumed

for the ions are not to be regarded as strictly inflexible. No structure

should be eliminated unless the available distance involved is exceeded

by at least 10 per cent. This procedure eliminates all but about 40 of

the original 1,500 possible structures. It remains to eliminate as many
of these 40 as possible on the basis of x-ray evidence. Among the

arrangements allowed by the ionic dimensions are a number of duplica-

tions, but these are best carried through as a check. In general, each of

these structures actually represents a number of possibilities which

cannot be distinguished experimentally because of the similar dimensions

and scattering power of A1+++ and O ions. In the present state of our

knowledge of diffracting power, we are hardly justified in distinguishing

between A1+++ and 0 on x-ray data alone. It is therefore to be

assumed that interchanging places between the six Al^^^^ ions and six

of the 0 ions has no effect on the diffracting power of the crystal planes.

Were this assumption not made, the number of structures to receive

individual examination would be much larger than 40.

In the original work,® after it had been decided that the unit-cell must
have a length of 7.624A., repeated attempts were made to detect a

first-order diffraction from the (100) planes for d = 7.624A. These

attempts gave uniformly negative results. This fact serves to eliminate

a considerable number of otherwise possible structures without an inten-

sity calculation. Disregarding the structure factor (Chap. X) because

of lack of data we shall take the diffracting power of a plane as propor-

tional to the total number of electrons in the ions which are situated

in that plane. The diffracting powers of (100) planes are then cal-

culated for all the 40 structures. Those whose (2 0 0) planes are obviously

much too low in diffracting power to cut out the first order from dioo =
7.624A. are discarded at once. However, because of the lack of definite

knowledge of the correct basis for calculating diffracting powers, no

structures should be discarded on this basis unless the (2 0 0) planes

have less than three-fourths the diffracting power of the (1 0 0) planes.

Repeated attempts to find experimental evidence of a second-order

diffraction from dioo = 7.624A. have given negative results. This

eliminates a few additional structures because it is inherent in these

structures that the ions are distributed in the space between the (100)

and (2 0 0) planes in such a way as to produce unavoidably such a second-

order diffraction.

When all possible eliminations have been made by simple inspection

of (100) planes, there remain only 18 structures, of which nine are dupli-

cates of the other nine. For instance, the structure having Ca at 8c

and la, AI at 6d, and 0 at 66 and 12d may be transformed into the struc-

ture having Ca at 8c and 16, Al at 6a, and O at 6c and 126 by merely

changing the origin of coordinateslfrom a corner of the unit-cube to its
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body-center. From this point on, we combine the duplicates, leaving

nine structures for which intensity calculations must be made. In those

cases where two a’^rangements differ only in having one variable parame-
ter more or less (for instance, 12e and 12n), only the more general arrange-

ment will be considered. Similarly, the combination of 66 and 6c with

U\ and U 2 will be used instead of the special case represented by 12/.

In making the intensity calculation the customary assumption is

made that the amplitude of the radiation scattered by a given plane is

proportional to the electron population of that plane. This population

is determined in the usual manner on the basis of C— = 10, A1+++ = 10,

and = 18. The resultant amplitude from a given form is taken

as the vect^'* sum of the amplitude from the individual cooperating

planes. Thi.^ is determined by the gKi<phical addition of vectors in the

same manner s the addition rT alternating currents which have a known
phase difleronr (i. The intensity of the resultant beam is calculated from

the formula^

I = [see Eq. (5), of Chap. VI]

where R is the resultant amplitude, / is the number of families of planes

of the form, n is the order of diffraction, and d is the fundamental spacing

of the form, taking the edge of the unit-cube as unity and regarding the

unit-cell as being simple cubic.

* Because of our inexact knowledge of diffracting power this equation can be used

only to show qualitatively the relative intensities of diffraction. The simpler the

plane form to which it is applied the more reliable are the results. It may be used

quite successfully for the (100) planes and seems to apply for the (110) planes.

For the (111) planes the packing-radii of the ions are so large in comparison with the

interplanar spacing that the calculated results can only be depended upon to show

that a line is present or absent in the diffraction pattern. There is a tendency to make
the diffracted beam of orders, higher than the first, abnormally weak. For this

reason the formula shows whether the second and fourth orders of (111) are present

and whether the first and third orders are absent, but it does not give the relative

intensity of the second and fourth orders. (See Chap. X for a discussion of intensities.)

It is well known that certain crystals act as though the resultant amplitude

of the diffracted beam depends upon the square root of the electron population.

Attempts made to repeat the above calculations on this basis show that in no case is

it possible to retain a structure which had been rejected in the original calculations.

Bragg uses m = 2.0; Wyckoff uses m = 2.35; McKeehan uses m = 3.0. None
of these seems to be entirely satisfactory. Table V was calculated using m — 2,

merely for the sake of convenience in making the large number of calculations required.

It is clear that Table V could have been made to show greater apparent agreement

by using a different value for w, but it does not follow that such a change would have

increased the probability of the correctness^ of our ultimate solution. Exact agree-

ment between the experimental and the calculated intensities can only be had in terms

of structure factors as is described in Chaps. X and XI.
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These calculations show clearly that six of the nine structures are

quite incompatible with the x-ray data. For example, the structure

with Ca at 8c and la, A1 (or 0) at 3o and 36, 0 (or Al) at 6ci, and 0 at

\2d give a calculated intensity of 380 for the first order of dioo = 7.6241.

and 257 for the fourth order, even when such parameters are used as to

give the weakest possible first order and the strongest possible fourth

order. Since, experimentally, the first order is absent and the fourth

order is strong, this structure is in direct conflict with the experimental

data and must be discarded. Similar calculations on the (100) planes

for the rest of the nine structures eliminate all but three.

Table V.

—

(Calculated ^nd Observed Intensities for the Most Probable
Structure, op Tricalcium Aluminate

Line
Calculated

intensity

Observed

intensity

100 first order (di o o = 7.624) 75 Absent

100 second order 0.1 Absent

100 third order 14.1 Absent

100 fourth order 1,750 Strong

110 first order 26 Absent

1 10 second order 1,420 Very, very strong

110 third order 80 Very faint

110 fourth order 1,500 Weak
111 first order 163* Absent

111 second order 1,067* Weak
111 third order 69* Absent

111 fourth order 552* l^'aint

211 first order 4,754* Weak
211 second order 735* Very strong

* Note statemehts in the text as to the weight to be put on numerical results for these planes.

In the case of the three remaining structures it is necessary to make
intensity calculations for the first four orders of the (100), (110), and

(111) planes. These calculations have been made for a large number of

different values for the variable parameters which were allowed by the

space available for the ions and by the symmetry requirements of the

atomic arrangements. The best fit in intensities is found in the structure

illustrated in Fig. 5 in which Ca is at 8c and la, Al at 3a and 36, and O
at 6d and 12/.* The calculated intensities are shown in Table V. It

will be noted that they indicate the presence of the three faint lines men-

tioned at the beginning of this discussion.

As was mentioned previously, it is not possible to distinguish with

certainty between Al and 0 ions on the basis either of dimensions or of

* The presence of Al at 3a and Zh leaves room for 0 at 66 and 6c only at a point

halfway between 3a and 36. This changes 66 and 6c into the special case of 12/.
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diffracting power. The assignment of certain of the positions in Fig. 5
to AI and of other positions to O was made on the basis of electrostatic

considerations. For instance, in Fig. 5 the x-ray data would permit Al
to be at 6d and six of the eighteen O at 3o and 36. However, since there

are 0 ions at 12/, we would then have five 0 ions in a row along a direction

parallel to the edge of the cube (dioo = 7.624A.). Such an arrangement
is highly improbable from electrostatic considerations. Similarly, the

Al might have been placed at 66 (or 6c) with the 0 at 3a, 36, and 6c

(or 66). This also places five 0 in direct contact with one another and
is therefore a highly improbable structure Furthermore, there is some

•=Ca •'Al
O=0crH2F ®-Ooit6D

Fig. 5.—The most probable structure of tricalcium aluminate. # represents #
represents O represents O at 12/; (o) represents O at 6e/.

theoretical basis for expecting that A1+++ would have a somewhat greater

equivalent scattering power than 0 ,
especially in the higher orders

and from forms of small spacing. If this be true, the Al at 3a and 36

would cause a fainter (111) second-order diffraction than the calculated

value given in Table V. This would give a still better match with the

experimental data.

It has already been stated in a footnote that, although the theory

of space-groups permits a variable parameter for 12/, the dimensions of

A1+++ and O— ions fix this parameter in Fig. 5 at a = 0.25. Arrange-

ments fid and 8c have variable parameters. The best intensity match

is obtained when u for Ca++ at 8c = 0.24 and u for O at 6d = 0.31.

Intensity calculations show that these parameters are not particularly

critical, especially in the case of 0 at 6d, which may well be somewhat

closer to Al at 3a. It may well be that, if we knew enough about the

diffracting powers of Ca++ and 0 ,
both values of u would come out 0.25.
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The two other structures which were mentioned as possibilities both

have Ca at 8c and la. One has 6a, 66, 6c, and %d for and 0
,

while the other has them at 6a, 66, 662, and 6d, These two structures

are closely related, since 6c may be derived from 66 by a single rotation

of 90°. While the calculated intensities of these two structures are

somewhat less satisfactory than those of the one shown in Fig. 6, the

degree of reliability of the laws of scattering with complex crystals is so

uncertain that they must be considered as possible structures. It will

be shown in Chap. XIX that the same general chemical conclusions can

be drawn from all three structures.

It will help the student to solve other crystal structures if he will make
the drawings described above and work out the complete solution to the

structure of tricalcium aluminate.

SUMMARY

We have shown, using examples from both the Laue and the powder

methods, how the theory of space-groups may be used in the solution

of crystal structure. Our illustrations have included sodium chloride,

calcite, and tricalcium aluminate. These have provided us with a case

in which definite ionic coordinates were found at once and a case which

left us with an undetermined parameter which had to be evaluated in

terms of the intensities of the various diffracted beams. We have dealt

with the simple case where the theory of space-groups, aided by a knowl-

edge of the external symmetry of the crystal, gave us only a few alter-

natives from which to choose and with a case which started out with

1,500 possibilities. We have had examples of definite solutions of crystal

structures and an example of a partial solution which leaves us with three

physically possible alternatives one of which is more probable chemically

than the other two.

These illustrations have applied specifically to the Laue and to the

powder methods. Similar applications to the Bragg and the rotating-

crystal methods should be obvious.
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CHAPTER X

STRUCTURE FACTOR*

In Chaps. IV, V, and VI we discussed in some detail the intensity

of the x-ray beams diffracted by a crystal. We found that, if in a crystal

there were more planes of a given family than were required by the sim-

plest structure typical of that crystallographic system, then the extra

planes would greatly impair the intensity of the diffracted beam or even

reduce it to zero. For instance, we found that the {111} planes of dia-

mond come in pairs (see Fig. 2 of Chap. Ill and Fig. 4 of Chap. V) such

that there is interleaved with the periodic spacing of the {111} planes a

second set of {111} planes which divides the periodic spacing, di 1

1

,
into

two portions which stand in the ratio of 3 : 1. This was found to reduce

the intensity of the first order of diffraction from the {111} planes of

diamond and to destroy the second order of diffraction entirely. Other

instances of interleaving of planes were found in the case of zinc blende

(ZnS) and fluorite (CaF2). The effect of the interleaving of planes of

Na"^ and Cl~, and Cl~, K+ and 1“, etc., in the alkali halides was

thoroughly discussed in Chaps. V and VI.

EFFECT OF ATOMIC STRUCTURE ON THE INTENSITY OF THE DIFFRACTED
BEAMS

In all of the above discussions one important approximation was

made; each atom or ion was assumed to diffract like a single point whose

diffracting ability was proportional to the atomic or ionic number. It

would have been more in accordance with our pictures of the mechanism
of diffraction if we had assumed that, when x-rays are diffracted, the

actual diffracting centers are the electrons which compose the extra-

nuclear portions of the atoms in the crystal. Whether we assume these

electrons to be stationary (static-atom theory in some form or other) or

whether we assume them to be in motion in definite orbits around the

nucleus (Bohr-Sommerfeld theory, etc.), or whether we take some one

of the newer pictures of atomic structure, in any case it is hard to escape

the conclusion that the x-rays diffracted from one electron must be some-

* The phrases **atomic structure factor” and ”molecular structure factor”

(often abbreviated in this chapter to ‘‘structure factor” in accordance with common
usage) have to do entirely with the effect of the internal structure of atoms (or ions

or molecules) on the intensities of the diffracted x-ray beams. These terms should

not be confused with an older use in the literature of the phrase ‘‘structure factor”

which referred to the decrease in intensity of diffracted x-ray beams caused by the

positions of atoms (or ions) in the unit-crystal.

292
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what out of phase with the x-rays diffracted by some other electron in the

same atom. The total intensity of any beam of x-rays diffracted by a

crystal would, :hen, be expected to depend not only upon the configura-

tion of atoms in the crystal but also upon the distribution of electrons

in the atoms of which the crystal is composed.

(6)

Fig. 1 (a) and (&).—Effect of the finite size of atoms and of mosaic structure on the ampli>
tude of a diffracted wave.

In the case of the most frankly mechanical pictures of atomic struc-

ture, such as the static-atom theory, the layers of electrons would have

the effect of interleaving the periodic spacing with the small interplanar

spacings of the layers of electrons of which the atoms are supposed to be

built up. In the case of less frankly mechanical pictures of atomic

structure, we still have to do, for each family of atomic planes in the

crystal, with the probability that an electron will be found at a distanoe
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z above or below a geometrical plane passed through the centers of the

atoms. Since the second viewpoint is more general in its nature than

the first, it will be taken as the basis of our calculations.^ After we have

discussed the effect of the distribution in space of the electrons in the

atoms of a crystal, we shall discuss how we can use this sort of informa-

tion to determine, from the x-ray diffraction data, the probable places in a

crystal where electrons are clustered together. This, in turn, can be

interpreted directly in terms of the location of atoms, i,e., in terms of

crystal structure.

Structure Factor.—In Fig. la, let X 1X2 be the mid-plane of a layer of

atoms in a crystal, let SS' be the wave front of a plane-polarized incident

beam of x-rays whose electric vector is perpendicular to the plane SOPy

and let the x-ray beam be diffracted to the plane PP' according to Bragg’s

law, nX = 2d sin 6, If, now, all the electrons of each atom were in the

mid-plane X 1X2 (for instance, the electron at O), then the amplitude

v^f the diffracted wave at PP' would be the sum of the amplitudes of all

the wavelets from all the individual electrons. We shall call the ampli-

tude of each wavelet Aq, But in the actual case an electron may be at

the point O' located a distance z above the plane X 1X2 ,
and this would

increase the length of the path of the x-ray beam by 2{z sin 6). The
amplitude of the wavelet at PP' diffracted by the electron at 0' would no

longer be given by Ao but would be given by*

•2«sin0^ (1)

* When waves are to be added which are out of phase with each other, their ampli-

tudes may be expressed in terms of some arbitrary standard of phase. The algebraic

sum of the components of amplitude, expressed in this way, gives the amplitude of

the resultant wave. A consideration of the elementary equations of wave motion,

such as may be found in any text on physical optics, shows that Eq. (1) gives the con-

tribution 'Ae, which the wavelet from 0' makes to the amplitude of the resultant

wave at PP'. It will be found that if the wavelet from 0' is out of phase with the

wavelet from 0 by an amount expressed in circular measure as A, then

Ae = Aq cos a

But the phase angle, A, is related to the whole wave length, expressed as 2ir in circular

measure, by the proportion
A _ 2z sin e

2x “ X

so that
. 2Tr
A = • 2« sm 6

A

Therefore

In order to facilitate cross reference, the symbols used in this discussion corre-

spond in general to those used in ‘^X-rays and Electrons” by A. H. Compton, D, Van
Nostrand Company, New York.

Ae = Ao cos • 2z sin

Ae — Ao cos %
X
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We may assume that the probability that any given electron will be
above the plane ^iA"a at a height between z and z + dz is proportional

to dz and to son e function of z which we shall call p(z)
;
i.e., the probability

is proportional to p(z) dz. The probable contribution of any one electron

to the total amplitude of the diffracted wave is therefore

A. = A
4-a

p(z) COS
-a

(2)

where a is the maximum value of z which the electron could have and
still belong” to its own atom. The amplitude of a wave diffracted

from a whole atom of Z electrons will be

F is called the ‘^structure factor” of the atom. The number F denotes

the ratio of the amplitude of the wave scattered by the actual atom
to the amplitude which would have been found if all the electrons had
been concentrated on the mid-plane. We must now see how this quan-

tity F comes into our experimental data for the intensity of the rays

diffracted by a crystal, so that we may use these measured intensities

in quantitative investigations of crystal structure.

Calculation of “Integrated Reflection.”—In preparation for our study

of the ways in which the structure factor can be used in crystal analysis,

we .shall first calculate the amplitude (and from this the intensity) of

x-rays diffracted by a very small crystal. Consider a crystal fragment

of size dx by bz (Fig. 16) such that it contains only a few unit-crystals.

This crystal fragment may be considered to be one of the blocks in the

mosaic structure of the crystal. Then we may assume that, if it is

oriented to the x-ray beam to give nearly the correct angle of diffraction

required by Bragg’s law for some atomic plane, the rays diffracted by
one atom will be substantially in phase with the rays diffracted by any

other atom in the same plane, and the phases of rays diffracted by atoms

in successive planes will differ by approximate multiples of 2ir. For

simpli(jity, we shall assume that the X-, F-, and 2^-axes of the crystal

fragment are at right angles to each other, that the units of measure

along all three axes are equal, and that the crystal structure is of the

simplest possible type; in other words, we*" shall assume a simple cubic

crystal. This means that each unit-crystal “contains” one atom.

Let the x-ray beam make a grazing angle of incidence {B + a) with some
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atomic plane,* say the (001), and let the corresponding grazing angle

of diffraction be (ft + y) where a and are measured in the plane SOP,
and y is measured at right angles to the plane SOP. If an x-ray wave
front is diffracted by both 0 and the point xyz, then the difference in

path length is (neglecting second-order terms)

:

x(P — a) sin 6 + yy + z{2 sin 6 + {a + p) cos

It is evident from Fig. la that, if the diffracted waves from O and O'

are to meet in phase, 2z sin d must equal an exact number of wave lengths.

The only significant difference in the path lengths of the waves from 0
and the point xyz of Fig. 16 is therefore

x(P — a) sin ^ + yy + z{a + fi) cos d

If A is the phase difference between the two waves, then

A - ~ ct) sin B + yy + z(a + 0) cos B

2t X

so that
O—

A = — a) sin 6 + yy + z{a + jS) cos (5)

If we write for convenience,

a = (jS — a) sin d

6 = 7
c = '(a + ^) COS 6

* In the case of perfect crystals whose size is large compared with the wave length

of x-rays, the grazing angle of incidence must equal the grazing angle of diffraction and
n\/2d must be exactly equal to sin 9. It is inherent in the derivations of Bragg’s

law (Chap. I) that crystal fragments, such as 5Xj by, bz of Fig. 16, which are only a few

wave lengths on a side, may have a grazing angle of incidence which differs slightly

from 9. This angle may be expressed as (0 -|- a), where a is a very small angle

lying in the same plane as 9. The diffracted beam may not only emerge at an angle

slightly different from 9, but it may even lie somewhat off the plane of 0. It may be

expressed as (0 + /?, t), where is a small angle in the plane of 0, and 7 is a small angle

in a plane perpendicular to the plane of 0.

The difference in path length caused by moving the diffracting electron from O
to the point xyz may be found approximately as the algebraic sum of the components

of X, y, and z along the path of the x-ray beam. These are (remembering that for

very small angles the sine is approximately equal to the angle expressed in radians,

and the cosine is approximately unity)

:

(1) X cos {9 + a) — X cos (0 + P)

« a;(cos 0 cos a — sin 0 sin a) — a?(cos 0 cos — sin 0 sin /?)

» (approx.) x(^ — a) sin 0

(2) 2/ sin 7 = (approx.) yy

0) z sin (0 + a) -h z sin (0 -h /0)

* z(sin 0 cos a -h cos 0 sin d) -|- z(sin 0 cos -f cos 0 sin /0)

(approx.) z[2 sin 0 -h (« -h i0) cOfS 0]
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then

A = + by + cz)

If, now, the crystal contains n atoms per cubic centimeter (for a simple

cubic crystal this is the equivalent of n unit-crystals per cubic centimeter),

then we shall have n(dxdydz) atoms in an infinitesimal volume dxdydz]

and the amplitude of the wavelet which it diffracts will be [from Eq. (3),

nAoFdxdydz. But this wavelet will be out of phase with the resultant

wave by a phase angle A, so that the contribution which this infinitesimal

volume makes to the resultant wave is

dA == nAoF cos A dxdydz

The whole crystal fragment whose volume is bxhybz will therefore diffract

an x-ray b j: m with an ampb.tuoe

A 1 = nAoFf i /_ 4 / ^ dxdydz (6)

£ '2 Y
6y

= uAqF i + by + cz^dxdydz

Ai = riAoF -
sin ^ sin rj sin f

SxdySz (7)-

(«x + by + cz)\,Mydz

= + bV+cz)Y_Jydz

= t(
~ ^(^2/ + cz)^dydz

=r^dkh

= +
") - ““t(-¥ +

«)
jd*

sin ^a5x sin ^bSy sin \cbz
A \ A

IT

X*

IT

x*^

(Footnote continued at the bottom of page 298.)
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where

» .Sx . .

{ = = ir(/3 — a)y sm

kM 5j/

, =

f = TTCy = x(a + COS d

The intensity of a wave of amplitude Ai is proportional to the square of

its amplitude, i.e,,

where c is the velocity of light. In terms of Eq. (7), the intensity of

the beam diffracted in the direction (6 + p, 7 ) is

j cn^A o^F^/sin f sin rj sin f

~5r-\“r 'T 1^*

Experimentally it will not do merely to set an ionization chamber at

what we suppose to be the correct angle for diffraction and then assume

that the ionization current which we obtain represents the true intensity

of the diffracted beam. Because of the mosaic structure which exists to

a greater or less extent in all crystals (see Chaps. I and XII) the angles

of incidence and of diffraction for a given crystal are not quite sharp. In

order to measure the true intensity we may avail ourselves of the scheme

of opening the slits in front of the ionization chamber as far as possible so

as to include all values of 7 and then rotating the crystal at a uniform

rate w so as to include all values of incidence ^ ± a for the various blocks

in the mosaic in the immediate neighborhood of the diffracting angle 6,

The ionization current is then a measure of the total energy diffracted

by the crystal at angles approximating $, It requires a time da/o) for the

crystal to go with the angular velocity w from the angular position a

which may be written

sin ^ sin 17 sin ^ ^ ^ ^—r-= • dxdydz
f f

where 17, and have the meaning given in Eq. (7).

It should be noted that the derivation of Eqs. (6) and (7) is hardly rigorous, since

it assumes (1) that the atoms are continuously distributed at the rate n(dxdydz)

although we are really thinking of a small volume containing discrete atoms, and (2)

that each atom is so small that phase differences between its parts can be taken care

of by putting nAJF dx dy dz for the amplitude from the element dx dy dz although in

Chap. XIII we show evidence for atoms of such size that their domains touch at

absolute zero.
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to the position a + da so that the total energy received by the ionization

chamber is

r “ ^ da

-ly.
where Pi is the energy received by the ionization chamber in unit-time.

This energy-per-unit-time, or “power/' is obviously (see Fig. 16)

so that

Pi = f * f *
rdyli

eo J— 00

I \dotd$dy

Substituting n^q. (8) into Eq. (9) we have*

* Tho vari.ibi *s rjj i muttt &e ofiiied in terms of a, /8, y. This may be done by
substitution m s i* » Ilows

:

^ - TTY sin -a) - ki(fi — a)

ri = s v^y = hiy

f = cos -f /3) = kz{ci +

dlz = ki(d0 — da)

df = ks(d0 + da)

2da) i.e., —da — d±
2ki 2kt

Wfl = -I-

2fci ^ 2ki

dri

Then the integration may be performed as follows:

r C ^ Tsin* ^ sin* ri sin* f

//.:/-J
aui- 77 BUI- s j ,

X 03 dy\
1

1 1 « 1da d/3 dy

0^

da d/3 dy

dfj diy dri

da 00 dy

^ df df

2ki 2ki

I df df df
1 1

2k9 2kz

jr- 1
,

J L_
^kik2kt 4:kik2ks 2k\k2k^

The integral therefore corresponds to the standard form

/
• sin* Xj

The triple integral is therefore

/X. » /
“

2 sin d cos Obxhyhz



300 CRYSTAL STRUCTURE

rr * f sin?; sin f ^ , Vj
J J- . J -5sr-\-r

•—
Sttco SLI-

sin^ g sin’ i) sin’ f

r,^
dadfidy

X»_ crVApW^dx^dy^dz^
”"

Sjtw 2 sin 6 cos d • &xdy8z

Wi
cr^n^A(?t'"^\^ . . .

(10)

Equation (10) expresses the energy received by the ionization chamber
in terms of the quantity which, it will be remembered from the discus-

sion of Fig. 1, is the amplitude of a wavelet at PP' after having been

diffracted by an electron at 0, It would suit our purpose better to express

this energy in terms of the intensity, /„ at the point 0 of Fig. 1, of the

incident beam coming from the original source of x-rays. Electro-

magnetic theory shows that the amplitude at PP' is related to the

amplitude, A ay of the beam which is incident on the electron at 0 by
means of the equation

Ao = A
*mrc^

(11)

when the electric vector is perpendicular to the plane SOP. In this

equation, e and m are the charge and mass of the electron; c is the velocity

of light; and r is shown in Fig. 1. Substituting Eq. (11) into Eq. (10),

and remembering that bxbybz is the volume, bV, of the crystal fragment

of Fig. 1, we have

Stt sin 26

But cA'a^/Sw is the intensity of the beam incident on the crystal

fragment at 0, so that

Wi
(am^c^ sin 26 (12)

So far we have considered only an x-ray beam which is polarized with

the electric vector perpendicular to the plane SOP of Fig. 1. If, instead,

we take a beam which is polarized with the electric vector parallel to the

plane SOP, then the component of the amplitude acting through an

angle 26 would be A, cos 26. The corresponding energy would be

W2 ^ Wi cos^ 26. If, instead of considering the x-ray energy to be

concentrated into a polarized beam, we consider the same quantity of

energy to exist in an unpolarized beam, we have

W = TFt + W2
^Wi(l + cos’ 2d)

2 (13)
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By combining Eqs. (12) and (13) for the general case of an unpolarized

beam, we have

sin 20
(1 + cos^ 20)bV (14)

In investigating the structure of crystals by the structure-factor

method it would be ideal to be able to use conveniently the efficiency of

diffraction of x-rays by the crystal planes under investigation. This

would necessitate: (1) a measurement of the rate at which energy is

received by the crystal; (2) a measurement of thr^ rate at which energy is

diffracted by the crystal; and (3) an expression of the ratio of (2) to (1).

Equation (1^ ) does not lend itself directly to such an ideal statement. It

can, however . be put easily into a form which will do about as well, for we
can get froia >t the quantity Wt»i I in which I can, in special cases, be

made to yiel ) a ^alue for t}.«' rate at which energy is delivered to the

crystal. is the average^ rate at which energy is diffracted by the

crystal imes the angle through \\ hich the crystal is turned, so that TTw//

is proportional to

The average rate at which energy is diffracted by the crystal

The intensity of the incident beam

This quotient is given the technical name of ^^ntegrated reflections^ p.

W(a 1 jxsrto ^

^ / 2

1 + cos^ 20

sin 20
bV (15)

In this equation, W is the total energy diffracted by a crystal fragment

(Fig. 1) of volume bV while it is turned past the nominal diffracting

angle 0 at a uniform angular velocity w. I is the intensity of the unpolar-

ized incident beam; n is the number of atoms per cubic centimeter in the

crystal fragment (in this special case of a simple cubic crystal, n is

numerically equal to the number of unit-crystals per cubic centimeter)

;

X is the wave length of x-rays employed; e is the charge on the electron; m
is the mass of the electron ;*c is the velocity of light; and the structure

factor F is defined by Eq. (4).

In Eq. (15), the factor -

2

e^ 1 + cos^ 20

sin 20
(15a)

is called Q, so that

(16)

It was stated above that in special cases the value of the intensity

I of the incident beam could be converted into a value of the rate at

which energy is received by the crystal, z.e., into the ‘‘power'' of the
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incident beam. Three special cases are of interest: (1) the incident beam
passes through a single crystal or an agglomerate of similarly oriented

tiny crystals and the diffracted beam is measured on the emergent side;

(2) the incident beam is diffracted (or, as the literature has it, ‘^reflected”)

from the surface of a single crystal; (3) the incident beam is diffracted by

a mass of powdered crystal in which the fragments have a random orienta-

tion. We shall take up these three cases in succession.

1. Diffraction of a Transmitted Ray by a Single Crystal.—In Fig. 2

let abed represent an irregular, ‘imperfect crystal whose face covers

Fig. 2.—Diffraction of transmitted x-rays from a single crystal.

considerable area, or, what is practically the same thing, a mass of small

crystals having almost exactly the same orientation. When this is

irradiated by x-rays through the slit SS', then, if the area of the slit

opening is 2V and the thickness of the crystal is A, the volume of the

crystal irradiated is 2VA/cos 6, This corresponds to the 5F of Eq. (16).

Equation (16) therefore gives

. M
^cos d

as the integrated reflection for the fictitious case of a diffracting crystal

which absorbs no x-rays. In any real crystal, absorption reduces this

value by the factor

-M(Asec e)

• *

where e = base of natural logarithms.

fx = coefficient of absorption.

A sec ^ = length of the path of the x-rays in the crystal (see Fig. 2).

The actual integrated reflection is therefore

= QJVAsec (17)

Since the intensity / is the rate at which energy is received on a unit-area,

the intensity of the incident beam't^f Fig. 2 can obviously be translated
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into the rate at which energy is received (i.6., the power) by the diffracting

point under consideration in the interior of the crystal by the relation

so that

Wo)

P = Qh sec $ (18)

2. Diffraction of a “Reflected” Ray by a Single Crystal.—^Let Fig. 3

represent the case in which x-rays enter sf>me givf^n face of a crystal and

the diffracted rays emerge from the same face, i.e,. in the language of the

literature, the rays are ^‘reflected from the crystal face.'' Consider the

x-ray beam diffracted at a depth z inside the surface. Then Eq. (16)

becomes

CSC ^dz

where *
3Vcsc Odz is the volume 5F, and e ® represents the decrease

in intensity due to absorption. The integration gives

I 2ix
(19)

In the case of reflection, the power P of the incident beam is usually

determined in terms of the rate at which energy is received at the surface

of the crystal. This requires that the crystal be removed, the area

of the slit measured, and the intensity I of the x-rays determined.

Obviously for this case,

P = /]\

and Eq. (19) becomes

TFo) _ Q
P 2m

(20)

It should be noted that at the diffracting angle the coefficient of

absorption is considerably larger than that measured under ordinary

conditions, and attempts to measure its actual value usually end by
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reasoning in a circle. For this reason case 2 is the least satisfactory of the

three cases under consideration.

8. Diffraction by Powdered Crystals.—In Fig. 4 let a monochromatic

x-ray beam travel in the direction SOX, and let it meet a mass of pow-

dered crystal at 0. Let a reference sphere SNAXC be drawn with 0 as

its center, and let the great circle ABC be perpendicular to SOX. If some

crystal fragment at 0 is oriented so that some family of planes can diffract

the x-ray beam along the line OS', its normal must lie in the plane of the

X

Fio. 4.—Diffraction of x-rays from a powder.

great circle SNAS'X. If the crystal fragment is so small as to compare

in size with the crystal of Fig. 16 whose volume was dV, then the normal

ON must make an angle 6 + a* with the plane ABC; i,e., it must make
an angle ^ + a with OA. a is very small in comparison with B,

The diffracting power of a randomly oriented crystal fragment will

depend, in part, upon the probability that the angle NOA will lie between

^ + a and ^ +. (a + da). This probability will depend upon the ratio

of the solid angle subtended by the belt NED to the solid angle subtended

by the surface of the whole sphere. Since the belt has an infinitesimal

width NOda, it may be considered as a cylinder of radius NO sin SON =
NO cos {$ + a), so that its area is 2w{N0)^ cos (6 + a)da. It therefore

subtends an angle 27r cos (6 -f a)da from the center 0. The whole sphere

subtends a solid angle 47r so that the probability that the normal to a

single plane-family in a randomly oriented crystal fragment will lie

between 6 + a and $+ (a + da) is

2t cos (6 + a)da 1 ... . ,

^
Since a is very small, this is very closely equal to

cos Bda

In the case of an actual crystal fragment this probability is increased by
a factor / which is the number of ^ane-fami lies in the form under con-
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sideration [see Eq. (5) of Chap. VI]. Depending upon the system of

crystallization and the form, / may be 1, 2, 3, 4, 6, 8, 12, or 24.

In the discussion of Fig. 16 we found that the power Pi diffracted to

the ionization chamber by a single plane-family in the crystal is

= /-I I

The probable power Pi diffracted by a randomly oriented crystal powder
is therefore*

Pi = r * Pi * coft eda
•/ - oo

=*
J* J*

r^idadfidy (21)

In the sani ) i lanner that we obtained Eq. (12) from Eq. (9), we have,

from Eq. '

n,
5 1 . . /.e'*
P, = 5/ cos 6

sin 26
• BV (22)

Just as in Eq. (14) we introduced the polarization factor J^^(l -f cos* 26),

so Eq. (22) becomes

P
I If cos

4*^ mV
1 + cos2 26

sin 2d
‘ (23)

If we represent, as before,

i«2P2\3 .
1 + cos^ 26

2
^ '

sin 26

by Q, then

P 1

j = iQ/ cos 6 • (24)

In Eq. (24), P is the probable value of the power diffracted in a cone

whose apex is 0 and whose semiapex angle is 26,

Let the x-rays be measured by an ionization chamber whose slit is

at S' of Fig. 4. Let the length of the slit be I, and let i be small in compar-

ison with T sin 2d, where r is the distance from the crystal to the ionization

chamber (see Fig. 16). If the slit is wide enough to take in all the angle

a on each side of 6 at which there is any measurable diffracted beam, then

the power received by the ionization chamber is

P sss p ^

* 2vr sin 2d

* Since the diffracted beam is of negligible intensity except for very small values of

a, it is permissible to use — «> and oo as the limits of integration.
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If is the area of the slit which delimits the incident beam SO, then the

power of the incident beam is

P = 3V/

so that I of Eq. (24) is P/2K. Then Eq. (24) becomes

Since

it follows that

P sin 2Q

cos 6
__ 1

sin 26 2 sin 6

cos e dV

P 87r2Vr sin 6

(26)

(26)

Reference to ** X-rays and Electrons^’ by A. H. Compton and to the

article by W. L. Bragg and J. West [ZeiU KrysL, 69, 123 (1928)] will be

facilitated by the following table:

This chapter Compton Bragg ami West*

Eq. (16) (5.16) (4)

Eq. (17) (6)

Eq. (18) (5.18) . . .

Eq. (20) (5.20) (6)

Eq. (24) • (5.21) (7)

Bragg and West write for ;^/ of Eq. (17) the symbol I. This I corresponds to the Pi of Compton’s
equation (6.26). 9 of Eq. (24) is misprinted as 2$ in Bragg and West’s article.

Effect of Extinction.—All of the key equations given above involve

the quantity Q, and through Q they involve the structure factor F of

Eq. (4). It would seem, therefore, that, if we merely made the measure-

ments indicated by TTw/P or P/I or P*/P, then, knowing all the other

constants in the appropriate equation, we should be able to calculate P.

We could even imagine ourselves going a step farther. Using NaCl
as an illustration we could imagine ourselves drawing a graph in which F
is plotted against the glancing angle $ for some plane (hkl). Such a
graph for the (100) planes would represent the combined intensity

effect of Na+ + Cl”; for the odd-order diffraction from planes like (111)
it would represent Cl” — Na"^. Half the sum of the ordinates of the

two curves would enable us to draw a curve in which F for Cl” alone is

plotted, against 6, and this in turn would enable us to draw a similar

“atomic F curve” for Na"^. From these two atomic F curves and a

knowledge of the crystal structure of NaCl we could expect to predict

the relative intensities of every x-ray beam diffracted by NaCl. There
are, however, two difficulties to be overcome in the case of single crystals.
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These difficulties have to do with the effect on the intensities of the

diffracted beams of
, (1) temperature and (2) primary and secondary

extinction (see Cl^pp. I).

1. Not only has the theoretical value of the constant B in Debye^s

equation [Eq. (18) of Chap. I] been a subject for debate, but experi-

mental values of B are complicated by the fact that the lattice parameters

of a crystal change with temperature so that we cannot measure the

Debye factor apart from this expansion. The experimental measure-

ments of intensities give a series of values Fhki which are characteristic

of the crystal at the temperature of the experiment We have seen that

in order to compare these observed values with calculated values of

Fhki we need Jo have, for the plane (Jikl), F yalues for the individual

kinds of aton s (or ions) of which the cr3^stal is composjBd. In order

to take accourt of temp€ti^u>e,f, each of these atomic F curves should

be correctex^ iV>r the effect heat motion on that particular kind of

atom (or ion). Bragg and VVest recommend either of two procedures

ir. j.ctufl practice: (o) use atomic F curves for atoms at rest and expect

that at high angles the observed values will fall off from the calculated

values; or (b) make empirical temperature corrections in the F curves.*

Similar temperature corrections may be made in Eq. (24) for the case

of a powdered crystal.

2. We have seen in Chap. I that perfect crystals have, at the diffract-

ing angle for a given wave length, a coefficient of absorption which is

many times greater than that measured in the ordinary way. In the

case of one experiment by Bragg, James, and Bosanquet the increase

was 140-fold. This effect was called ‘‘primary extinction.'^ We have

also seen that ideally imperfect crystals would permit of appreciable

diffraction at greater depths below the surface because the interior is

shielded only by those crystal fragments which happen to be at the correct

angle for diffraction. The loss in intensity due to this partial shielding

was called “secondary extinction." Probably a powdered crystal

with a maximum ultimate particle-diameter of 250 atomic diameterst
is the only really ideally imperfect crystal. If a crystal could be ground

to this fineness, this would probably be one of the best ways of getting

around the difficulties caused by primary extinction, except that, of

course, we would no longer be working with a single crystal. This means
that, if we take this way out of our difficulties, we must save it for the

* This second method looks like reasoning in a circle. Experience shows, however,

that the calculated atomic coordinates do not change much with small changes in F,

so that any reasonable correction in the right direction is an aid and gives a final result

with a negligible error. Methods (a) and (6) really differ in degree and not in kind:

(a) represents a qualitative correction made mentally; {b) represents a semiquantita-

tive correction made in the graph itself.

t For most 'imperfect” crystals this ultiniate particle-size may be approximated

by grinding to an apparent particlenslze of 10"* cm.
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last operation in our experimental work. The cleavage faces of all

actual single crystals are perfect enough to show a little primary extinc-

tion and are imperfect enough to show a great deal of secondary extinc-

tion. If, however, the face is ground and polished, it usually becomes

sufficiently imperfect to be classed as an almost ideally imperfect crystal

face. This is probably the most practical way of avoiding primary

extinction. A third way out of the diflSiculty is to take advantage of the

fact that primary extinction becomes very small in the case of beams
diffracted with low intensities, for instance, at large angles of diffraction,

i,e,j beams of higher orders of diffraction from planes of low indices or

beams from planes of high indices. This way of getting around the

difficulty is used when the crystals to be examined are too small to have

their possible faces ground and polished.

Secondary extinction produces the same effect as an increase in

the coefficient of absorption of the crystal. It has been shown by
Darwin^ that for the weaker lines of a diffraction pattern this effect

can be allowed for in Eqs. (17), (19), and (20) by using (^ + gQ) instead

of ju. The value of the constant g must be determined for each individual

crystal. Using units of, area such that A is unity,* Eq. (19) becomes

(27)

where p is the true integrated reflection that would have been observed

if there had been no secondary extinction. Then

^ 2 (^ + gQ)
(28)

where p' is the actual integrated reflection found by experiment. Equar

tion (17) becomes

p' = (29)

where t <= haec 0, i.e., t is the length of the path of the x-ray beam

inside the crystal.

This may be written

log Q - log -1- gQ) (30)

This is the equation of a straight line which expresses the relation of

log p'/^ to t Log Q is the intercept of the line on the axis of log p'/^ and

(m + qQ) is the slope of the line.

If, now, the face of a single crystal is ground down bit by bit and if

p' is measured for each successive thickness, we can plot log p^/t against L

This can be done, in effect, by dividing the “constant” of the ionization chamber

by the area of its slit measured in sq. cm.
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The slope of this line should be the effective coefficient of absorption

(m + qQ) for the crystal with which we are working. Since we know
both /X and Q we r*an solve for g. This assumes that the degree of perfec-

tion of the crystal face remains unaltered during the successive grinding

operations. The graph of log p'/< vs, t is only a straight line for those

crystals for which this assumption holds true. Presumably the chance

of getting a straight line would be increased by etching the crystal face

instead of grinding it. In case a straight line is obtained we can sub-

stitute Eq. (27) into (28), obtaining

a' = — ^ —^
1 + '2gp

Then

- _p^"
i - 2gp'

(31)

Eqqa; on (81) nov/ enables us to find the ^‘true,’' that is, the theoret-

ical, value p of the integrated reflection in terms of the experimental

value p'.

When the graph of log p'/^ vs, t is not a straight line, i.e., when the

crystal is made more imperfect by the grinding operation, we must do
the best we can with some method of approximation. For instance,

we can take some family of planes whose arrangement we feel fairly

sure of by reason of other considerations (Laue method, Bragg method,

powder method, etc.), and from this arrangement we can calculate a

theoretical value of F^kh By means of Fhki we can calculate the corre-

sponding values of Q and p. By substituting this calculated value

of p and the experimentally measured value of p' into Eq. (31) we can

get a fair approximation for g which may be used in finding the structure

of the crystal. If this new structure happens to involve some minor

adjustments in the structure of the atomic plane with which we started,

we can use the more exact structure to give us a second approximation

of g which may be used, in turn, to give a more exact solution of the whole

crystal structure.

THS PROBABLE DISTRIBUTIONS OF ELECTRONS IN A CRYSTAL

We have so far discussed the meaning of the term “structure factor”;

we have seen how it comes into the theoretical expressions for “integrated

reflection”; and we have found how to avoid certain pitfalls due to

temperature and’ to extinction. We must now see how we can use

structure factor to help us determine the probable places in a crystal

where electrons are clustered together, for this can be interpreted directly
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in terms of the locations of atoms, i.e., in terms of crystal structure. So

far, three methods for doing this have appeared in the literature:

1. The method of the empirical equation.

2. The method of trial and error.

3. The method of the Fourier^s series.

Each of these will be taken up in turn.

1. The Method of the Empirical Equation.—A. H. Compton^ equated

Eq. (20) to Bragg's empirical equation for the normal decrease in the

intensity of a diffracted beam as the angle of diffraction is increased. ^

This gives

P 2m
^ ®

where C depends upon the energy and wave length of the incident x-ray

beam and on the nature of the crystal. Since, from Eq. (15a),

we have

2 m^c

\ + cos^ 2B

sin 2B

F2 =

ifj. ^ sin 2B

8fx

nV

sin^ B

—Bsin^O

C-cot

When 6 is small, e ^ approximates unity. Remembering that for

small angles cot 0 approximates 1/sin 0, we have

But, by Eq. (4),

so that

F =

F =

/ 8m m^c*
_

(n^X® e*

=08 (^2 8ta »)* - ^
'J-.

'w (x ““ *)* - (33)

This approximate equation has several possible types of solutions but

all lead to absurd results except one, namely

p{z) = bzr^ (34)

where b is a constant. In so far as this approximate equation holds

at all, it indicates for each atom an electron density which is inversely

proportional to the square root of the distance from the center of the
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atom. This implies an infinite radius to every atom. The fact that

such a picture of atomic structure seems to be inconsistent with well-

established theories does not prevent the ‘^method of the empirical

equation'' from being useful. F curves calculated by this method for

chlorine agree well with experimental F curves. Presumably the method
would apply still better to atoms of higher atomic number.

Thomas^ has proposed other equations whrch, although they are not

empirical, can be interpreted to mean that each atomic nucleus is sur-

Table I.

—

Standard F Curve for the Thomas Model op Cb {N = 66)

X ,0- Fc

0 0 56.0

O.J 60.7

0.2 43.8

0.3 37.6

0.4 32.4

P.o 28.7

0.6 25.8

0.7 23.2

0.8 20.8

0.9 18.8

1.0 17.0

1.1 16.6

1.2 14.6

1.3 13.2

1.4 12.3

1.6 11.3

1.6 10.4

1.7 9.6

1.8 9.2

1.9 8.6

2.0 8.1

rounded by a continuous electron atmosphere" which decreases in

intensity as the distance from the nucleus is increased. His method may
therefore be mentioned appropriately at this point. Thomas assumes

(1) that in the six-dimensional space for the motion of an electron the

electrons are distributed uniformly at the rate of two for each A® of six-

dimensional volume
; (2) that the potential V in each atom is a function

of the distance r from the nucleus and is determined by the nuclear

charge and by the distribution of electrons. The constants in his

equation are determined by the atomic number N. Thomas has calcu-

lated the atomic F curve for cesium {N = 55). His calculated results

are given in Table I. Like the Compton “empirical atom," the Thomas
atom can hardly represent the actual facts at any great distance from

the nucleus so that it gives us no picture of the probable location of the

outmost electrons of an atom. This defect is not troublesome, however,
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for the energy of the x-rays scattered by the outmost electrons largely

cancels out by interference. These electrons, therefore, really contribute

very little to the atomic F curve.* Evidently the higher the atomic

number, the better the Thomas atom approximates the facts in the

immediate neighborhood of the nucleus. Agreement with experiment

is sufficiently close for atoms of atomic number greater than 25 and is

fairly good for the lighter atoms.

From Thomas' standard F curve for Cs given in Table I it is possible

to calculate F curves for other atoms, since f tables similar to Table I

may be made for any atom of atomic number N by using

and

The Thomas F curve for iron {N = 24) is compared with the experimental

curve of Claassen^ in Table II.

Table II.

—

Comparison of Thomas' F Curve for Iron with Results of
Experiments

X 10-»

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 00o 0.9 1.0

Experimental (Claassen) 22.6Hfi 12.0fflH 9.4 8.2 6.9

Calculated (Thomas) 24 23.1 19.1 15.7 13.4 11.7
i

10.1 8.8 7.8 7.1 6.3

2. The Method of Trial and Error.—We may write Eq. (4) in the form

where d/2 is half the interplanar spacing, d/2 is the largest possible

* It is this fact that makes it practically impossible to be sure of the difference

between the F curves for atoms and the F curves for the corresponding ions.

fLet ro be the distance measured from the nucleus of the Cs atom, Zq the

total charge of both nucleus and extranuclear electrons within a sphere of radius ro,

and ^0 the potential at the distance ro from the nucleus. Then Thomas' equations

show that the corresponding quantities, r, Z\ for an atom of atomic number N are:

Electron density^at r ^
Electron density at ro * \66/
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value of a of Eq. (4) which would have any meaning if we are to retain

our current picture of an impenetrable atom. There is nothing to prevent

us from using some other limits of integration such as — r and r as long

as r does not exceed d/2.

Let us assume that, for the atoms of any given chemical element, the

electrons are arranged at random on the surfaces of spherical shells of

radii ri, r2, n, . . . ,
Vp] and let the number of electrons on the various

shells be mi, m2, m3, . . . ,
Wp. Then, in any plane of atoms in a crystal,

the common center of these spherical shells will be on the mid-plane of the

atomic layer (X 1X2 of Fig. la). If we consider a suflSciently large num-
ber of atoms, the average effect for any one shc.H will be the same as

though the electrons were uniformly distributed over the surface

of that shell We shall continue to represent by p{z) the probability

that a give;! dectron in the >heil will be found at a distance z from the

mid-plane of i he atomic lay. r. K the shell contains m« electrons, the

probability that some electron will be found at a distance z is map{z).

Frr a r iven value of z this probability is a definite quantity so that p(z)

becomes a constant = c, and m,p(«) = m,c. Since we have assumed
that we have 100 per cent probability that the electron is between the

limits [ — r < 2 < r], it follows that

J*
cd2 = 1

t.e., that

c ^ and mapiz) = m.^

Equation (4) therefore becomes, for any one shell of electrons.
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For the whole atom, therefore, we have

(35)

The accepted values of m for successive shells (as of 1926) are given

for about half of the chemical elements in Vol. I, page 49, of the ^‘Inter-

national Critical Tables.'' Corresponding values for the rest of the

elements may be guessed in terms of those given in the table. We may
therefore start with some substance whose structure is well known by
other methods, assume values of m, in the light of the “International

Table III.—

F

Curves for the Thomas and Hartree Models of Atoms

X 10-» 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

K, AT = 19

Hartroc 13 16.3 13.4 10.7 8.9 7.7 7.1 6.4* 5.9 5.3 4.8 4.3 3.7 3.3

Thomas 10 16.5 13.3 10.8 9.2 7.9 6.7 5.9 5.2 4.7 4.2 3.7 3.3

Cl, AT = 17

Hartree 18 15.2 11.6 9.3 8.1 7.2 6.5 5.8 5.1 4.4 3.8 3.3 2.9

Thomas 17 14.6 11.6 9.5 8.1 6.9 5.8 5.1 4.5 4.0 3.5 3.1 3.0

Al, AT = 13

Hartree 10 9.6 8.6 7.5 6.4 5.2 4.1 3.3 2.7 2.3 1.9 1.7 1.5 1.4

Thomas 1
n 11.0 8.6 7.0 5.8 4.9 4.2 3.6 3.2 2.8 2.5 2.2 2.0 1.8

Na, N = n
Hartree 10 9.6 8.2 6.7 5.2 4.1 3.2 2.6 2.2 2.0 1.8 1.6 1.6

Thomas 11 9.2 7.1 6.6 4.7 3.9 3.3 2.8 2.6 2.2 1.9 1.7

Critical Tables," and then find by trial the values of r. which best fit

the x-ray data. We may then hope to use these values of m* and

for these atoms (or ions) in the crystals of other substances. A much
more elegant method has been proposed by D. R. Hartree.® He calcu-

lates by the methods of wave mechanics the probable structures of the

atoms (or ions) of which the crystal is composed. This leads directly to

the data needed for calculating atomic (or ionic) F curves. The basis

of Hartree's calculations lies considerably beyond the scope of this book.

For details the reader must be referred first to texts on wave mechanics

and then to Hartree's original articles. It will be sufficient to state that

atomic F curves based on Hartree's models agree quite satisfactorily

(within 5 per cent) with experimental curves if we take into account

extinction, zero-point energy, and thermal agitation. Atomic F curves
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for potassium, chlorine, aluminum, and sodium are given in Table III

for both the Thomas and Hartree models. Even for these light atoms
the agreement is probably well within the errors introduced by extinction

and thermal agitation. It is perhaps not too much to say that any atomic

model which gives a high electron density near the center will give a more
or less usable atomic F curve.

3. The Method of Fourier’s Series.—This method was first used by
W. H. Bragg® and was later refined and improved by William Duane^
and A. H. Compton.® It has been used in its final form by many investi-

gators of whom the first was R. J. Havighurst.'^ The method may be

visualized by reviewing the analogous case in opt cs known as the Abbe
diffraction +''eory of microscopic vision.^® Light from an illuminated

object may \ regarded as Ijeing the resultant of all the diffraction pat-

terns oi^ all ders which, thet object can produce and which are per-

milteu by 1h(' conditions of 'ae illumination. In order that a lens may
give a truthful picture of an illuminated object, the aperture of the lens

rit.st h wide enough to transmit the whole of the diffraction pattern.

If the aperture is decreased so that only a portion of the diffraction pat-

tern is transmitted, the image will differ from the true image. It will

look like some fictitious object which could give off only those diffracted

beams which actually pass the lens. If the structure of the object is too

fine, or if the aperture of the lens is too narrow, none of the diffraction

pattern will be transmitted and no structure can be seen no matter how
great the magnification may be.

The following may serve to make this clear. It deals with experi-

ments by A. B. Porter^ which were originally intended for demonstrating

that the images of periodic structures as seen by the naked eye are really

due to diffracted light. Porter concentrated light from an arc lamp

on a pinhole in an opaque screen. Some distance from this pinhole was

a wire gauze having about 30 wires to the centimeter, set so that its wires

were horizontal and vertical. Immediately next to the gauze was a

lens which focused the light on a cardboard screen about 30 cm. distant.

The light therefore traveled from the pinhole through the gauze and

through the lens to the cardboard screen. A diffraction pattern was

found on the cardboard screen. It consisted of a central image and

eight groups of spectra (each group containing all the orders sof spectra)

extending radially from the central image. Two of these groups lay

in a horizontal line, two in a vertical line, two formed a straight line at

46® to the horizontal and the remaining two formed a straight line at

right angles to the third pair. These last two pairs are considered to be

spectra of spectra and are found whenever a light source is observed

through a pair of crossed gratings. Porter then cut small holes in the

cardboard screen. Each of these let through to his eye some small

portion of the diffraction pattern. The effect observed depended upon
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the size of the hole. If the hole was only large enough to let through

the central image, then he could not see the image of the wire gauze.

If the hole was in the form of a long narrow slit so placed as to let through

the central image and the horizontal pair of groups of spectra, then he

could see only the vertical wires of the gauze. If this slit was turned so

as to let through only the central image and the vertical pair of groups of

spectra, then he could see only the horizontal wires of the gauze. If he

turned the slit through 45® so as to let through the central image and one

of the pairs of diagonal groups of spectra, then he saw no vertical or

horizontal wires but, instead, a fictitious set of diagonal wires which ran

perpendicular to the length of the slit. If these fictitious wires had been

real they would have produced primary spectra exactly like the spectra

of spectra’’ which were actually present.

We have a similar situation in the examination of a crystal by means
of the diffraction of x-rays. The x-rays are scattered by the unit-crystal

with different efficiency in different directions, and all the information

which we can gain as to the structure of the unit-crystal is contained in

these scattered x-rays. Instead of recording on the retina of the eye

(or on the photographic plate of a camera) the image formed by the

recombination of the light waves, we must measure the intensity of the

x-rays which are scattered in certain directions permitted by the crystal

lattice and then interpret our data as best we can by computation. In

visual observation the phases of the waves scattered in various directions

play an important part in the formation of the final image. In crystal

analysis we cannot use these phase differences experimentally, for we
have nothing in x-ray work which corresponds to the lens of our eye or

of a camera; we can only make independent measurements of the intensi-

ties of the scattered waves in the directions in which the crystal diffracts

them.* This is the real reason why we cannot, in general, build up by
calculation a true image of the unit-crystal analogous to the image of a

small body seen under a microscope. Instead of giving us a true image

our calculations tend to give us a picture of the atom which may be as

badly distorted as some of those in Porter’s experiments. Porter’s

experiments could not tell us whether the wire gauze had (a) wires run-

ning vertically and horizontally, (6) wires running diagonally, or (c) some
wires running vertically, some horizontally, and some diagonally. But
in any case, the points of intersection of the wires could be located

definitely. In a crystal there are no stretched wires, but the mean
positions of the atoms correspond to the intersections of wires in Porter’s

gauze. It is reasonable to assume, therefore, that even though our

In the case of the simplest crystals having high symmetry, this diflSculty can be

'avoided by making certain assumptions. In the case of the more complicated crystals

still other assumptions must be made which, in the long run, amount to making the

method of Fourier analysis into a type ofi;rial-and-error method.
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pictures of the electron configurations in the atoms in a given crystal

may be considerably distorted, the uncertainty of our calculated image
does not extend to ihe average location of the atoms in the crystal.

The method of the Fourier's series offers a convenient means of

making the necessary calculations. Any Fourier analysis rests upon the

fact that a portion of a graph, taken between finite limits, can be expressed

approximately as the sum of a series of sine or cosine curves such as

Ao + Ai cos a + A2 cos 2a + A3 cos 3a + • • •

The degree of approximation depends only upon the number of terms
taken in the eories. Since every atomic F curve is bounded at each end
by finite lim s which are set by the nature of the experiments, it follows

that an atorr.c F curve can bo represented by a Fourier's series such as

the one givor? above. Ou/ s udy of the use of the Fourier's series in

interpreting ¥ eurves will, therefore, consist in evaluating the constants A
and a a id in interpreting the Wms of the series into the language of

atomic structure and into pictures analogous to those of Porter's

experiments.

The discussion at the beginning of this chapter, based on Fig. 1,

assumed a simple cubic crystal. This assumption will be continued in

the following discussion.*

We shall write Eq. (4) in the form

F =

a

(36)

where o/2 is half the interplanar spacing under consideration,t and

* This discussion may be made to apply to any cubic crystal as follows. We
learned in Chap. VIII that a space-group consists of an array of point-groups hung

on a space-lattice. This point of view may be extended by considering all cubic

crystals to be based on a simple cubic lattice. Then a body-centered cube might be

thought of as having pairs of points associated with each point of the simple cubic

lattice; a face-centered cube might be thought of as having a group of four points

associated with each point of a simple cubic lattice; etc. Other possible changes will

be obvious which will make the discussions of this chapter apply to still other crystal

systems. ^

t The use of the limits —a/2 and a/2 assumes that each atom is a separate entity

and that there is no interpenetration between adjacent atoms. This assumption

really makes the method of the Fourier series a sort of trial-and-error method or even

a sort of empirical method. It is the necessity for this type of assumption that keeps

the method of the Fourier series from being a perfectly general and direct method
of crystal analysis by which the structure of a crystal might be determined by purely

x-ray data.

It hardly needs to be pointed out that the assumption of non-interpenetrating

atoms is consistent with all of our fundamental ideas of physics and chemistry; in f&ct

modern chemistry and physical chemistry would be meaningless without it.
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where Z now represents the total number of electrons in the whole group

of atoms associated with a single lattice point. Bragg’s law tells us that*

sin B
__ ^

X 2a

z , z
so that, in Eq. (36), 4?!^ sin 6 becomes 2Tn'-. Then the structure factor

A a

corresponding to the n'th order of diffraction may be written

(37)

2

In this equation Zp(z) represents the number of electrons per unit

height. It is this quantity which we must express, to the necessary

degree of approximation, by a Fourier cosine series.

Fn' = zj
^
p(z) cos (

z z
Z p{z) = ilo ”f" -4i cos 27r— A 2 cos H“

* * *

+ cos 27rn'- + • •
• (38)

a

This may be written
eo

Zp(z) = Ao +

00

= cos (39)

0

Substituting Eq. (39) into (37), we have

cos 2wn'- ]dz

In the general case,t integration between the limits —a/2 and a/2

yields a series of terms each of which is zero. In the special case in which

r = n', we have

* In the following discusi^sion n' will be used to represent the order of diffraction.

The w of Eq. (6) represents the number of atoms per cubic centimeter,

t This integral corresponds to the standard form,

cos mx cos nxdx
sin (m — n)x

,
sin (m + n)x

2(m — n) 2(m -f n)

When m ^ Uy this form of the integral breaks down. For this limiting form,

111 . 1 .



STRUCTURE FACTOR 319

a

Fn' - J 2

a

Fn' =

A„- = ?F„.
a

(40)

Equation (40^ enables us to use the experimental values of the atomic F
cvirves direc y in Eq. (38). This gh’^es ns the ‘‘density distribution

Fiq. 5.—Graphical summation corresponding to Eq. (41).

of electrons, Zp(z), by means of a series, each term of which has

the form I

2rT o-f n' cos Zirn “
a a

These terms may be plotted as cosine curves with Ao as the base line of

the ordinates Zp{z). The sum of all these cosine curves ma^ be found

graphically and corresponds to

00

Zp(z) = Ao + cosW- (41)

1

This is illustrated in Fig. 5 which represents the data for Fu F2 , Fs, etc., as

given by Bragg, James, and Bosanquet^ for the (1 1 1) planes of N,aCl
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(a = 3 .243A.).* The value of the ordinate Ao may be found as

follows:

p(z) dz is the probability that some one electron will be at a height

between z and z + dz above the mid-plane of the layer of the atoms under
a

consideration in the crystal, f Then p(z) dz expresses the probability
“2

that the electron is between a/2 and —a/2, i.e., that the electron is in the

atom at all. Since, however, we have made the fundamental assumption

that each atom is a separate entity and that adjacent atoms do not inter-

penetrate, it follows that this probability must be unity, i.e.,

Jj^p{z)dz = 1 (42)

2

Substituting p(z) from Eq. (39) into (42) we have

1

1

Ao

p (z) dz = cos 2jrrzdz
a

(43)

Equation (41) therefore becomes

P» = Z p(z) == f
1

If we grant the fundamental assumption made in connection with

Eqs. (36) and (42), then Eq. (44) gives the number of electrons in a unit-

cube between the heights z and z dz above the mid-plane of the layer

of atoms under consideration.

This assumption can hardly be avoided, for without it we should have

had an infinite number of solutions of the Fourier series. It is forced

upon us by our inability to determine the phase relationships between the

scattered x-ray beams. In our ignorance of these phase relationships our

fundamental assumption seems to be the only way in which we can tie

down the Fourier series so as to obtain a single, definite solution. If

it had not been for the necessity of making this assumption, we might

have hoped to find not only the structure of the crystal but also the

* The exact form of the resultant curve will depend upon the number of terms used

in the Fourier series. The larger the number of terms, the more nearly the resultant

curve will approximate the real distribution of electrons. Corresponding experiments

may be made with Porter's apparatus for the diffraction of visible light,

t See discussion leading to Eq. (2).
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structure of the individual atoms in the crystal. The necessity for

making this assumption definitely closes the door to such a hope except

under certain ad"/8.ntageous conditions which will be taken up in Chap.
XVI. The results of our fundamental assumption appear in Fig. 5,

which necessarily shows the electrons clustered in groups. Small groups,

identified by low peaks, represent atoms (or ions) of low atomic (or ionic)

number; larger groups of electrons, identified by higher peaks, represent

atoms (or ions) of higher atomic (or ionic) number. Thus, in Fig. 5, the

low peak of the resultant curve repiesents the Na*^ of NaCl; the high

peaks represent the C.l“. The ordinates are very closely in the ratio of

10 : 18, but the nature of the data and the limited number of terms used

iii the Fourii series make it impossible to distinguish with any certainty

between ator s and ions by methods such as we have described. Further

discussion of i liis point must be postponed until we reach Chaps. XIII
p ad XIX. Tlie equivalent of Eq. (44) has also been obtained by Duane^

and Ha^ ighurst^ from the standpoint of the quantum theory of diffrac-

tion. " he fnnd?'mental assumption made in this chapter is also found

in their derivation, but it is statea in a somewhat different form.

For further discussion of the method of Fourier series, the reader is

referred to two articles by A. L. Patterson^^ jn Zeitschrift fur Krystal-

lographie (1930).

SUMMARY

We have considered the x-ray wavelets diffracted by the individual

electrons in the atoms of a crystal and have studied the phase differences

between these wavelets caused by the space configurations of these

electrons. We have found that these phase differences cause a decrease

in the intensity of the diffracted beam which can be expressed in terms of

a quantity called the ‘‘structure factor.^' We have taken account of the

variables which affect the intensity of the beam and have seen how the

structure factor can be used as a powerful tool in determining the struc-

ture of crystals. It remains to clarify these ideas in terms of actual

examples. This will be done in the following chapter.
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CHAPTER XI

APPLICATIONS OF THE STRUCTURE-FACTOR METHOD

We have studied in the previous chapter how the structure of a crystal

may be solved in terms of a quantity called the ‘‘structure factor/'

So powerful is this method of crystal analysis that W. L. Bragg has

stated that, once given a crystal of sufficient size so that its exterior

symmet^ c ii be determined, the structure of that crystal can be unrav-

eled complex ly no matter how complex it may be. It is not often given

to one mar? have playei y » important a part both in the early stages

of a subjecr. find in its final reduction to a routine tool of research. Not
ouly dr js the fundamental law of x-ray diffraction by a crystal bear his

name, out the foundations and a large part of the finished form of the

structure-factor method are due to him and his associates. It is not

inappropriate, then, that the illustrations which we shall take up of the

application of this method to crystal analysis come from his laboratory.

THE STRUCTURE OF DIOPSIDE, CaMg(Si03)2

Experimental Data.—The structure of diopside, CaMg

(

8103) 2 ,
has

been worked out by Warren and Bragg ^ by means of the trial-and-error

scheme mentioned in Chap. X. This material has been shown by

Wyckoff and Merwin^ to belong to the monoclinic space-group

with four molecules per unit-crystal. The axial angle is 74® 10' and

the axial lengths* are a = 9.7lA., b == 8.89A., and c = 5.24A. The
location of the axes of symmetry and the points of inversion for Clf^

are shown in Fig. 1. There are four independent sets of symmetry

centers, and each set is represented four times in the unit-crystal. The

(001) face, in terms of Warren and Bragg's axes, is centered. The
symmetry plane perpendicular to the 6-axis is a glide-plane with a

translation c/2, The 2-fold axes of symmetry are labeled C in Fig. 1.

The fundamental experimental data consist of values of the apparent

“integrated reflection" p' which can be translated into values of the true

integrated reflection p. These values of p can be translated, in turn,

* Warren and Bragg have followed the ordinary usage of crystallography in naming

the three axes a, 6, and c of Fig. 1. In terms of the terminology of Chaps. II and

VIII and of Wyckoff (‘‘Analytical Expression of the Results of the Theory of Space-

groups ^0, o and c are in the directions of the X- and F-axes; b is in the direction of

the Z-axis. It should be remembered that a plane which would be called* (5 6 2) on

the basis of Warren and Bragg’s coordinates would be the (6 2 6) plane on the basis of

Wyckoff’s coordinates. For convenience of reference to Warren and Bragg’s article,

their axes will be used in this discussion.

323
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into values of the structure factor Fhki- It is with the various values

of Fhki that the structure-factor method of crystal analysis must deal,

so that we must build up from p to p and then from p to Fhku

Values of p' were determined by Warren and Bragg for several hundred

sets of indices (hkl). In the case of the a, 6, and c faces of the crystal,

direct measurements of p' were calibrated to give the true integrated

reflection p in terms of the integrated reflection from the (4 0 0) planes

of a standard crystal of NaCl for which p was 1.09 X 10""®. Rhodium

Fig. 1.—The axes of symmetry and the points of inversion of space>group

radiation (X = 0.614A.) was used. Values of p were found for other

indices as follows: Sections of diopside were cut perpendicular to the

a-, 6-, and c-axes, with thicknesses 0.064, 0.107, and 0.210 cm., respec-

tively. The face of each of these thin sections was therefore perpendicu-

lar to. an important zone axis. Each cut face was used in setting up
the crystal to measure the intensities of the diffracted beams for the

various planes passing through that zone axis. This may be illustrated

in terms of the section cut perpendicular to the i)-axis. The section

of crystal was mounted so that the*cut face was vertical, z.e., so that
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the b-axis was horizontal. It was rotated about the b-axis until some
plane (hOl), normal to the cut face, also became vertical. Then, by
setting the crystal section and the ionization chamber at the proper

angles, measurements were taken rapidly of the intensities of the dif-

fracted beams of various orders. The crystal section was then rotated

again about the b-axis until some other plane (hOl), normal to the cut

face, became vertical, and again measurements were made of the intensi-

ties of the diffracted beams. This procedure was repeated for other

planes (h 0 1) until all had been used. These measurements of intensity

were not related in any simple way to the apparent integrated reflection

p', but at least the factors which connected tlujse two types of values

varied in e. continuous way with the glancing angle. The intensity

ineasuremci Is were therefore translated into measurements of p' in

terms of a ( dibration from the (AGO) and (OOZ) planes whose p' had

been meas\i/( d directly av ihe beginning of the investigation.

Before the structure factorF for each of these planes can be calculated,

f* mu* t be changed into the corresponding true integrated reflection

p. It was pcnnu'd out in Chap. X [Eq. (31)] that p can be expressed

in terms of the experimental value p by an equation of the form

-
"

1 - 2gpf

For these experiments, gr = 1.06 X 10^.* It should be remembered
that the resulting values of p are only approximate and will lead to

approximate values of Fhkh Fortunately, the values of Fhhi are very

sensitive to slight changes in atomic coordinates so that approximate

measurements of Fhu (accuracy of the order of 20 per cent) lead to a

rather high degree of accuracy in the determination of atomic coordinates.

Warren and Bragg calculated the values of Fhki from the experimental

data of p' by a combination of Eqs. (15a), (27), and (31) of Chap. X.

These three equations givef

- P'

" 1 - 2gp'
9.

2m

A

1 + cos^ 2d

sin 20

2m (1)

* This value of g was estimated by Warren and Bragg from a preliminary analysis

of diffractions around the [0 1 0] zone of the crystal. They found it possible to deter-

mine, to a high degree of approximation, the positions of the atoms when projected

on the (0 1 0) plane, without taking extinction into account. In those cases where
p' was large, values of Fhki were calculated for this structure and were compared with

those calculated directly from the experimentally determined values of p'. The two

sets of values for Fhia were made to agree by picking a suitable value for g.

t Equation (16) of Chap. X was based on a simple unit of structure, t.e., one atom
per unit-crystal. For a more complicated structure such as diopside the structure

factor F must be expressed in terms of all the atoms per unit-crystal.
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in which n = number of unit-crystals per cubic centimeter

= the reciprocal of the volume of the unit-crystal

= 3435 X 1024

X = 0.614 X 10“* cm. {K^ of rhodium)

e = 4.774 X 10“^® abs. e.s.u.

m = 8.994 X lO-^* g.

c = 3 X 10^® cm. per second.

fx = 12.8 cm~^ for of rhodium (by direct measurement).

Using these values, Eq. (1) can be condensed to the form

P = P
/

1 - 2gp'
0.189F*i + cos2 26

sin 26
10-

«

(2)

Warren and Bragg found that the cut specimens mentioned above

gave diffracted beams as follows:

Indices (0/cZ), . . . . A; even.

Indices (AOZ), . . . . A and I both even.

Indices (hk0)j .... h + k even.

This is consistent with Wyckoff and Merwin^s data which placed diopside

in the holohedral monoclinic space-group Values of p' and of ±Fhki

Table I.—Values of Fhoa, Fokoj and Fooi, Calculated from p' by Means of

Eq. (2)

sin 0 Indices i
p' X 10»

±F calculated

from p'

F calculated

from structure

0.0658 (200) - 11

0.0691 (020) 9.0 19 + 26

0.1219 (002) 60. ? >140* -176
0.1316 (400) 3.0 16 + 16

0.1382 (040) - 7

0.1974 (600) 31.0 100 + 114

0.2073 (060) 28.0 94 - 91

0.2438 (004) 34.0 136 +107
0.2632 (800) 21.0 76 + 69

0.2764 (080) - 23

0.3290 (1000) 11.6 56 ‘ + 66

0.3455 (0 100) 12.6 65 + 66

0.3657 (006) 3.4 29 - 48

0.3948 (1200) - 6

0.4146 (0 120) 3.0 29 + 36

0.4606 (1400) 8.0 58 + 66

0.4876 (008) 3.7 38 + 47
0.5264 (1600) + 6

0.6922 (1800) 1.0 22 + 21

Value uncertain because of high extinction.
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calculated from them by Eq. (2) for the a, 6, and c faces and for the

(Okl), (hOl), and (hkO) planes are given in Tables I, II, III, and IV.

These tables also give, for purposes of reference, the corresponding

values of Fhki calculated by Warren and Bragg from their final structure

for diopside.

Table V shows empirical atomic F values for Mg, Ca, 0, and Si,

for various values of sin 6, These values were arrived at from work

Table IT.—Values op Foki Calculated from p
' by Means of Eq. (2)

sin 6 Indices p' X 10®
±F ( alculated

from p'

F calculated

from structure

0.0922 (021) 21.4 44 -42
0.1400 (022) 28.4 75 +59
0.1513 (041; -

! 29.6 82 -96
0.J844 (042) 24.0 72 +56
0.1942

’

(023) Weak Small -10

0.2189 (001) 14.0 50 +52
0.2292 (013) 13.1 50 +61
0.2406 (062) 25.0 88 +87
0.2534 (024) Weak Small +11
0.2766

1
(063) 9.3 44 -35

0.2800 (044) - 9

0.2832 (081) 3.5 25 +30
0.3022 (082) 3.9 28 +30
0.3123 (025) + 10

0.3200 (064) -17

0.3316 (083) -10
0.3345 (045) 3.1 26 -36
0.3685 (065) 3.2 29 +24
0.3688 (084) Weak Small -27
0.3714 (026) + 2

0.4115 (085) + 4

0.4200 (066) Weak Small +21
0.4483 (047) 2.2 26 +30

on other silicates. The bottom line of the table gives the F^value that

all the atoms in a unit-crystal would have had if they had all diffracted

the x-rays with the same phase. Comparison of these values with the

actual values for the same sin 6 in Tables I, II, III, and IV shows how
markedly the resultant amplitude is cut down by interference.

Bird’s-eye View of the Analysis*—We now have at hand the neces-

sary fundamental data with which to make our analysis. In making

this analysis we cannot impose any arbitrary limitations on the structure

of our crystal except those set by its exterior symmetry, cleavage, etch
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figures, etc. We must follow as general a scheme as possible. This

means that, if possible, we should make our first attack on some one or

more parameters which we can determine independently of the others

by means of some sort of symmetry considerations. Once this has

been done, the analysis of the remaining parameters will be found to

have been much simplified.

Table III.—Values of F hoi Calculated from p' by Means of Eq. (2)

sin 6 Indices p' X 10»
±F calculated

from p'

F calculated

from structure

0.1212 (202) 19.1 40 + 44

0.1529 (202) ' 31.0 88 - 85

0.1530 (402) 28.6 80 -117
0.2017 (602) 26.0 82 -105
0.2021 (402) 35.5 128 - 99

0.2344 (204) Weak Small - 6

0.2424 (404) 21.9 77 + 85

0.2579 (802) 5.7 32 - 30

0.2585 (602) 0

0.2687 (604) 14.7 59 + 96

0.2693 (204) 2.1 19 + 22

0.3058 (404) 22.3 90 + 84

0.3060 (804) .... - 6

0.3179 (1002) 8.1 44 - 69

0.3184 (802) 10.0 51 - 51

0.3524 (604) Weak Small + 21

0.3530 (206) 5.0 36 - 42

0.3532 (406) 13.3 49 - 48

0.3636 (606) 3.6 30 - 27

0.37W (1002) 12.0 63 - 75

0.3882 (206) - 4

0.4042 (804) 3.8 33 + 31

0.4206 (406) 13.0 72 - 71

0.4587 (606) - 14

0.4688 (408) Weak Small + 22

0.4734 (208) + 20

Figure 1 shows four symmetry centers Ay A\ By and four 2-fold

axes C. Wyckoff and Merwin found four “molecules'' of CaMgSi2 06
per unit-crystal. This gives us four Ca and four Mg to place in each

unit-crystal. We may therefore start our analysis of the structure

by assuming that Ca and Mg lie at the symmetry centers A, A'
y
B, and

jB', or that they are associated with the 2-fold axes C or are associated

with Ay A\ By B' and C. Of course, this assumption must be justified
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later in terms of the end results of the analysis, but, if we once grant this

assumption provisionally, the rest of our analysis of the structure falls

naturally into four steps, namely, finding in projection on the o-c plane,

Table IV.

—

Values of Fhko Calculated from p' by Means of Eq. (2)

sin B Indices p' X 10«
±F calculated

from p'
,

F calculated

from structure

0.0477 (110) - 8
0.0964 (220) 23.8 48 - 64

0.1040 (310) 32.8 - 76 + 80
0.1084 (130) 2.6 12 + 16

0.1431 (330) 18.2
1

49 + 81

0.1480 (4 20) 6.6 22 - 22

0.1626 (240, 2.7 16 + 9

0.1673 (310) 21.8 61 - 66

0.1766
'

(150) 27.6 82 - 92

0.:908 (440^ 14.8 48 - 48

0.1934 (630) 9.2 36 -f 49

0.1982 (360) 16.2 63 - 66

0.2080 (620) 2.6 18 - 19

0.2168 (260) 6.8 31 + 44

0.2323 (710) 9.6 40 “1" 44

0.2386 (660) Weak Small + 8

0.2438 (170) .... -f 1

0.2620 (730) + 6

0.2608 (370) Weak Small - 4

0.2862 (660) Weak Small - 6

0.2867 (760) 23.8 92 -112
0.2920 (570)

1

7.4 40 - + 41

Table V.

—

Atomic F Values for Mg, Ca, O, and Si

(Empirical results of Warren and Bragg
i) X = 0.614

sin $

Magnesium
Calcium . . .

.

9.3 6.6 4.3 2.8 1.9 1.2

16.1 7.7 '"6.9 4.6 3.6

Oxygen 6.6 3.3 1.8 0.9 0.6 0.3

Silicon 7.6 6.6 2.8 2.0

4(Ca + Mg + 2Si + 60) 338 209 136 88 60 42

(a) possible locations for Si, (6) possible locations for Ca and Mg, (c)

possible locations for O, and (d) finding in projection on the a-6 plane

the probable locations of Si, Ca, Mg, and O.
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a. It is evident from Fig. 1 that planes which include the symmetry
axes C and points corresponding io and B' must have Miller

indices (AOZ) for which h and I are multiples of 4. This means that,

if our assumption is correct, all the Ca and Mg lie exactly on planes such

as (400), (404), (004), (800), (804), (404), (12 00), (408), (16 00),

Fig. 2.—Projection on the (010) plane of some of the regions forbidden to Si. (Only
one-fourth the base of the unit-crystal is shown.)

Fig. 3.—Projection on the (0 1 0) plane of other regions forbidden to Si. (Only one-fourth

the base of the unit-crystal is shown.)

etc. With Ca and Mg fixed with reference to planes (4ni,0,4n2), we
can study the values of F for these planes as an aid in locating the eight

Si and .twenty-four 0. If the base (o-c plane) is divided into four equal

portions each of side a/2, c/2, the symmetry of the crystal requires that

the projected atomic positions in each portion must be the same.*

* Planes of the form (h 0 1) in the crystal above one of these quarter portions of the

base are represented by lines on the base. Volumes between parallel (h 0 1) planes are
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Each observed value of must be explained by contributions

from four Ca, four Mg, eight Si, and twenty-four O. Since the Ca and
Mg atoms are assumed to lie exactly on the plane, we know their con-

tributions ioFhQi from Table V. It is now possible to map out projected

areas on the base (corresponding to volumes in the crystals) which cannot

possibly be occupied by Si no matter where the 0 atoms are placed.

For instance, if the observed value of is very small, and if the Ca
r.nd Mg atoms by themselves outweigh any possible negative contribu-

tion which the 0 atoms could make (even though they all diffracted

in phase), then it must follow that the Si atoms can.iot make any positive

contribution to Fh o /. We can represent this by marking off on the base

a series of strips which represent regions forbidden to Si. (See Figs. 2

and 3, each oi which represents only one-fourth of the (0 1 0) plane of the

UTiit-crystal.'i By consideri^ m this way several planes in succession,

we can limit tho possible arer.s corresponding to Si atoms in one-fourth

the crystal ro the small regions marked 1, 2, 3, 4, 1', 2', 3', 4' of Fig. 4.

Tlii.: giv‘ s us on each quarter of the (0 1 0) plane eight unforbidden areas

in which to put two Si atoms. We have eight Si atoms to place in

each unit-crystal. The theory of space-groups (see Chap. VIII) permits

Clh to have five sets of atomic coordinates for the special case of four

equivalent points and one set for the general case of eight equivalent points.

(a) KOO; H00-, }iy2y2; HAA
(b) 'A'AO; HAo
(c) HHH-, HAH; AHH
id) HHH-, HHH-, AHA; HAA
(e) 00m; HOu; oKm + M; AA A —

'I

(/) xyz-, xyS; x+A, y, s; A-x, y,s;

X, y+}4, z+M;; M- y,z+A; x+A, y+A, A-z
A-!/, A-z

Of these, only the coordinates of (/) fit any of the regions permitted by
Fig. 4, and these fit any of the pairs of regions permitted by Fig. 4. As
a starting point in the analysis, Warren and Bragg arbitrarily pick 4 and
4' as the projection of the Si atoms on the (0 1 0) plane, f

6. We have assumed so far that Ca and Mg atoms are at A, A\
By B'y or C. Our choice of positions may

.
be limited by considering

represented in projection by areas on the base. Shaded areas in Figs. 2, 3, and 4

should be interpreted as representing volumes between planes perpendicular to the

paper. These figures all represent only one-fourth of the base.

* The signs of the observed values of F are unknown.

t In general, there is no reason for picking 4 and 4' instead of 1 and 1', 2 and 2',

or 3 and 3'. Whatever pair we start with, it is still necessary to investigate the other

three possibilities. A solution of the crystal structure can not be regarded as complete

until it has been shown that (o) a certain pair of positions will account for the experi-

mental data and (b) no other pair of positions will account for the data.
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the F values for (hOl) planes for which h and I are not multiples of 4.

For instance, the. observed F values for (406) are very nearly equal

to the maximum values permitted by Table V. The lines corresponding

to these planes are shown for one-fourth of the crystal in Fig. 4. If,

now, the Si atoms are at 4 and 4' of Fig. 4, then a Ca or Mg at A, A\
By or B' would reduce the value of F seriously for the (406) planes.

This leaves, by elimination, position C. Quantitative confirmation

of this conclusion will be given later in a detailed study of F for still

other (4ni, 0
,
4n2) planes. It will turn out that the Ca and Mg atoms

occupy crystallographically equivalent positions. These may be arrived

at in the projection of Fig. 4 by going a distance a/4 from the center

of the Si pair in a direction parallel to the o-axis.

c. We now are ready to consider the O atoms. Table I shows that

the experimentally observed value of F4 o o is very small, ± 15. Succes-

Fio. 4.—Projection on the (0 1 0) plane of regions permitted to Si. (Only one-fourth the
base of the unit-crystal is shown).

sive (400) planes for one-fourth of the crystal are shown in Fig. 4 by
the lines AA' and BB\ Since Ca and Mg are assumed to be (in projec-

tion) at positions corresponding to C, and since the Si are at positions

4 and 4', they must all make strong contributions to F^ o o. The sum
of these contributions must be almost completely balanced out by the O
atoms, so that F^ o o. may be reduced to ± 15. This places them about

halfway between successive (400) planes.

d. If we once grant that the foregoing conclusions can be verified

by a detailed study of the data, then we are ready to complete the

analysis of the (010) plane. The approximate coordinates of the 0
atoms parallel to the o-axis are known, and their c-coordinates can be

foimd by trial and error. It will be found that the only coordinates

which give good agreement around the [0 1

0

] axis are those shown in

projection on the (0

1

0) plane in Fig. 7. Each O comes at a distance of
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l.sA. from a rotation axis. We have already placed the Mg and Ca
atoms on 2-fold axes of symmetry, and we have located the projection

of the Si atoms on the (0 1 0) plane.

c. Our bird's-eye view of the analysis will be completed with a

description of the structure. The unit-crystal contains four 2-foId

axes. On each of these we must place, like beads on a string, one Ca,

one Mg, and three pairs of O atoms. Each pair of 0 atoms will be

placed so that one of the atoms lies on one side of the axis and the other

at an equal distance on the other side. The 0 pair, then, simulates

a dumb-bell placed with its handgrip perpendicular to a 2-fold axis of

the crystal. In order to preserve the symmetry, the Ca, Mg, and O
rtoms must b threaded similarly on two of the four axes and in the

•everse directi >n on the other two. Using the interatomic distances

for 0 — 0, Ca 0, and Ca ^ vfjg, usually found in silicates,* it appears

that there \i room for these atoms along the 6-axis. Only two

ai rangemcats of atoms are possible: (a) Ca — Mg — 20 — 20 — 20, and

(6) ('a — 20 — 20 — Mg — 20, with the order reversed on alternate

2-fold axes. The first Cif these must certainly be discarded on chemical

grounds, so that only alternative (6) is left.

Since we know the locations of the 2-fold axes in the crystal, and

since we know the locations of the 6-axes which pass through the Si

atoms, we can express the whole structure of diopside in terms of these

locations and two other parameters. The first of these fixes the loca-

tion of some one of the atoms on the 2-fold axes; the second fixes the

location of the Si atoms along their 6-axes. These two additional param-

eters can be determined easily by trial and error.

The atomic coordinates just described represent a first approximation

to the final values. A second approximation may be made to improve

the agreement between the experimental and calculated values of Fh k u

The final coordinates as found by Warren and Bragg give the agreement

listed in Tables I, II, III, and IV. Closer agreement is hardly necessary

because of the large variations in Fn hi caused by small changes in lattice

parameters. We are now ready to take up a detailed study of the experi-

mental data to see how the above bird's-eye view can be arrived at.

Detailed Study of the Data. a. Indices (4ni, 0, 4n2).—Figures 2, 3,

and 4 show only a fourth of the (010) base of the unit-crystal. The
total value olFh^i is, of course, four times that due to the portion shown

in these figures. The projection of nine planes (4ni, 0, 4^2) on (0 1 0) will

be considered. For one plane, a detailed discussion will be given by way
of illustration. The discussion for the rest will be given by means of

symbols.

* It will appear in Chap. XIII that these distances are considerably different from

the sum of the packing-radii found in the elements or in binary compounds of the

ionic type.
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The diffracted beam from the (804) planes is too weak to measure.

The sum of the contributions of the various atoms to the value of F804

must therefore be close to zero. No matter whether the four Ca and

four Mg atoms lie, in the projection on the (010) plane of Fig. 4, on

points corresponding to A, By or B' or on points corresponding to (7,

they will lie exactly on the plane (804). They will therefore contribute

their full atomic F values toward F804 . Interpolated atomic F values

from Table V for sin B = 0.3060 show that these four Ca and four Mg
atoms contribute an amount equal to +47 toward F804 . The eight Si

atoms will contribute some value between +44 and —44, depending

upon where they are placed. The twenty-four 0 atoms will contribute

some value between +41 and 7“41. It is evidently not possible for the

Si atoms to contribute +44, for even a contribution of —41 from the 0
atoms would still leave a large and easily measurable positive value of

7^8 0 4 . But actually Fh^a is negligibly small. If the Si atoms in this

plane contribute any positive value at all to F% 0 4, the 0 atoms cannot

possibly reduce the F^ 0 4 to less than +6 . Evidently the Si atoms cannot

be in any position which would cause them to make any positive contribu-

tion to 7^8 0 4 - This does not, however, forbid positions for the Si atom
such that they can make a negative contribution to T^s 0 4 which, together

with an appropriate contribution from the 0 atoms, would balance

out the +47 from the Ca and Mg atoms and make /'"so 4 negligibly small.

The (8 0 4) planes are therefore drawn as in Fig. 2, and parallel strips are

shaded to show the projections on (010) of regions corresponding to

positive contributions from Si atoms to F% 0 4 . These represent regions

forbidden to the Si atoms.

The width and location of each shaded area are determined by the

following considerations. The atomic F factor takes care of the loss in

intensity of the d^iffracted beam of x-rays due to the spatial structure

of the atom, on the assumption that the atomic center lies on the crystal-

lographic plane (see Chap. X). But we have seen that, although the

Ca and Mg atoms lie on the (4ni, 0, plane, the Si atoms do not.

Since the Si atoms lie off the crystallographic plane, the x-ray wavelets

which they diffract will not be in phase with the wavelets from the Ca
and Mg atoms. This necessitates an additional factor, cos <#>, where

0 _ distance from the center of the Si atom to the plane (4ni, 0, 4n2)

2t
~~

interplanar spacing between two successive (4ni, 0, planes

This factor changes the intensity which the Si atoms would have con-

tributed if they had been exactly on the (4ni, 0, 4712) plane into the

intensity which they really contribute in their actual positions in the

crystal. Each of the Si atoms in the unit-crystal therefore contributes

Fgi cos <t> to the diffracted beam. The eight Si atoms in the unit-crystal

contribute SFqi cos Fg, may be found by interpolation from Table V,
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using the value for sin 6 demanded by Table III for the diffraction of

RhK rays from the plane (4ni, 0, 4n2). The value of cos 0 must be

estimated in term ^ of the discussion already given involving the experi-

mental values of the structure factor Fh o i and the values of 4Fca>

8Fgi, and 24^0.’*' The estimated limiting values of cos <#> for the (804)

planes are given below along with similar estimates for other (ini, 0, 4^2)

planes.

(400) ±F4oo = 15

4Foa + 4Fm, - f 87

SFg, = 74

24F,, - 130

It is improbable that 1.0 > cos <l> > 0.8 is permitted for Si. The evidence

is not conclusi e, and that iM'orded by (12 00) which covers the same

area is mori; rc^oable.

iOf* 1) iF3 0 4 ^ 75t

4Fea + 4F^, = +69
8Fg, = 54

24F^ = 60

At a conservative estimate, —0.8 > cos <l> > — 1.0 is forbidden to Si, and

the forbidden range is greatly extended if extinction is fully allowed for.

(404) +F404 > 69

4F,,, + 4Fm, = +47
SF,, = 44

24F« = 41

— 0.4 > cos <t> > —1.0 is forbidden to Si.

(804) +F8„4 = 0

4Fe. + 4Fm« = +47
8Fsi = 44

24Fo = 41

1.0 > cos 0 > 0 is definitely forbidden to Si and even —0.13 may be

forbidden.

* The estimates given for cos <t> by Warren and Bragg ^ differ from those given by
Bragg and West* from the same data. It is an interesting commentary on the depend-

ability of the structure-factor method that there is only a negligible difference between
the end results obtained from the two sets of estimates. The estimates of Warren and
Bragg are used in this chapter. The values of cos ^ are taken to only one decimal

place.

t Values oi Fhki uncorrected for extinction have been used in this series because
the extinction correction depends upon this analysis. The corrected value of F004

is 136.
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(12 00) i^'ia 00 = 0

4/!’c» + = +36
= 32

24/!’o
= 22

1.0 > cos 0 > 0 is forbidden to Si.

(408) ±/*'408 = 0

4^'ca + 4f^M. = +28
= 26

24^0 = 19

1.0

> COS > 0 is forbidden to Si.

(808) i/^8 0 8

4^ Oa +
8/^Si

24/^0

1.0

> cos <^ > 0 is forbidden to Si.

(16 00) i^ieoo = 0

4fca + 4f = +24
= 21

,

24fo = 10

1.0

> cos > 0 is forbidden to Si

The shaded areas of Figs. 2 and 3 show, in projection on the (0 1 0)

plane, the regions forbidden to Si for one-fourth the unit-crystal. They
exclude all except the small regions marked 1, 2, 3, 4, 1', 2', 3', and 4' in

Fig. 4.

Detailed Study of the Data, b. Complete Analysis of the Projection

on Plane (010).—We have seen that space-group provides for the

possibility of eight equivalent positions, corresponding to 1, 1', or 2, 2',

or 3, 3', or 4, 4' of Fig. 4. The theory of space-groups does not, however,

help us in choosing which of these pairs of positions corresponds to the

projection on the (0 1 0) plane of the positions of the Si atoms. In the

most general type of analysis we should expect to have to try each pair in

turn and see whether it enables us to account for the various Fhki values

of Tables I, II, III, and IV. A favorable outcome of the analysis on the

assumption of Si at some one pair of positions would not mean that the

Si atoms had been definitely located; it would still be necessary to show,

if possible, that none of the other pairs of positions shown in Fig. 4

satisfy the data. Since trial shows that the regions corresponding to

4, 4' do enable us to account for the various Fk * i values, we shall use them
to illustrate the details of the method. It will appear later that in the

case of diopside we can make a short-cut and eliminate positions corre-

= 0

= +27
= 24

= 12
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sponding to 1 and 1', 2 and 2', and 3 and 3' without having to repeat our
whole analysis for these positions.

On the assumption that the Si atoms are in positions corresponding, in

projection, to 4 and 4' of Fig. 4 we shall determine the areas on the

(0 1 0) plane corresponding to the positions of the Ca, Mg, and O atoms,

using for the purpose 00,^20 0, F4 0 i, and Fu 0 0 .

(400) ±^4 0 0 = 15

- + 87

8F«, = 74

24Fo = 130

Since the Si a? ms do not lie exactly oh rhe (4 0 0) planes, their contribu-

ion to the inte isity of the diffractetl beam will not be SFgj = 74 but will

be 8Fgj cos 4> * 74 cos </>, whirr (Scaling off from Fig. 4.)

0 __
diatriuce from the center of the Si atom to the (400) plane

2r distance between successive (400) planes

Figure 4 shows that, if the projected position of the Si atom at 4 is meas-

ured from the line AA'^ then <#> lies between the limits 289° and 319°. If

it is measured from the line JSJS', it lies between 71° and 41°.

cos 289° = cos 71° = +0.326
cos 319° = cos 41° = +0.756

It follows that the eight Si atoms whose positions correspond in projection

to 4 and 4' of Fig. 4 make a contribution to F4 0 0 between +24 and +56.

The O atoms must therefore all lie in projection in a strip approximately

half way between AA^ and BB'\ otherwise they could not balance out the

large positive contribution from Ca + Mg + 2Si. This means that

the O atoms will occur in coordinates (/) of space-group C®*- In order

to account for twenty-four 0 atoms we must have three values of x, three

of
2/, -and three of z in the set of coordinates (/) of this space-group.

F2 0 0 = 0

+ 68

± 42
II00 84

24^-0 = 192

The eight Si atoms in positions corresponding to 4 and 4' contribute an

amount between —83 and —75 (origin at 0 of Figs. 2 and 3). The
O atoms, approximately halfway between AA* and 5JS', are in such a

position that their contribution is small. The Ca contribution must

therefore be positive. We have already assumed that Ca must be at il,

or il', or J8, or 5', or C, or D. The required positive contribution to
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F2 0 0 permits the Ca atoms to be at A or A' or C. There is a strong prob-

ability that Mg is also at 4 or A' or C.

(406) ±F40 6 == 72

= ±22
= ±10

8Fsi = 30

24Fo = 17

F406 is nearly the maximum amount permitted by

4/'^ca + + 8F,, + 24/^\,

With Si atoms at 4 and 4', Ca and Mg atoms must support them by being

at C or D, Position D for Ca is definitely eliminated by (200). Hence
the Ca and Mg must be at C.

(1400) ±Fi4oo= 58

4^’ca = ±20
4i^Ma = ± 9

8F,, = 26

24F^ - 14

The planes (14 0 0) are shown in Fig. 4. The value of F 14 0 0 is nearly the

sum of 4Fca + ^Fj^g + 8Fj,i + 24Fq. This agrees with a position for

Si, in projection, in the areas 4 and 4', and C for Ca, and makes it almost

certain that Mg is also at C and not at D,

Warren and Bragg then examined the whole series of (hOl) ‘‘reflec-

tions^^ at high angles where the contribution of the 0 atoms is small.

The conclusion that both Ca and Mg atoms are at C was confirmed, and

the positions of the Si atoms in the areas 4 and 4' were fixed more

definitely.

Granting the positions of the Ca, Mg, and Si atoms in Fig. 4, we can

now fix the three typical O atoms. The positions finally arrived at

are shown in the projection on the plane (0 1 0) in Fig. 7. In order to get

any general agreement between calculated and observed values of Fhoi

such as that shown in Table III,Mt is readily shown that two O atoms

must be close together at 0/ and O2 (Fig. 7), and the third near O3.

The precise determination of the positions of Oi' and O 2 is a refinement

made at a later stage in the analysis when values of Fhko and Fo k i are

being considered.

Detailed Study of the Data. c. Projections on the Orb Plane.—It is

highly improbable that a Si pair is centered about C of Fig. 4, for this

would place the atoms on a 2-fold cyclic axis of symmetry so that both Si

atoms would lie in a plane parallel to the (0 1 0) plane. Such an arrange-

ment would place the two atomic centers within 1.25A. of each other, a

distance which is obviously too small for atoms having a packing-radius
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(see Chap. XIII) of at least 1.17A. It has been proved that if we assume
the Si atoms to be centered about points corresponding to D in Fig. 4,

then the Ca and Mg atoms are at C. Similarly, if the Si pairs are cen-

tered about A or B, the Ca and Mg atoms will be at or -4, respectively.

A consideration of planes (h 0 1) cannot decide between these alternatives,

since in the projection there is nothing to distinguish points A, A', 5,

C, or D.

The following discussion of the values of Fq 2 0 ,
Fq 4 0 ,

F2 2 0 ,
and F2 4 0 ,

all of which are small, will show that the Ca and Mg atoms both lie on
the 2-fold axis at C and not at the centers of symmetry AA' or BB' of

Figs. 1 and 4. By definitely placing the Ca and Mg atoms at C, we shall

hove confirr^ d our original assumption that Si atoms are at 4 and 4'

of Fig. 4, thu making it unnecessary for us to repeat our whole analysis

for the othe: p )sitions periiit^ tc Si by Fig. 4.

The atoi \iic coordinates Will he defined with reference to the center of

symmetry marked 0 in Figs. 2 and 3. It is the point Ao in Fig. 1.

li Hii a^;m has coordinates x, 2
,
measured parallel to the axes a. h c,

respectively, then phase coordinates* may be defined:

= 360°-
a

di = 360° I
0

$3 = 360°-
c

Projections on the plane (001) are shown in Figs. 5 and 6. If an atom
is in the general position corresponding to the coordinates Clf^ (/) of

* The location of the Si and O atoms may be pictured most easily in our minds in

terms of the rectilinear coordinates Xj and 2, parallel respectively to the o-, 6-, and

c-axes of the crystal. These coordinates are expressed as the fraction of the distances

a, by and c which would have to be traveled to go from the origin of coordinates to the

atom. Such a viewpoint does not lend itself readily to calculations of the amplitiule

of the resultant of the x-ray beam difTracted from the various atoms. We have already

seen that these component amplitudes must be multiplied by the cosine of the phase

angle of the wavelet before they may be added together. The coordinates of the Si

and atoms may be expressed for this purpose in angular measure if we write 27r or

360° for each of the interplanar spacings a, 6, and c, i.e., if we take the (160), (010),

and (001) planes in turn as the standard of phase angle. Then the coordinate x

would be expressed as

where di is the phase coordinate corresponding to x. Similarly

$2 ,
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Wyckojff's tables, and if its a- and 6-coordinates are expressed as 0 i and

62 ,
the contribution of all eight atoms of (/) in the unit-crystal to

the x-ray beam diffracted from (hkO) is determined by the factor

8 cos (hdi) cos (k62 )

when h + k is even. If A + A; is odd, the factor is zero (see value of

s in Appendix III).

«**«^«*» 000
;;cM<Nw

C^Forbidden

11^+0 Si by 240
lOj Forbidden
[to Si by 220

‘•9, Forbidden

“^1 to SI by 240

Fig. 6 .—Projection of the structure of diopside on the (001) plane if Ca and Mr
atoms are at A and A\ (Unlike Figs. 2, 3, and 4, Fig. 6 shows the projection for the whole
unit-crystal.)

Fig. 6.—Projection of the structure of diopside on the (001) plane if Ca and Mg
atoms are at BB', (Unlike Figs. 2, 3, and 4, Fig. 6 shows the projection of the whole
unit-crystal.)

We are to decide whether the Ca and Mg atoms lie, in projection in

Fig. 4, at AA', BB\ or C. We shall assume at first that they are at

AA' of Fig. 4. The lettering is identical for Figs. 4 and 5. Referring

to Fig. 6, the Si atoms must then lie somewhere on the dotted lines and
the O atoms on the groups of vertical lines. The 0i-coordinates of the O
and Si atoms would have, in this case, the values given below, but their

^2-coordinates would be unknown.



APPLICATIONS OF THE STRUCTURE^FACTOR METHOD 341

Si, = 76°
j 62 = B2

01, Bi = 136°; 02 = 02"

02, 01 = 51°; 02 = 02'"

Os, 01 = 56°; 02 = 02""

(2 2 0) iF2 20 “ 48

+ = +99
= 84

The contribution to F220 of the twenty-four 0 atoms is given by the

factor

8(cos 272° cos 202" + cos 102° cos 202"' + cos 112° cos 202"")

The value 01 this factor lies between +4.9 and —4.9 (rounded off to ±5),
whatever th j ^^alues of 0.; i.e

,
tin* twenty-four O atoms cannot produce

a greater offer ! than five at« fxis in phase. The maximum contribution

of the O a(onjs is therefore ±5 X 6.6 = ±33. Ca and Mg give full

positive contributions to the (220) plane. Therefore the contribu-

tion or the Si atoms (=84 cos 152° cos 202') must be negative, i.e.,

270° > 202' > 90°.

135° > 02 ' > 45° is forbidden to Si.

(240) +F240 = 16

4^\.a + 4fM. = +81
8Fsi = 70.4

Maximum value of 24F(j = ±23.5

Ca and Mg give full positive contributions to the (240) plane. The
Si contributions ( = 70.4 cos 152° cos 402') must have a large negative

value, conservatively estimated at a value between —40 and —63.

0.6 > cos 402' > —1.0 is forbidden to Si.

77° > 02 ' > 13° is forbidden to Si.

167° > 62 > 103° is forbidden to Si.

The regions forbidden to Si by (220) and (240) are shown in projection

on the (001) plane in Fig. 5. Evidently the Si atoms must lie, in pro-

jection, close to the lines AA'.

(020) ±Fo2o = 19

4F,,. + 4Fm. = 108.8

24Fo = 187

Because of their positions near AA', the Si atoms make practically their

maximum positive contribution, i.e., +88. It follows that all O atoms
must be placed, in projection, approximately halfway between the lines

AA', i.e., 62", 62", and 02
"" must be approximately 90°.

(040). With 0 atoms halfway between lines ^4.4
', all atoms would make

large positive contributions to Fo 4 o which should therefore be one of
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the most powerful beams diffracted by the crystal. Actually it is too

small to observe. A position of Ca and Mg atoms at the centers A, A' is

therefore definitely excluded. It will be noticed that the conclusion

depends upon weak diffracted beams and is therefore independent of

extinction corrections.

A similar argument excludes positions of the Ca and Mg atoms at

.centers (see Fig. 6). If Ca and Mg were at BB' they would give full

contributions to Fo 2 o, Fo 4 0, F2 2 0, and F2 4 0. Hence an identical course

Fia. 7.—Projection of diopsido structure on plane (010).

of reasoning from the values F2 2 o and F2 4 0 would lead to positions of

the Si atoms near the horizontal line BB[ — BB\ Such positions are

incompatible with the small values of F020 and F040.

The only remaining possibility is that the Ca and Mg atoms lie on
the 2-fold axes corresponding to C of Figs. 1 and 4. The observed values

of Ffcjbo and Fo*/ are to be explained by assigning ^2-coordinates to Ca
and Mg atoms as well as to the Si and 0 atoms. The structure depends

upon 14 parameters, one each for Ca and Mg, and three each for Si,

Oi, 02> and Og*
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Detailed Study of the Data. d. Completion of the Analysis ,—The
foregoing analysis has shown that Ca and Mg atoms lie on 2-fold axes,

and the and -coordinates have been found. It remains to deter-

mine the ^2-coordinates of all the atoms, i.e., the coordinates parallel to

the 6-axis. The projection upon the (0 1 0) plane of the structure finally

settled upon for the entire unit-crystal is shown in Fig. 7.* The point

used by Warren and Bragg as the origin of coordinates is marked in the

figure. It is one of the centers of symmetry in the crystal. The 02-cooiv

dinates finally determined are represented by the numbers within the

circles denoting the a'tomic positions; these numbers represent fractions

of the 6-axis. For instance 0.50 denotes an atom at the top of the unit-

crystal (^2 180°), 0.50 denotes an atom at the bottom (62 == —180°).

The atomic »ositions in the pn)jo<'>t;ion, combined with

these numl'cr 1, will make th symmetry elements evi-

dent. It IS. litis series of min.bers which are to be found

by fche r resont stage of the analysis.

It 11 be seer: in Fig. 7 that the O atoms are grouped

in pairs around 2-fold axes. For instance, the oxygen

atoms marked 0/, O2, O3 are at a distance of about

1.5A. from the symmetry axis marked C, and each

atom has a companion on the opposite side of the axis.

If the centers of the two O which compose a ^^pair^’ are

joined by an imaginary line, then the O atoms would

look like the weights of a dumb-bell with the imaginary

line forming the grip. The symmetry axis marked C
is the perpendicular bisector of this imaginary line.

The axis may be regarded, then, as having a Ca atom, aMg atom, and
three pairs of 0 atoms threaded on it within a length 6 which is 8 .9A.

Assuming that the O atoms are arranged dumb-bell fashion, in pairs,

we have the following alternatives:

Mg, 20, Ca, 20, 20, (Mg)

Mg, 20, 20, Ca, 20, (Mg)

Mg, Ca, 20, 20
, 20, (Mg)

Of these the last is highly improbable on chemical grounds.^ The first

two are evidently duplicates which differ only in the direction of listing.

They are shown diagrammatically in Fig. 8.

The sizes of atoms under various chemical conditions will be discussed

in Chap. XIII. It is sufficient to say here that W. L. Bragg and his

associates have found it useful to assume that in silicates the distance

between adjacent centers 0 — O is 2.7 to 2.9A.; Ca — 0 is 2.35A.;

Mg — 0 is 2.I0A. If these atoms were threaded on to the axis so that

* The relation of the points in Fig. 7 to the space-group coordinates already given

will be taken up later.

arraiiKeinont around
the 2-fold axis.
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all the 0 pairs were in the same plane, there would not be room for them

along the 6-axis. The over-all distance may be shortened by allowing

the two adjacent pairs of 0 atoms to fit into each other, forming a

tetrahedral arrangement. When this is done, the distance in which

the group repeats itself is found by calculation to be qA.

—

a close corre-

spondence with 6 = 8 .9A. It will be clear that the orientation of the

O pairs around the axis does not affect this result as long as the pairs

occurring together are allowed to fit into each other.

It can be seen, in Fig. 7, that two pairs of O atoms, Oi' and O 2 ,

have nearly the same orientation. The third pair, O3, is set in a position

transverse to the other two. Since there is only just room to stack the

atoms along the 6-axis within the. prescribed limit of 8.9A., it is probable

that the arrangement is one or the other of the following:

(a) Mg, 2 O 1
' or 2 O 2 ,

Ca, 2O 2 or 20/, 2 O 3 ,
(Mg)

or

(6) Mg, 20/ or 2O2, Ca, 2O3, 2O2 or 20/, (Mg)

It could hardly be

(c) Mg, 2O3, Ca, 20/ or 20ij, 2O2 or 20/, (Mg)

since this arrangement demands a much longer 6-axis by not allowing

the two successive 0 pairs to fit together. Since the projected positions

0/ and O2 are closely the same, we have, broadly speaking, a simple

alternative between (a) and (6) ;
either the 0 pairs on either side of Mg

have the same orientation (a), or they are placed transversely (6).

Besides the question already raised in connection with O atoms, there

is the question of how the arrangements of Ca and Mg are placed rela-

tively to each other on the symmetry axes C and C\ The one is derived

from the other by an inversion at the origin (Fig. 7), and a movement
of the one group as a whole along the axis C involves a corresponding

movement of the other group in the opposite direction along C'. A
single coordinate, for instance 62,

for the Ca ion determines the position

of the groups. In considering the possibilities, Warren and Bragg

found it helpful to take two general alternatives: either a Ca atom on

the symmetry axis C comes opposite a single 0 pair on C', or it comes
opposite a double O pair. Other arrangements can be considered as

being merely distortions of one or the other of these alternatives.

Finally, the ^2-coordinates of the Si atoms must be found. The
general features of the whole structure are thus determined by two
coordinates parallel to the 6-axis, one for the group CaMgOe and the

other for the Si pair, and by a choice between the alternatives (a) and

(6) given in the discussion of the O atoms. Some 60 values of Fhko
and Foibt are available for the analysis. Warren and Bragg used trial-
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and-error methods to narrow down the possibilities and arrived at

approximate values for the coordinates. In their trials they made use

of interatomic distances to rule out configurations which were obviously

impossible.

The process of making final adjustments to the coordinates is some-

what tedious but quite straightforward. At high glancing angles the O

,

Table VI.

—

The Positions of Atomic Centers of Ca, Mg, and O along thb
C-AXis OF Fig. 7

(See also Fig. 8)

Atom
Relative dist ance

from origin along

O-axia
I

Distance from origin along

6-axis, Angstroms

Ca , 0 . y 2.72

20/ , 0.10 y = -0.89
' Mg 0.08 V = +0.71
20, 0.26 y = +2.22
20, 0.48 y = +4.27
(Ca) (0.69) (y= + 6.17 = 8.89 - 2.72)

atoms contribute very little to Fhki, a knowledge of their approxi-

mate positions is sufficient to enable their contributions to be assayed

with sufficient accuracy. These beams diffracted at high angles

provide therefore suitable material for adjusting the positions of Ca, Mg,
and Si. It is always possible to find diffracted beams which are sensitive

to slight movements of one atom and insensitive to the other two. . These

Table VII.

—

Atomic Coordinates for Diopsidb Xj y, and ^ Are Measured
Parallel to the o-, 6-, and c-axbs Respectively

Atom O'l 03 X V z

Ca HIIQIi -2.72A 1.31A
Mg mmm 1.31

Si 148 85 3.66 1.24

0, 136 145* 3.67 3.67 0.73

0, 61 90 116 1.38 2.22 1.68

0, 66 173 1.61 4.27 0.00

* for Oi', is -36® thus giving for Oi', y = —0.89 (see Table VI).

are used to fix more closely the coordinates of the important atom. When
Ca, Mg, and Si have been fixed, the reflections at small glancing angles

are used to determine the coordinates of the O atoms. It is more diffi-

cult to estimate these latter values. Warren and Bragg estimate the

probable error in coordinates to be O.OSA.

The relative positions in space found in this way for the various atoms
have been shown already in Fig. 7. Table VI shows, in their order along
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the axis C, the positions of the atomic centers of Ca, Mg, and 0. In

this connection see also Fig. 8 . It will be noted that the two 0 pairs

on either side of Mg are approximately parallel (Oi' and O2), and that

the two pairs between Mg and Ca form a tetrahedral group (O2 and O3).

The Ca atom on axis C' at a height 0.31 is opposite to the two 0 pairs

on axis C (O2 at 0.25 and O3 at 0.48). The coordinates assigned to

the atoms are given in Table VII.

The 0 and Si atoms at Qi, 62, and ^3 are each multiplied into a group
of eight atoms by the symmetry elements of the crystal. The contribu-

tion to Fh k I by these eight atoms is the product of the atomic F value

by the factor

— hdi — Z03

^
cos ^Z^ +

when A + fc is even. The factor is zero when A + fc is odd.

A Ca or Mg atom at $2 is multiplied into a group of four atoms in

the unit-crystal by the symmetry elements of the crystal. The con-

tribution to Fhki by these four atoms is the product of the atomic F
value by the factor

ll + ke.

Calculated and observed values of Fhki are given in Tables I, II,

III, and IV. In general the agreement is satisfactory. There are a

few cases where it is not so good, for instance, in the case of Fe 0 4 and

F330 . These discrepancies do not tend to cast doubt on the structure

or on the experimental measurement; they are due to the fact that in

these cases small errors in the coordinates produce larger errors in the

calculated atomic contributions to Fhki- In the exceptional case where

all these contributions have the same sign, and where all the atoms are

in sensitive positions, the total error in the computed value of Fhki

may be large. For instance, in the case of F3 3 0 ,
a movement of the Si

atom in the Z)-direction of 0.01 b alters F3 3 0 by ± 10.

The point which Warren and Bragg used as the origin of coordinates

in the unit-crystal is so marked in Fig. 7. The various points on this

figure will be found to correspond to Wyckoff's coordinates for C\h if

the origin is taken at a point {a = 0, b = 0, c = )4) and if the X-axis

is taken along the c-direction and the F-axis along the o-direction. The
Ca and Mg atoms lie on Clhie). AU the other atoms lie on Clhif)- This

places the eight Si atoms on the eight general positions and gives three

sets of positions of eight each for the twenty-four O atoms. The parame-

ters along the Z-axis (Warren and Bragg’s 6-axis) are marked on the

circles which represent the various atoms. It will be seen that these

4 cos
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conform rigorously to Wyckoff’s coordinates so that they automatically

provide for the proper points of inversion and axes of symmetry.
The version of the analysis originally published by Warren and Bragg

made no mention of Wyckoff^s atomic coordinates for the space-group

C\f^. The reader has doubtless noticed places in the foregoing where the

labor of the analysis could have been lessened considerably if a frank

use of these coordinates had been made. Such use, however, would have
defeated the purpose of the original article, namely, to show by a special

example how the structure of a complicated crystal may be arrived at by
using, by trial-and-error methods, the information obtained from values

of Fhki and of the contribution to F by each atom, supplemented only

when necessn.y by a knowledge of the symmetr>^ of the crystal.

THE STRUCTUBE OV? TOPAZ, [Al(F,0H)],Si04

The stn^^ture of topaz been worked out by two students of W. L.

Bragg—N. A, Alston and J. West^—by means of the structure-factor

Diei.hod using a combination of the trial-and-error scheme and of the

Fourier analysis scheme. The chemical properties of topaz may be

represented by the formula [Al(F,0H)] 2Si04,
the fluorine being replaced

by hydroxyl in amounts which vary from crystal to crystal. It crystal-

lizes in the orthorhombic system. It is sometimes reported in the litera-

ture as having the symmetry of the D^hi = Vh) point-group and sometimes

as having the symmetry of the point-group. Etch figures suggest

the Vh point-group.® The pyroelectric and piezoelectric properties

suggest the C2V point-group, but these properties are weak, often vary in

direction, and are often regional even in the same crystal. Alston and

West assume that just as the chemical composition of a mineral may be

represented by a simple formula which is seldom rigorously satisfied by

actual specimens, so the structure of some crystals may be represented

by an arrangement of atoms conforming to the symmetry requirements

of a certain crystallographic class, although, owing to small distortions

of no real significance caused by the physical and chemical conditions of

formation, the actual arrangement in any particular specimen belongs

more strictly to a point-group of lower symmetry. This may be expected

to apply more especially to crystals whose crystallographic class is in

doubt. Topaz apparently provides a good example of such a crystal,

and the fundamental structure may properly be regarded as possessing

holohedral symmetry, z.e., as having the symmetry of point-group Vh^

The Unit-cell and Space-group.—The unit-crystal, which contains

four molecules of [Al(F,0H)]2Si04 has the dimensions

o = 4.44,1.

h = 8.78»1.

c = 8.37*1.
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giving the axial ratios

o:6:c = 0.5285:1:0.9640

These agree to within less than 1 part in 9,000 with the axial ratios

accepted by crystallographers. The uncertainty, already indicated,

which exists with regard to the crystal class of topaz, leads to a difficulty

in the determination of the space-group. An analysis of the usual six

rotation photographs taken about the three rectangular axes in turn as

/
Fiq. 9.—Space-group FJ*.

axis of rotation, supplemented by an examination for weak reflections

with the ionization spectrometer, results as follows:

1. Planes {hkV)) all types present. The lattice is therefore simple orthorhombic.

2. Planes {hk0)\ all types present.

3. Planes (^OZ); only those present for which (h + 1) ia even.

4. Planes (Okl)] only those present for which k is even.

Comparing 3 and 4 with the tables for the orthorhombic system in

Appendix III, and remembering that in those tables h and k can be

systematically interchanged, it is found that topaz must belong either

to space-group Cl^ or to space-group The presence or absence of

lines in the diffraction pattern cannot alone distinguish between these

two space-groups. The difference in the two space-groups lies in the

exclusive possession by of reflection planes and centers of symmetry.

The reflection planes are parallel to the (001) face, and the centers of

symmetry occupy the comers, bo3y-center, edge-centers, and face-
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centers of the unit-crystal. These symmetry elements are shown in

Fig. 9, using Alston and West's choice of coordinates. These coordinates

are related to WycLoff's® as follows:

Wyckoif's origin is at Alston and West's 3a/4, 0, 3c/4; his Z-axis is

Alston and West's c; his F-axis is Alston and West's a; his Z-axis is Alston

and West's 6. As a result of the operations of the symmetry machines

in space-group an atom is converted into eight equivalent atoms if

it is in the general position of if it is one of the atoms whose

coordinates correspond to F\®(d) in Wyckoff's tables. If an atom lies

on a center of symmetry it will be one of four equivalent atoms corre-

sponding to Wyckoff's F\®(a) or F\®(6). If an atom lies on a reflection

')lane, its cooi linates will correspond to Wyckoff's F^;f(c). Space-group

CJv has no spe ial positions, and each atom must lie on one of the four

equivalent gene, at positions ^)i responding to Wyckoff's CIM-
In view cf the character of ohe crystallographic data,® Alston and West

comTiienc^’d their analysis with the assumption that the correct space-

group is F\®. This pioce<lure was later justified by the final results.

They chose one of the centers of symmetry as their origin of coordinates

and expressed the location of the various atoms in phase coordinates

such as were used in the discussion of diopside. For convenience of

reference their procedure will be followed here. Accordingly, if the

rectangular coordinates of an atom in the general position,® (d) of

are x, y, Zy measured parallel to the axes a, 6, c, respectively, then the

phase coordinates are

01 = 27r~
a

di = 2ir|
0

03 = 2ir-
c

and the coordinates of the eight equivalent atoms (using Alston and

West's origin and axes) are

01, 02, 03 J (01 “ W"), (w •— 02), (08 "" Tf)

01, 02, {ir
—

03); (w — 0l), {tT + 02), 03

01, 02, 03 ;
(tT — 0l), (02 — Tt), (tT —* 08)

Si, 02, (03 — Tt); (01 — w), (^2 — ^r), 03

The structure factor of this group of eight atoms for an x-ray

beam diffracted by a plane (h k 1) is

= FoS cos (hSi + kB2 + IBz)

where Fa is the structure factor for a single atom. In the case under

consideration the summation is taken over the eight atoms, so that the

equation reduces to
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cos “I" (A "t“ cos “t"

(h + k + l)'^ cos ld, + l^ (3)

In the case of a group of four atoms corresponding to F\®(a), (b), or (c),

the factor 8 must, of course, be replaced by a factor 4. The structure

factor for the whole unit-crystal is

Fnki = (4)

where the summation is taken over all the sets of equivalent atoms in the

crystal. Numerical values of ; must be deduced from the quantitative

experimental data.

Bird’s-eye View of the Analysis.—In addition to the usual rotation

photographs, used for the determination of the space-group and for a

qualitative survey of the various diffracted x-ray beams, Alston and West

made direct measurements of the integrated reflection froih the faces

(100), (010), (001), (110), (Oil), and (101) ground on the crystal.

They estimated the integrated reflections of still other faces from slips

of topaz, using the technique described in the discussion of Eq. (30) of

Chap. X. All these measurements supplied the numerical values of

Fh k i necessary to the quantitative analysis of the structure of the crystal.

The intensities of the diffracted beams indicated that although the

crystal was not ^'ideally imperfect,’’ nevertheless it was definitely of the

mosaic type. Equation (1) was therefore applicable. As a result of a

detailed examination of diffraction from the (001) planes, the value of g
in Eq. (1) was estimated by trial-^,nd-error methods as 0.60 X 10^. The
other constants of Eq. (1) are as follows:

n = number of unit-crystals per cubic centimeter

= reciprocal of the volume of the unit-crystal

4.641 X 8.783 X 8.378 X 10-*«
“ ^

X = 0.614 X 10~® cm. (K„ of rhodium),

e = 4.774 X 10““ abs. e.s.u.

m = 8.994 X 10“** g.

c = 3 X 10“ centimeters per second.

n = 7.1 cm.~*

Equation (1) therefore becomes

P =
P^

1 - 1.20p' X 10«
6.544F*-

+ cos^ 20

sin 20
X io-»

where p' is the observed intensity, and p is the intensity after correction

for extinction. If we had neglected to take account of extinction, Eq. (5)

would have been replaced By
~
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Table VIII.—Structure-factor Data for Topaz

Indices sin d

!

U:
sin 20

P'

,
1

Fhkl

1
j

P

Ff^ki from ex-

perimental

data

Fkki calculated

from structure

Fkki calculated

for ideally

perfect crystal

(200) 0.132 7.37 9.7 16.4 10.9 16.4 11.3 98

(400) 0.265 3.41 2.3.6 35.4 32.9 41.8 - 47.0 493

(600) 0.397 2.01 13.8 35.2 16.6 38.6 - 43.9 453

(800) 0.529 1.34 0 0 0 0 1.1 0

(1000) 0.662 1.02 2.4 20.6
1

2.6
j

21.0 18.0 161

(020) 0.970 14.6 15.2 13.7 18.6 16.2 18.6 81

(040) 0.140 6.95 52.5 36.9 142.0 60.6 66.0 562

(000) 0.210 4.50 7.0 16.8 7.6 17.5 - 13.8 114

(080) 0.2"' '

3.22 28.0 41.0
i
42.2 48.8 64.0 017

(0100) 0M\. 2.43 12,0 29.9 14.0 32.3 - 37.0 338

(0i20) 0.4K 1.87 0.5 6.9 0.6 6.9 - 12.7 17

(0140) 0.4^9| 1.50 , 0 0 0 3.0 0

(n 160) 0.5/*9. 1.23 5.5 < 28.4 5.9 29.7 28.6 282

.0100) 0.6i!^ 1.08
1

10.

0

0.6 10.0 - 3.4 55

(00 2)
* 0.073 13.11

1

7 0 9.8 7.6 10.2 14.0 39

(0U4) 0.1#7 .
o eo ' 13.0 18.9 15.4 20.6 22.1 147

(006) 0.220 4 25 ' 68.0 53.8 367.6 124.4 -144.9 1162

(008) C.293 3.03 0.6 5.6 0.5 6.6 - 10.9 12

(0010) 0.367 2.28 1.9 12.2 2.0 12.6 - 19.7 64

(0012) 0.440 1.75 9.2 30.8 10.3 33.1 45.0 342

(0014) 0.514 1.40 0.8 10.2 0.8 10.2 - 2.8 36

(0016) 0.587 1.15 0.0 11.9 0.9 11.9 10.

1

50

(0018) 0.660 1.04 1.5 16.2 1.6 16.2 - 18.4 100

(110) 0.076 12.9 16.7 16.3 20.9 17.1 11.3 95

(220) 0.150 6.45 53.8 38.8 152.0 65.1 - 68.8 615

(330) 0.224 4.14 1.6 8.3 1.6 8.3 10.5 28

(440) 0.299 2.96 8.0 22.1 8.9 23.3 34.4 190

(560) 0.374 2.20 2.3 13.7 2.4 14.0 17.7 70

(660) 0.459 1.63 0.9 10.0 0.0 10.0 11.6 34

(770) 0.624 1.34 1.2 12.7 1.2 12.7 - 7.8 56

(880) 0.598 1.15 0.3 6.9 0.3 6.9 8.6 17

(990) 0.673 1.02 0.4 8.4 0.4 8.4 5.1 28

(101) 0.076 , 0 0 0 0 - 1.3 0

(202) 0.151 0 0 0 0 - 1.3 0

(303) 0.227 4.10 70.0 65.6 437.5 139.0 137.6 1250

(404) 0.302 0 0 0 0 - 1.0 0

(505) 0.378 0 0 0 0 - 6.6 0

(606) 0.454 1.66 8.0 29.5 8.9 31.1 40.3 307

(707) 0.529 0 0 0 0 - 1.1 0

(808) 0.605 0 0 0 0
j

- 6.6 0

(909) 0.681 0 0 0 0
I

6.7 0

(022) 0.101 9.80 43.4 28.3 83.5 39.3 - 63.1 334

(044) 0.203 4.60 15.0 24.3 18.3 26.8 39.5 236

(066) 0.304 2.88 0.7 6.6 0.7 6.6 4.9 17

(088) 0.405 1.97 6.2 23.9 6.8 25.1 - 36.9 208^

(01010) 0.506 1.41 2.8 18.9 2.9 19.3 16.7 125

(01212; 0.608 1.10 0.6 9.9 0.6 9.9 - 11.4 35
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p' = 5.544F'*^-tr^^?^ X 10-» (6)sm 2^

Table VIII gives for each of 47 planes the values of p' calculated from the

underlying experimental data, and the corresponding values of F\ p, and
F, The table also gives for each of these planes the value oi Fhki cal-

culated from the structure finally deduced for topaz, and, for purpose of

comparison, states what the value oiFhki would have been if the crystal

had been an ** ideally perfect crystal. We are now ready to retrace the

steps of Alston and West in finding a structure for topaz which will give

computed structure factors, Fh k i, corresponding as closely as possible to

those in column 7 of Table VIII.

The unit-crystal contains four molecules of [Al(F,0H)] 2Si04 ,
so that

locations have to be found for eight Al, four Si, eight F(or OH) and six-

teen O. If we adopt for topaz the ionic sizes which Bragg and his

associates have found useful in dealing with silicates, it is found that the

volume available for 0 and F (or OH) * is such that these ions must be

closely packed together. This leaves the resulting interstices for the

Al and Si.

Examples of close-packed arrangements have been found in several

of the silicates. We must now find which type of close-packing exists

in topaz; when the form which the configuration takes in any particular

case is known, the subsequent analysis is greatly simplified. The two

best known types of close-packing are the face-centered cubic and the

hexagonal close-packed. Although, of these, the hexagonal close-packed

is consistent with the symmetry requirements of and, curiously

enough, explains in detail the whole of the diffracted beams from the

(001) face, it can be shown by the data from other planes not to represent

the true configuration of O and F atoms. The discrepancy between the

experimeutal results and those to be expected from the hexagonal arrange-

ment is too great for it to be worth while to regard the structure as a

distorted form of such packing. The ‘^close-packing'' must, then, be of

some other type. It therefore seems best first to locate the Al and Si

atoms directly and then to find the exact type of close-packed arrange-

ment of 0 and F (or OH) consistent with the positions of the Al and Si.

Symmetry considerations help us to some extent. Since there are

only four Si atoms in the unit-crystal, they must occupy one of the two

sets of symmetry centers of Fig. 9 or must lie on the refiection planes Sv

of Fig. 9. If we suppose (as seems to be the case for all -Si04 com-

pounds) that each Si is surrounded by fotir 0 aitoms arranged tetrahed-

^ Alston and West have, as a convenient approximation, treated the 0 and F
(or OH) as identical when considering dimensional relationships. Following them,

we shall collectively refer to both in such cases as O atoms or simply as **negative
• If

'

ions.



APPLICATIONS OF THE STRUCTURE-FACTOR METHOD 363

rally, * we must place the Si on the reflection planes, and, because of the

symmetry of the tetrahedron, two of the 0 atoms must lie on the reflec-

tion plane, the other two being situated symmetrically on each side of it.

We thus have two sets of four O atoms on the reflection planes and one

set of eight in the general position. If in addition we give dimensions

to the tetrahedra, we automatically give a value to the c-coordinate of the

0 atom in the general position. There remain the A1 and F (or OH).
Symmetry requirements would permit the A1 atoms to consist of one set

of eight in the general position or two sets of four in the special positions.

A similar argument applies in the case of the F [or OH). However,
since the intensities of the diffracted beams of higher orders are due
mainly to the ositive ions A1 and Si, must place the A1 in the general

;>osition in ord( »• to explain the stroiu? diffraction from (0 0 12) and (0 0 18)

and the weak di Traction frort (r 0 14
' and (0 0 16). A similar qualitative

corisideratioTi of the diffracted beams of lower order requires the F (or

OH) to be placed in the general position.

Sumn iirizing we has^e

Element
Niimber of

atoms
(/ode symbol Position

Number of

parameters

Al 8 Al General position 3

0 8 0 , General position 3

F (or OH) 8 G, General position 3

0 4 Ri Reflection planes 2

0 4 R2 Reflection planes 2

Si 4 Si Reflection planes 2

The solution of the structure thus requires the evaluation of fifteen

parameters.

The Analysis in Detail. The (001) Planes.—Figure 9 shows that

the simplest set of planes to examine is the (001), since only three

parameters (the c-coordinates of Al, Gi, and G2) are to be determined.

Let us consider the Al and Si atoms and the higher order diffractions

(column 4 of Table VIII). Since the origin is taken at a center of

symmetry, and since the Si atoms lie on reflection planes [Wyckoff's

coordinates F\*(c)], the c-coordinate of our typical Si atom is 6$ «= 90®.

* This assumption is a convenience in describing the process of analysis. It is

not a necessity in the analysis itself. A qualitative consideration of the higher

orders of diffraction from the (100), (010), and (101) faces would have avoided the

use of this assumption as such.
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As a first approximation we can neglect, for the high orders, both the

effect of extinction, and the contribution from the negative ions* (see

Table V). We must therefore fix the positions of the A1 atoms so that

the structure factor Fo o i due to all the A1 and Si atoms is substantially

equal to that calculated from the observed intensities p' with no correction

for extinction (column 6 of Table VIII). In this way we are led to assign

a preliminary value dz = 30° to the c-coordinate of the typical A1 atom.

The fact that Fo o is has nearly its maximum value is good evidence for the

correctness of our estimate.

We may now consider Gi and (j2 . Since we know definitely that

^3 = 90° for Si, Ri and R2 ,
and since we have estimated the value of Bz

for Al, we can find the contribution made by these atoms to the structure

factor corresponding to each of the diffracted beams from the (OOZ)

Table IX.—The Cooudinater for Topaz

X y z Ox Bi 03

Aluminum (Al) -0.49A. 1.15A. 0.67A. - 38° 47° 29°

Silicon (Si) -1.93 0.49 -2.09 -150 20 -90
Oxygen (Fi) -1.29 0.10 2.09 -100 4 90

Oxygen (Fa) 0.39 2.20 2.09 30 90 90

Oxygen (Gi) 1.03 -0.10 0.74 80 -4 32

Fluorine (G2) -1.93 2.20 0.51 -150 90 22

planes (column 5 of Table VIII). Thus we can find the contribution due

to Gi and G2 alone. Although the values of the contributions estimated

in this way will be too small (no correction for extinction having been

made), they lead to approximate values of Bz = 30° for both Gi and (?2 .

These values might have been roughly anticipated by a consideration of

ionic sizes. Conversely, our result may be taken as evidence that the

accepted ionic sizes for silicates are applicable to the present crystal. It

will be noticed that the provisional set of c-coordinates causes the perio-

dicity of the (006), (0012), and (0018) planes to be unity. For these

planes the waves diffracted from all the atoms in the unit-crystal are in

phase. We must now introduce the correction g of Eq. (1) so that our

values of Fo 0 j will contain the correction for extinction. This is done by
trial and error, giving various values to g and readjusting the c-coordi-

nates of Al, Gi, and G2 until the most satisfactory general agreement is

obtained between the experimental Fo 0 1 and calculated Fo 0 1 (columns 7

and 8 of Table VIII). In this way we not only can obtain the final set

of coordinates given in Table IX, but we also obtain the value of g for

use in Eq. (1), f.c., we obtain Eq. (5). This enables us to correct for

* Of these negative ions, Ri and R2 lie on the reflecting planes [Wyckoff’s coordi-

nates (c)l; Ox and 0% are in the general positions [Wyckoff's V\*(d)l in between the

reflection planes, each with its own values of the adjustable parameters.
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extinction all the experimental data from the other faces and thus com-
plete column 7 of Table VIII. As a result we need from now on to deal

with only column 7.
*

The Analysis in Detail. The a- and 6-coordinates.—The first step,

as before, is to fix the a- and 6-coordinates and ^2) of the A1 and Si

atoms by a consideration of diffracted beams of higher order. The experi-

mental values of Fio 0 0 and Fo le 0 (column 7 of Table VIII) indicate that

the x-rays scattered from the positive ions are very nearly in phase.

This reduces considerably the number of possible positions for the A1

and Si atoms, and the number is still further recliH.od by a consideration

of the weak (800), (0120), and (0180) diffractions and by a considera-

tion of the (1 01), (202), (303), . . , (009) planes. The (ZOi) series

has a very Si^'ple character and is oi great assistance in the general

analysis. I’or example, the^^ fftaction from the (303) plane is similar

tc that from |he (006) which has almost the same spacing. We know
that the rays scattered from the (006) plane are very nearly in phase,

sc* we as* umc the same to apply to the (303) plane also. By trial, using

the above planes in particular, and the (6 AO) planes in general, the possi-

ble positions for the A1 and Si atoms can be reduced to a few alternatives.

It remains to decide between these alternatives and to fix the posi-

tions of the negative ions, i.e., 0 and F (or OH). For this purpose it is

convenient to consider the projection of the whole structure on the

reflection plane since the c-coordinates of all the atoms are known. At
the beginning we assumed a tetrahedron of O atoms to surround each Si

atom, and this assumption has so far been consistent with the data which

we have considered. We shall assume a length of 2.5A. as the probable

lower limit to the edge of this tetrahedron and shall consider the projec-

tions of these tetrahedra on the reflection plane. A set of approximate

Or and 6-coordinates can now be obtained for all the atoms in the unit-

crystal by (1) considering in turn the alternative arrangements of the A1

and Si atoms and (2) imagining the projected tetrahedra to rotate, in the

plane of projection, about the Si atoms in such a way as to account for

the more important diffractions [e.g., (303)] when the F atoms (or OH)
are placed in the available spaces, t

* If the space-group had been C^v instead of there would have been nine

parameters to evaluate instead of three. Since it is the c-axis of topaz which some

consider polar, Alston and West carried out a quantitative examination of the (00 1)

planes assuming C2%. They found, within the accuracy of the data, the same arrange-

ment (especially for A1 and Si) as that described above, assuming . They regarded

this as further justification for adopting F^jf in the subsequent analysis.

t This rough analysis could have been further facilitated by the assumption of a

group of six negative ions systematically arranged about each A1 atom or by a frank

use of Wyckoff^s coordinates. As in the case of diopside, such a procedure would have

defeated the purpose of the work, namely, to illustrate as fully as possible the use of

the structure factor Fhki>
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With this complete, but approximate, set of coordinates before us,

it is a comparatively simple matter to readjust the various parameters

until the most satisfactory numerical agreement is reached between the

observed and calculated values of Fhki (columns 7 and 8 of Table VIII).

The final set of coordinates, found in this way by Alston and West, is

given in Table IX. They consider that the probable error in Table IX
is of the order of O.OSA.

It appears from Table IX (see also Fig. 13) that four O atoms surround

each Si, and four 0 and two F (or OH) surround each Al. The assump-
tion of an Si04 group was made in the preliminary rough analysis, but

following Alston and West in the detailed analysis we considered the

effect of interchanging the O and F (or OH) in order to make our analysis

as general as possible. In so far as it is possible in so complex a crystal

to distinguish between 0 and F (or OH) with their similar F curves, it

would seem that the original assumption was justified and that the Si04
group has a physical existence in topaz.

Fourier Analysis of the (100), (010), and (001) Planes.—Equation

(44) of Chap. X was derived for the case of a simple cubic crystal. Since

topaz has centers of symmetry, the same equation will apply without

change. It is repeated here as Eq. (7) for purposes of easy reference,

n» •

^p(*) I + 12^008 (jJrnl)- (7)

n»l

where Fn is the structure factor for the nth order of diffraction from the

crystal planes under consideration, a is the interplanar spacing, Z is

the number .of electrons per unit^crystal, and z is the height, above the

mid-plane, at which the electron densfky is to be determined.
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The numerical values of the coefficients F» are calculated directly

from the measured intensities of the diffracted beams (column 4 of

Table VIII). The signs of these coefficients are, however, in general

not so easily determined; it is usually necessary to have a rough knowl-
edge of the structure from some other investigation. There are three

other difficulties which may arise in the application of Eq. (7) to a particu-

lar case: (1) In order to avoid false detail in the calculated distribution

of electrons, the series should contain as large a number of terms as

possible. This was brought out in Fig. 5 of Chap. X. (2) The series

should be sharply convergent so as to be applicable within the experi-

mental range. This will normally be the case when the heat motion is

large. Wh re the convergence is not sufficiently rapid, we may make it

so by multir lying each teim by a factor of the form e-^ ® [see Eq. (18)

of Chap. 11; t \i$, is eouiva^lm to tinding the distribution of electrons at a

temperatu higher than tliat at which the experimental results were

obtained. This makes the electron distribution appear more diffuse;

t he alt ms s(^em occupy larger volumes and the curves which represent

the electron distribudon are flatter. (3) Since the Fourier analysis

gives equal consideration to all the quantitative data, it yields an excellent

pictorial summary of the data, provided all the values oiFhki are equally

reliable. Unfortunately for some crystals in which the extinction is

large and the correction for it uncertain, the F values (and therefore the

Fourier coefficients) corresponding to the very strong diffractions are

not known so accurately as those corresponding to the weaker diffracted

beams. In such cases the Fourier analysis may be a little misleading,

and the trial-and-crror method used in the earlier discussion of topaz is

to be preferred since it treats each diffracted beam individually. Gen-

erally speaking, the Fourier analysis of certain crystal planes does assist

the investigator to arrive at a more accurate and self-consistent set of

parameters by suggesting small alterations in the atomic positions which

have already been located approximately by some other method.

Figure 10 gives the atomic Zp{z) curves for Al, Si, 0, and F. These

curves were obtained by a comparison of the data for topaz with curves

for beryl which had been studied previously^ by means of a Fourier

analysis. They represent for each atom the electron density at various

distances along a line drawn through the atomic center. Figures 11a,

6, and c give the experimental and the best synthetic Zp{z) curves

{F curves) for the (1 00), (0 1 0), and (001) planes, respectively, of topaz.

We know from the trial-and-error analysis of topaz the approximate

positions of the various atoms in the unit-crystal. In the light of this

knowledge we can make a suitable distribution, in both number and

position, of curves from Fig. 10 along the horizontal axes of Figs. 11a, 6,

and c. From these we can construct a curve representing their sum.

The final set of atomic positions to be adopted is that which gives the
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best agreement between the upper pair of curves in Figs. 11a, 6, and c.

The dotted curves are the synthetic curves; the full-line curves are the

experimental curves.

Further details of the Fourier analysis of crystals may be found in

articles by W. Duane,® R. J. Havighurst,®*^® W. L. Bragg,^^ and A. L.

Patterson.

Discussion of the Structure of Topaz.—Figure 12 shows the structure

of topaz as seen along the a-axis. The O and F (or OH) atoms are found

Fig. 11.—(o) Calculated and observed Zp{z) curves for (100). (010), and (001) planes

of topaz.

to be arranged in a form of close-packing which belongs exclusively

to neither the cubic nor the hexagonal type. As in other silicates, each

A1+++ ion is surrounded by six negative ions, and each Si+'^'++ ion is

surrounded by four negative ions. Chemical considerations point to a

group of four O ions around each Si++'‘^"*", andwe shall therefore interpret

negative ions to mean 0— ions. This leaves four O— and two F~
(or OH“*) ions for the A1+++. The distribution of the A1+++ and 81+“*^+

in space is siich that they are as far apart as is permitted by space-group
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The structure explains the perfect cleavage parallel to (001)

and the less perfect cleavage parallel to (101).
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shows the corresponding cubic close-packing as viewed along the cube-

diagonal. Figure 13c shows a close approximation to the topaz close-

packing as viewed along the 6-axis (Wyckoff’s ^T-axis) of the crystal.

Figure 13c is somewhat ^^dealized/' retaining only those slight distortions

which assist in making visible a layer of atoms otherwise hidden. The
exact locations of the atoms with respect to each other may be found

by reference to R\y 722, Gi, and (?2 of Table IX. Certain dimensional

o^o^o

#0#0^
o@o@o ogogo

IdSd!

O 0 Atoms in
plane of paper

) 0 Atoms at
2 20 A above or
below plane of paper

O 0 Atoms in

plane of paper

^ 0 Atoms at
*
2.20 A below

^ 0 Atoms at
'4.40 A below
plane of paper

O
0 Atoms 0 Atoms
in plane ^^ qt 4.40 A
of paper below
0 Atoms ^^0 Atoms
at 2.20 A ^qte.eOA
below plane below plane
of paper of paper

(a) (b) (c)

Fig. 13.—(a) Hexagonal close>packing; (6) cubic close-packing; (c) topaz close-packing.

relations applicable to all three figures will be clear from Fig. 12 which

represents two layers of 0 ions (radius 1.35A.) in close-packing.

A consideration of Figs.. 13a, 6, and c will show that all three arrange-

ments consist of ordered collections of tetrahedral and octahedral groups

of negative ions. It is within thesie groups that the smaller positive ions

(such as 81+^-++and A1+++) are found in actual crystals. It will be noticed

that the individual layers (parallel to the plane of the paper) are identical
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in all three cases. The difference between the three figures is to be found

in the way in which the successive layers form a sequence. Thus in

Fig. 13a the plam s of atoms are so disposed relative to each other that,

beginning with any layer, every third layer is exactly under the first

[if we look in a direction perpendicular to the layers, t.e., along the hex-

agonal (Z-) axis]. In Fig. 136 it is every fourth layer that is directly

above the first (if we look perpendicular to the layers, t.e., along the

cube-diagonal).

In Fig. 13c the succession of planes is less simple. If we begin with

the layer in the plane of the paper, the first, second, and third layers

c»a378A J

O 01+ 4.4A
obove paper

O at 2.2A
above paper

O in plane
of paper

0 01+ 2.2A
below paper

Ala+3.24A
above paper

Al at I.I5A

above paper

• SI a+ 3.90X
above paper

0 51 01+ a49A
below paper

Fiq. 14.—Negative ions of topaz. The &-axi8 (Wyckoflf's Z) is perpendicular to the paper.

The distance between layers of atoms parallel to the paper is 2.21A.

below the paper are as in Fig. 13a. But the fourth layer departs from

the sequence to be expected from Fig. 13a in such a way as to cause the

second, third, and fourth layers to resemble the arrangement in Fig. 136.

The fifth layer again falls under the first, and the series begins again.

To some extent, therefore, we may regard the arrangement in topaz

as a combination of the hexagonal and cubic forms. We may, however,

also regard it as a more complicated form of hexagonal close-packing,

for just as the sequence of layers 1, 2, and 3 resembles Fig. 13a, so does

the sequence of layers 3, 4, and 5. Reference to the symmetry elements
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of space-group shows that there is a screw axis parallel to the 5-axis

with a translation of 5/2. It is just this relation that appears between

the two sequences.

SUMMARY

We have shown, using examples from the publications of W. L. Bragg

and his coworkers, how the structures of even complicated crystals may
be found from a knowledge of their exterior symmetries and of the intensi-

ties of diffracted beams of different orders from a large number of planes.

The structure-factor method is seen to be an extension and refinement

of the Bragg method outlined in Chap. V. Of the various possible

subdivisions of the method, that of trial and error is apparently the most

useful especially in the case of crystals having complicated structures.

For such crystals the Fourier series is helpful in increasing the precision

to which the various parameters may be determined, after a first approxi-

mation has been obtained by trial and error. The use of the Fourier

series in determining directly, for simple crystals, the distribution of

scattering power (atomic dimensions) will be taken up in Chap. XIII.
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CHAPTER XII

THE MECHANISM OF CRYSTAL GROWTH AND ITS
CONSEQUENCES

We have seen in Chaps. I, X, and XI the importance of the mosaic

structure of crystals. Perfection in single crystals is so rare that we
nay confidently assume imperfection to be their normal state. It will be

<»f interest, there fore, to examine t|ie various ways in which crystals may
be grown in the Uope of findiul; .nechanisms of crystal growth which will

lead easily to the mosaic type rather than to the perfect type of structure.

If any su^n mechanism is to havo real value it must necessitate the

existence of demonstrable crystal properties which are distinct from the

data which lead to the mechanism. The present chapter deals, therefore,

not only with the evidence leading up to a picture of the mechanism of

crystal growth but also with the consequences of that mechanism in

determining certain of the properties of crystals.

TEE GROWTH OF CRYSTALS

There are, in general, four ways of growing crystals: (1) from the

vapor, (2) from the melt, (3) from solution, and (4) from less stable

crystals in contact with the growing crystal in a continuous solid.^ We
shall take up each of these in turn.

1. Growth from the Vapor,—If the vapor of a substance is allowed to

come in contact with a cold surface it will condense to form a solid.

X-ray evidence in the case of nickeP shows that, if the surface is at a

sufficiently low temperature, this solid material is amorphous. If the

surface is at a high enough temperature, the solid material is crystalline.

It is only rarely in actual practice that vapors are condensed at low

enough temperatures to give truly amorphous solid condensates. For

each substance we may imagine a critical temperature below which it is

almost impossible to obtain a crystalline deposit. The higher the

temperature above this limit, the more readily will the deposit crystallize.

In the case of nickel the amorphous condensate may be obtained on a

surface cooled with water. If the surface is heated to 400®C. a deposit

is readily obtained, which is composed of small crystals. An amorphous

layer 10~* cm. thick apparently is sufficiently insulating so that the latent

heat from further condensation of nickel raises the surface temperature

enough to yield crystals.
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These facts can be explained if we make three simple assumptions :

. Atoms of nickel which hit a sufficiently cool surface do not bounce

off elastically but remain on that surface. In other words, every atom
which hits the surface condenses.” If it evaporates subsequently

it must have gained from neighboring atoms enough kinetic energy

to overcome the energy of its cohesion to its neighbors. This assumption

is identical with that made by Langmuir^ to explain certain of his data

on evaporation and condensation.

. If the temperature of the condensing surface is low enough, every

atom which hits, the surface must stay practically in the place where

it hits. If the temperature of the condensing surface is high enough,

it is assumed that each condensed atom can migrate on the surface

like a molecule of a two-dimensional gas until it happens to find some
spot where it can help to build up a crystal. In such a spot the potential

energy of the atom would be at a minimum and its chance of further

migration would be vanishingly small. This assumption is apparently

necessaiy in order to make it possible to grow crystals of nickel in the

neighborhood of 400°C. Such temperatures are much too low to permit

the evaporation of any appreciable number of atoms from the surface,*

so that evaporation alone cannot rid the surface of improperly situated

atoms whose locations do not fit the positions demanded by the crystal

structure of nickel.

c. When a crystalline surface has once been formed, newly condensed

atoms have only to move two or three atomic diameters to find appro^

priate stations in the structure. If the condensing atoms could be made
to impinge uniformly on the crystalline surface, we might expect to

grow very perfect crystals. It is, however, inherent in the kinetic theory

of gases that the atoms must hit the surface in irregular groups much
like the pitter-patter of rain on a roof. Although, on the average, as

many atoms will hit on one portion of the surface as on any other portion,

we must assume that the distribution from instant to instant will be

very non-uniform. This leads inevitably to minute imperfections

in the crystals so that what appears at first to be a single crystal is

really a mosaic of tiny crystals having almost exactly the same orienta-

tion. If we grant this picture, we should expect to grow reasonably

perfect crystals from vapor only at exceedingly slow rates of condensa-

tion at temperatures close enough to the melting point to permit all

imperfections to be wiped out by the migration of atoms within the

crystal. Such conditions are not usually found in practice. Even if

ideal* thermal conditions are realized, minute traces of impurities

in the vapor will tend to deposit in patches here and there on the surface

According to the ‘‘International Critical Tables,” Vol. Ill, p. 206, nickel has a
vapor pressure of only 10~* cm. of mercury at 1260®C. At 400®C. it should have a
vapor pressure of the order of cm. of mercury.
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in layers one molecule (or atom or ion) thick. These layers of impurity

will tend to foul the surfaces of the patches, thus limiting the growth of

the crystal to small separate portions of the surface.* It would seem,

therefore, that, in general, when a crystal is grown from vapor an approxi-

mation to the “ideally imperfect state mentioned in Chap. X is really

the normal state of the crystal.

Under exceptional circumstances, not easily controlled in the labora-

tory, the tendency for some parts of the surface to gtow faster than other

(a)

Fio. 2.—(o) Special laboratory samples of zinc oxide. {Courtesy of New Jersey Ziric
Company,)

parts becomes especially great. Macroscopic needles or even finlike

projections are sent out in advance of the growing surface. This is

illustrated by Figs. 1 to 4 inclusive which were kindly furnished by H. M.
Cyr and L. C. Copeland of the Research Laboratory of the New Jersey
Zinc Company. Figure la shows a single-crystal stem of spectroscopi-
cally pure zinc grown from the vapor which shows several small fins

and two large fins projecting from the sides of the stem. Larger fins

are seen projecting from the end. In the original specimen these fins

* A poroible mechanism which is capable of explaining this effect will be described
later in this chapter.
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can be seen to occur at angles which are related to the crystal symmetry
of zinc. The angular relationships are brought out more plainly in
another specimen o* spectroscopically pure zinc shown in Fig. 16. The

(c)

Flo. 2.— (6) (c) Special laboratory samples of sine oxide. (Courtesy of New Jersey Zino
Company.)

axes of the projections obviously come out from the main stem at angles
of 30°. Figure Ic shows still another specimen in which the projections
come out at angles of 60°. Angles of 30° and 60° are characteristic
of the hexagonal close-packed structure of zinc. Figure Ic also shows.
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growing out from the primary projections, secondary projections of

smaller size. The photomicrographs of certain laboratory samples of

zinc oxide shown in Figs. 2a and h show many examples of spinelike

growths projecting from the sides of the crystals. Figure 2c shows other

Fig. 3.—Primary and secondary needles on laboratory zinc oxide. {Courtesy of New Jersey
Zinc Company^

special samples of zinc oxide with a profusion of needles growing from the

main stem. Figures 3 and 4 show primary needles growing on the main

stem and the smaller secondary needles growing on the primary needles.

I

Fig. : 4.—Primary and secondary needles on zinc oxide found in the "cinder dump.
{Courtesy of New Jersey Zinc Company,)

These photographs all show special, exaggerated instances which tend

to confirm our thil'd assumption. They appear to show on a large

scalei thfi consequence of the same sort of group growth'^ on a crystal

face which the kinetic theory of gases forced us to assume on a sub-

microscopic scale. Apparently, imperfection is the normal state of a
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crystal grown from the vapor. We shall soon see that imperfection is

the normal state of all crystals no matter by what process they have been

grown.

2. Growth from the Melt.—Growth of crystals from the melt does not

take place simultaneously in all parts of the liquid. Either a seed crystal

is present and growth proceeds out from this seed, or spontaneous nuclei

of crystallization are formed, each of which acts as a seed.

a. We may feel safe in assuming that the molecules* in the melt

wander about with almost random motion. This implies that there is a

chance of several molecules colliding together m ju.^>t the configuration

to form the beginning of a unit-cr>"stal. In the simplest possible case,

if the tempers is high enough, these molecules will have enough

thermal energy to part company in spite of the crystal forces holding

1 heTii together; f . above tVuvm ilLng point the chance of disaggregation

exceeds tne cbu'‘‘e of aggregation. We are tempted at first to assume

that below the melting point the chance of aggregation exceeds the chance

of difcaggr< gation and that at the melting point the two chances are

equal. ^ Closer study of the forces, acting between molecules, shows

that this simple picture must be somewhat modified. These modifica-

tions are of such a nature as to make it possible not only to account for

a sharp freezing point in the presence of a trace of the solid but also

to account for the possibility of undercooling in the absence of the solid.

If a seed crystal is placed in a perfectly insulatedt melt at its freezing

point, the crystal will neither melt nor grow. If, however, the heat

insulation is not quite perfect, the environment of the melt will act as a

slight heat-sink and the seed crystal will grow without any measurable

change in the temperature of the melt. This is because molecules which

are systematically oriented and marshaled in a crystal are held together

by forces which are more or less chemical in their nature. The potential

energy of such a system is therefore less than that of a chaotic arrange-

ment such as the melt would have. The energy thus liberated is the

latent heat of crystallization and is numerically equal to the latent heat of

fusion. It is this energy which must be absorbed by the heat-sink. If C

* In this discussion the word molecules will be used as a convenient general term

to include molecules, ions, and atoms.

t In growing a crystal from the vapor, a molecule which collides with the crystal

surface is held by the forces of cohesion which are characteristic of the crystal. In

growing a crystal from the melt, the apparent forces tending to hold the molecules

on the surface are equal to the difference between the real forces of cohesion aAd the

forces between these molecules and the surrounding liquid. This difference in the

sizes of the resultant forces ‘accounts for some of
,
the differences in the pictures of

the mechanisms of crystal growth in the two cases.

t The effect of perfect insulation may be obtained by keeping the'materijil around

the melt at the same temperature as the melt itself so that the melt neithef gains nor

loses heati It is assumed that the melt is somewhat above the room teihperature.
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represents the cohesive force of the macroscopic seed crystal, L the forces

between the liquid and the surface of the crystal, and D the forces tending

to disintegrate the crystal due to thermal agitation, then the temperature

at which the seed crystal can grow is an infinitesimal amount lower than

the temperature for which

(C - L) = i) (1)

For a given material, then, the temperature at which a seed crystal can

grow is definitely fixed. This temperature is defined as the freezing point

of the melt.*

The difficulty of starting spontaneous crystallization may be explained

as follows: Let us consider at .first a melt made up of the simplest kind

of molecules, for instance, a metal whose molecules are monatomic. In

order to form*a spontaneous nucleus, several molecules in the melt must

collide together in the configuration which is characteristic of the crystal

of that substance. In the melt such nuclei are probably made and

broken up continually, f In the case of an embryo nucleus made up of

only three or four molecules, a given molecule is not held to the group by

as many immediate neighbors as would have held it if it has been a part

of a *'flat^' surface of a massive crystal. This means that the cohesive

forces of the newly formed spontaneous nucleus cannot be quite so large

as the quantity C of Eq. (1). If we define the melting point in terms of

Eq. (1), it follows from this picture that, at the melting point, the average

tendency for disaggregation of spontaneous nuclei exceeds the average

tendency for aggregation so that a spontaneous nucleus has no chance of

persisting long enough to grow. In order that growth of the spontaneous

nucleus may begin, it is necessary to undercool the melt below its freezing

point. In other words, we must lower the temperature [and therefore

* Many cases of so-called spontaneous crystallization without undercooling are

really started by extremely fine seed crystals which enter the melt from the air. The

difficulty encountered in crystallizing anhydrous glycerine (freezing point 17.9°C.)

is proverbial; yet the story is told of a laboratory in a cool climate which, having once

produced crystals of glycerine, had difficulty in keeping any of its stock fluid. Tutton

relates* a story told at a meeting of the Royal Society, of how a newly synthesized

compound could not be crystallized for several days even under what should have

been optimum conditions. After the compound had been manufactured for some

time, the air of the laboratory became contaminated with spontaneous nuclei formed

from the dust of the dried material and scattered by the daily handling of the material

in the laboratory. After these nuclei were formed there was no further difficulty in

crystallizing the material. Apparently we must assume that “crystal germs of the

most common crystallized substances, of no larger sizfe than bacteria, are floating

about in our atmosphere, ready at any time to drop into our solutions and, if the latter

are in the proper receptive condition, to set them crystallizing.”

t This picture is consistent with the data on the diffraction of x-rays by liquids

(see Chap. XVI). ^
.
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the value of 9 of Eq. (1)] until the nucleus can persist long enough for

some other molecule to collide with it at some point so close to the correct

spot that the molec:ile can migrate easily to its proper location. Accord-
ing to this picture a thoroughly melted liquid cannot crystallize spon-

taneously unless it is cooled below its freezing point. The amount of

undercooling necessary should be a property of the substance to be
crystallized.

The case of less symmetrical molecules, such as those of organic

substances, is complicated by the additional consideration that, in order

to form a spontaneous nucleus, several molecules must not only collide

to form the correct configuration of moleculesy but their orientations must
be such as to g’ve also the correct cc*nfiguration of atoms. Such a restric-

'ion greatly q 'creases the chance of forming spontaneous nuclei and
therefore tends o decrease M>itceo< ration of nuclei in the melt. This

effect may be partly compensaied by the longer life of the nuclei, caused

by; the increase in resistance to disaggregation resulting from the large

nuraber of atoms which serve as points of attachment between molecules

in a nucleus. . At first sight it would seem that the net effect of these two
opposing tendencies should largely determine the amount of under-

cooling possible for a given substance. It is conceivable, however, that

not only in complicated substances, but even in simple substances like

metals, the resistance to disaggregation may be so strong as to bring in

still another effect. When a material is melted without raising the tem-

perature perceptibly above the melting point, small crystal fragments the

size of spontaneous nuclei may slough off from the crystal and float

around in the melt for long periods.* The effect should be that of

greatly increasing the concentration of nuclei and thus of promoting

crystallization of the melt at the freezing point when the proper heat-sink

is brought into play. This increase in concentration of effective nuclei

should increase the chance of a molecule from the melt colliding with a

nucleus at the proper place and with the proper orientation. In other

words, it should be difficult to undercool a material which has been

* This hypothesis is consistent with the experimental results of A. Goetz.® He
found that the orientation of single crystals of bismuth, grown from a single seed in

the melt, depends upon orientation of the portion, of the seed which has just melted rather

than upon the orientation of the unmelted portion. This effect disappears when the

bismuth is heated 10°C. above its ‘‘melting point.” It is as though the “melted”

portion of the seed contained sloughed-off crystal fragments from the mosaic. A.

Mueller [Proc. Roy, Soc.y 127, 417 (1930)] directed a fine beam of x-rays on some

molten paraffin very near the surface of a crystal of the same substance. For a small

range of temperature above the melting point the diffraction pattern showed that there

was still a considerable amount of orientation among the molecules. Apparently

the crystal dissolves in “sheets” of molecules. It is interesting to note, too, that

Traube and v. Behren have found® that, when a crystal is dissolved into an almost

saturated solution, ultramicroscopic particles con be found which persist for some
time before being dissolved to a true molecular dispersion.
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melted, without raising the temperature appreciably above the melting

point. If, however, the liquid is strongly heated to bring it considerably

above the melting point, the sloughed-off crystal fragments should all

disintegrate, thus bringing down the concentration of effective nuclei to

the normal value for that material. In view of the difficulties in crystal-

lization caused by the necessity for molecular orientation, the reduction

in the concentration of nuclei by heating should greatly increase the

possibility of undercooling.*

It is evident from the above discussion that, except for mechanical

inclusions, impurities can be included in the body of the crystal, only if

the size and shape of the molecules of the impurity are such as to permit

them to fit easily into the structure of the crystal and if, besides, the

chemical forces between the crystal and the impurity are at least equal to

C of Eq. (1). This will be taken up more fully in Chap. XVIII. It will

be sufficient for our present purposes merely to point out that the ordinar}^

practice of purification of materials by slow crystallization of a part of the

melt is consistent with the picture of crystallization which we have

presented here. It is a consequence of the picture that, if a melt is

cooled slowly enough from one end, the impurities tend to concentrate in

the last portion to crystallize. If crystallization proceeds too rapidly, so

that crystal nuclei appear throughout the whole body of the liquid, then

the impurities must concentrate at the grain boundaries. If crystalliza-

tion is still more rapid, some of the impurities must concentrate at the

boundaries of the mosaic of which each macroscopic crystal is composed.

These predictions from the theory are consistent with the results of

metallurgical practice.

6. Now that we have seen, both in the case of a seed crystal and in the

case of a spontaneous nucleus, how crystallization starts, we must take

up the manner in which the seed or the nucleus grows to form a finished

crystal from the melt. The following experiment® will serve as an

illustration of the process. A test tube is filled with lump photographic

hypo (Na2S203 .5H20) and is heated over a bunsen burner to melt the

hypo. With a little practice this can be done without losing much of the

water of crystallization. At first the molten hypo will appear cloudy, but

in a few seconds a clear transparent liquid is obtained. A large watch

glass is warmed by dipping it into boiling water and is then quickly

mounted so that it can be illuminated properly from below. The molten
hypo is poured into the watch glass, and a single crystal of hypo is

* This picture is really a detailed expansion of that given by Othmer* and Tam-
mann.^- Another picture given by Richards* differs from this primarily (a) in sub-

stituting a foreign adsorbent for the crystal fragments sloughed off from the melting

solid and (6) in substituting a portion of the melt adsorbed on the foreign adsorbent

for the oriented molecules which we have pictured as colliding with the crystal frag-

ments or with true spontaneous nuclei. In both these pictures the forces called into

play by orientation take the whole matter out of the field of thermodynamics.
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immersed in the melt at the center of the watch glass. It is best to

handle this single crystal with warm, chemically clean, dry tweezers.

Very soon small nepdles will be seen projecting out from the surface of the

crystal. Under favorable conditions of illumination it may be seen that

these needles lie in three directions which are definitely oriented to the

axes of the crystal. They tend to form a three-dimensional meshwork
with liquid hypo in the interstices. If the volume of material, rate of

cooling, and conditions of illumination are all favorable, these needles

may be seen to grow still other needles on their sides so that the original

meshwork becomes the frame for a very much finer meshwork.

It is easy to imagine® this process repeating itself to give a whole

succession of S'ich meshes each finer than that from which it is hung, so

' hat we are tcij’pted to assume the existence of an ultimate three-dimen-

sional meshworv of such fineness that it could not be seen even with a

microscope. E' entually the v uole mass of liquid becomes crystallized,

and, if the cc/nditions of the experiment have been favorable, a large

single’^ irystal of hypo is obtained. When we remember the marked
changes in volume which most materials undergo in solidification, we are

led to assume that the last traces of liquid to crystallize out must yield

solid material which is under considerable strain. These strains may
even be thought of as distorting the fine meshwork so as to change slightly

the orientation of the tiny crystal fragment which this meshwork encloses.

This distortion will, of course, be increased by the sharp temperature

gradients due to the local liberation of the latent heat of solidification.

Such a picture leads us at once to the conclusion that crystals grown at

any reasonable rate from the melt must have a mosaic structure and that

an approximation to an ‘‘ideally imperfect^' state is really the normal

state of such a crystal.

It is to be expected that, for very slow rates of crystal growth, the

space between the primary needles will be filled in with solid crystal

almost as rapidly as the needles grow, so that the needles should be prac-

tically obliterated. We should, therefore, expect crystals grown very

slowly from the melt to appear as smooth-faced polyhedra. If the rate of

growth of the primary and secondary needles is in excess of the rate of

growth of crystals from the intervening melt, then the crystals should

grow as dendrites. We should therefore expect a dendritic structure in

crystals grown rapidly from the melt. Both these predictions are con-

sistent with ordinary experience.

For most materials, even if large ideally perfect single crystals could

be grown easily from the melt, they would probably not stay perfect.

This may be illustrated by the case of some single crystals of copper

grown by the author from the melt in an atmosphere of hydrogen. The
crucible containing the molten copper was lowered very slowly

(0.005 in. per minute) through a vertical furnace 2 ft. in length. Each
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part of the newly formed crystal was therefore kept very near to its

melting point for a Jong time, thus giving it every chance to be as perfect

as possible. Copper crystals about the size of a lead pencil, formed in this

way, could hardly support their own weight when held horizontally from

one end. The act of deformation changed the bent portion of the rod

from a single crystal to a multitude of small crystals each having a mosaic

structure.

The ease with which these single crystals of copper can be deformed is

also shown by the following. The crystal axes of a somewhat larger

specimen were determined by x-ray methods (see Chap. XVII), and the

crystal was then slowly sawed by hand and carefully dressed up with a

fine file so as to give it faces corresponding to the cube faces of the crystal.

Care was taken throughout the whole procedure to keep from bending or

deforming the specimen. Only light cuts were taken so that the dis-

tortion of the interior should be a minimum and so that there should be no

appreciable temperature rise due to too rapid expenditure of energy.

After the cube faces h^d been put on the specimen in this way further

x-ray tests were made to check the correctness of the faces. The surface

of the specimen was found to be polycrystalline. The specimen had to

be etched off to a depth of in. before x-ray evidence could be found

that the remainder was a single crystal. That the effect is not confined

to soft metals like copper may be shown by the fact that, before the author

could determine the orientation of a polished slab cut from a quartz

crystal, it was necessary to etch off the thin polycrystal surface which had

been formed by the polishing operation. It is evident that only in the

case of the most rigid materials can we hope to grow from the melt

approximations to ideally perfect single crystals and maintain them as

such.

Probably the reason why the three most perfect crystals reported in

the literature (see Chap. I) are samples of diamond and calcite lies in the

extraordinary rigidity of one and in the mechanical protection afforded

the other by Nature. Most natural crystals either have grown under

such conditions as to favor the mosaic type of structure or have been

subjected to geologic forces which have introduced imperfections by
mechanical means.

3. Growth from Solution.—a. Figure 5 is a schematic temperature-

concentration diagram for a typical solution. The solubility curve con-

nects points at which ‘‘saturation^' is found. If the temperature and

concentration of such a solution are such as to give a point on the solu-

bility curve, then a crystal of the solute suspended in the solution will

neither grow nor dissolve. If the temperature and concentration of the

solution are changed to correspond to a point situated to the right of the

solubility curve, the crystal will dissolve. If the temperature and con-
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centration are made to correspond to a point at the left of the solubility

curve, the crystal will grow at the expense ^f the solute in the solution.

If no seed crystal fe allowed to enter the solution, it may be cooled to a

second temperature-concentration condition shown by the supersolu-

bility curve.'^ Passing to the left of this curve, crystallization proceeds

spontaneously and the crystals come down in a ‘^labile shower,^' corre-

sponding to the familiar precipitate’^ of the analytical chemist.

The situation is exactly like that described for growth from the melt,

except that the presence of a solvent introduces the concentration of the

solution as a variable along with the temperature. Bearing this slight

complication in mind the theory of

j,rowth of erj lals from the nielt can

be translated directly intc. a theory

for growth frOi i solution. T1 3 iftatu-

rstion curve libunticts freezing points of

tli^ solute /at vaiious concentrations.

The sujersolubil^ty curve connects

temperatures of maximum under- \

cooling of the solute at various con-

centrations. Solution therefore

becomes almost synonymous with

melting, precipitation with freezing,

and supersaturation with undercooling.

In dealing with solutions, however, we

cannot speak of the freezing point or

melting point of the eolute alone, we r-

must regard the temperature of satu-

ration as representing the freezing or melting point of the solute dispersed

in contact with solvent in a solution of some definite concentration. We
must similarly restrict our statements in connection with supersaturation.

There is every reason to believe that the mechanism of crystal growth

from solution corresponds almost exactly to that described for growth

from the melt. The growth of needles from the surface of the seed is,

however, only an assumption in this case. The assumption is based on

analogy with crystallization from the melt and does not necessitate

needles large enough to be seen with the microscope. This picture leads

us, then, to the conclusion that imperfection is the natural state for a

crystal grown from solution, even when it is grown at a reasonably slow

speed. Probably natural crystals of calcite, requiring thousands of

years to grow, represent the closest possible approximation to ideally

perfect crystals that can be grown from solution.

6. We are accustomed to the fact that the unbalanced forces at the

surface of a droplet of liquid have a component parallel to the surface so
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that they tend to give the droplet a spherical shape. Even when the

surface tension is very small, the surfaces of droplets of ordinary liquids

are rounded because these liquids have no rigidity of shape. In the case

of a crystal in contact with the melt, either the surface forces or the

rigidity, or both, may have large values. If the strength of the crystal

is in excess of the strength of the surface forces the crystal will be poly-

hedral in shape. If the strength of the crystal is less than the strength

of the surface forces, the crystal must have a rounded exterior. The
interfacial tension between the solid and the melt does not necessarily

decrease with temperature at the same rate

as does the strength of the solid material.

The result is that in some cases the same

material may assume a polyhedral or a

spheroidal form depending upon the tempera-

ture at which the crystal is grown. In such

cases the required freezing temperature may
be obtained experimentally by crystallizing

the material from a solution. For in-

stance, if copper is crystallized from a

copper-bismuth melt containing 50 per cent

Fig. 0.—Typical rounded Copper by weight, most of the copper crystal-
outlines of copper crystals Hzcs out between 900° and 800°C. If the melt
grown from a bismuth solution

< . i rx- -

at 800 to 900®c. Others may Contains only 25 per cent copper, most of
be found on p. 31 of reference 8. copper crystallizes out between 800°

and 700°C. Still lower concentrations of copper in solution in the bis-

muth crystallize out,at still lower temperatures. The interfacial tension

between the solid copper and the melt decreases so much more slowly

with temperature rise than does the rigidity of shape that copper crystals

grown from the 50 per cent solution all have rounded exteriors (see Fig. 6).

The 25 per cent solution yields a large number of copper crystals with

polyhedral exteriors and a few with rounded exteriors. Still lower con-

centrations of copper yield nothing but polyhedral forms. Similar results

may be shown by crystallizing beryllium from silver or aluminum ^2,u

or FeSi from iron.^°’^® Surface effects such as have been described will

certainly increase still further the tendency toward a mosaic structure

in a crystal grown from solution.

c. Von Weimam^® has shown that the size of the crystals obtained by
spontaneous crystallization from pure solutions is a function of the solu-

bility, degree of supersaturation, and viscosity of the solution. Let

S represent the solubility of the solute, let P be the degree of super-

saturation (z.6., the number of gram-molecules of the solute which must be
removed from 1 liter (1.) of solution to reduce it to saturation), and let vj

be the coefficient of viscosity of the solution. Then the perfection and
particle size of the crystals of precipitate are determined by the dispersion

coefficient fi, which is defined by the equation
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« = (2)

When b is very smkll, crystallization is very slow and the crystals would
probably be very perfect. The time required to grow a sizable crystal

would, however, probably be measured in geologic units rather than in

hours or days. When 6 is very large, the number of spontaneous nuclei

is so great that practically the whole solute is in the form of nuclei and
the mass forms a so-called amorphous jelly.'' This is illustrated in

Table I which gives some of v. Weimarn's results o i BaS04 precipitated

from mixtures of aqueous solutions of barium thiocyanate and manganous

Tabl I.

—

Effect of 6 on Nature op BaS04 Precipitate

Equivalent

concentration

^ of reagents
*

P, grama
per cubic

centimeter

B Nature of precipitate

0 00005-0 00014 0 0.0006 0-3 No visible precipitate in a year.

Microcrystals expected after sev-

eral years

0.00014-0.0017 0.0006-0.0096 3-48 Slow precipitation at 5 = 8

Suspension stage at 6 = 25

Complete separation in months to

hours

0.0017-0.75 0.0096-4.38 48-21,900 Precipitation in a few seconds at

8 = 48

Instantaneous precipitation with

crystal skeletons and needles at

5 > 48

At 6 = 21,900, crystals so small as

to be barely visible

0.75-3 4.38-17.51 21,900-87,500 Immediate formation of so-called

“amorphous precipitate”

3-7 17.51-40.9 87,500-204,500 Clear jelly

sulphate. The greater the degree of supersaturation, ^.c., the faster the

precipitation of solute, the more nearly do we approach the amorphous-

jelly type of precipitate. Since the amorphous jelly has almost none of

the characteristics which we associate with a crystal we may make the

generalization that the faster a solute is precipitated the less perfect the

crystals will be. It would seem from Table I that even for reasonably

slow speeds of crystallization in the laboratory, imperfection is the normal

state of a crystal.

4. Growth in Solids.—a. It is inconceivable that two crystals having

different orientations should meet in the body of a solid without having at

the interface a thin layer of molecules whose positions represent a com-

promise between the locations demanded by one of the crystals and those
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demanded by the other. This thin semidisorganized layer is the crystal

analyst's substitute for the ^‘amorphous intercrystalline cement" which

has been postulated by many metallurgists. * This conception of a semi-

disorganized intercrystalline layer leads at once to a picture of the

mechanism of the growth of a crystal in a pure solid at the expense of its

neighbors. In order that crystal growth may occur in a pure solid it

would be necessary for one of the crystals to align the moleculesf of this

intercrystalline layer according to the pattern set by its own orientation.

This in turn would produce a new intercrystalline layer which would have

to be formed at the expense of the less favorably oriented crystal. The
molecules of this newly disorganized layer would then have to be aligned

to conform to the pattern of the growing crystal and the whole cycle

would have to be repeated over and over again until the less favorably

oriented crystal disappears.

In ordinary metallurgical practice it often happens that a mass of

metal is heated to encourage crystal growth. It is not often that solid

crystalline materials of this sort are pure enough for the simple mechanism

which we have just described to represent the actual facts. We have

seen that when substances crystallize from a melt, the insoluble"

impurities tend to crystallize last, ^.e., they tend to collect at the inter-

crystalline boundaries. It is obvious that these impurities will tend

to form a mechanical barrier to crystal growth. To form such a

barrier the amount of impurity need be only an extremely small per-

centage of the total, for it only has to be well scattered through a thin

layer at the crystal boundary. In terms of this picture, in order to

enable a crystal of a material of ordinary over-all purity to grow at the

expense of its neighbors, two conditions must bo fulfilled: (1) the inter-

crystalline boundary must be punctured in some way in order to bring

pure crystals in contact with each other, and (2) the mass must then be

heated above some characteristic temperature range such that the

molecules in the punctured areas become mobile enough to align them-

selves in accordance with the demands of the crystal which is to grow.

This is consistent with the ordinary metallurgical experience that crystal

growth in metals is facilitated by hammering, swaging, or passing the

metal between rolls, followed by heating the deformed metal above

some characteristic temperature. Mechanical working cannot destroy

or remove the impurities from an intercrystalline layer; it can only

* Since the potential energy of the atoms or molecules in such a disorganized layer

must be. greater than the potential energy of the systematically arranged atoms of a

crystal, it is to be expected that etching reagents will, in general, strongly attack the

intercrystalline boundaries. This offers at once a rational explanation for many of

the facts of intercrystalline corrosion.

t In the case of most metals, the word “molecule,” as used here, becomes synony-
mous with “atom.”
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change the distribution of the impurities so that here and there the layer

is punctured. The invading crystal therefore cannot advance along a
continuous front but must be thought of as sending out needle-like

shoots or sprouts through the punctured portions of the intercrystalline

layer. The spaces between these needle-like projections must be filled

in as well as possible by realigning the molecules of the invaded crystal

through growth from the sides of the needles. Such a picture is so

nearly like that which we had for the growth of crystals from the melt

that we feel justified in the conclusion that imperfection is the natural

state of crystals grown in mechanically deformed solids. This conclusion

is consistent with the ordinary experience of crystal analysts.

h. Certain •"materials show allotropic forms, t.e., they exhibit more
1 ban one crysta ' form, each one of which is stable over a definite tempera-

lure range. \ ‘^amiliar is the case of high-purity iron which

changes reve^^|My from the face-centered cubic y form to the body-

ceaterod cubic a form at 903.5"^ + 2°C. X-ray examination fails to

show anT amorphous ^ange between the high- and low-temperature

forms of an allotropic material. This must mean that allotropic changes

do not require molecules* to move past each other. Small motions

of translation, sometimes accompanied by motions of rotation of the

molecules, must be sufficient to enable an allotropic substance to change

from one of its crystal forms to the other. This condition appears to

be always fulfilled. The case of 7- and a-Fe will serve to illustrate the

point. It was stated in Chap. II that a body-centered cube may be

considered as a face-centered tetragonal prism with an axial ratio of

l/\/2 . The face-diagonal of the body-centered cube becomes the edge

of the base of the face-centered tetragonal prism. The altitude of the

body-centered cube is identical with the altitude of the face-centered

tetragonal prism. It would be natural to assume that this would offer a

mechanism for the transition. There is, however, still another way by
which the transition may be made from a face-centered to a body-centered

cube, and it turns out that this second way gives a structure which

has less potential energy than the first.

R. F. Mehl and D. W. Smith have shown^^ that when 7-Fe changes to

a-Fe the ( 1 1

0

) planes of the a-Fe form parallel to the ( 1 1

1

) planes

of the 7-Fe, and that the [1 1 1] direction in the a-Fe coincides with

the [1 1

0

] direction of the 7-Fe. Inspection of a model of a face-centered

cube shows that its (111 ) planes are composed of equilateral triangles.

The sides of these equilateral triangles lie in the [
1 1

0

] directions. In

7-Fe the length of the sides of the triangles is about 2.55A. at the transi-

tion temperature. Inspection of a model of a body-centered cube shows

* For purposes of brevity the word “molecules” will be used here to represent

not only true molecules and the atoms of metals but also ions such as the CO* ion

in calcite and aragonite or the NH4‘*' ion in ammonium chloride.
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that its (1 1 0) planes may be considered to be made up of isosceles

triangles whose bases lie in the [100] direction and whose legs lie in the

[1 1

1

] directions. One of the legs of each isosceles triangle in a-Fe must

therefore coincide in direction with one side of an equilateral triangle of

the parent 7-Fe. In a-Fe the length of the legs of the isosceles triangle

is about 2.51A. at the transition temperature. The base of the triangle

is about 4.I0A. The transition from 7- to a-Fe is therefore accomplished

with only a negligible motion of two out of three atoms at the corners

of each triangle. The third atom has to move a distance which is

of the order of one atomic diameter. Evidently any mosaic structure

in the original crystal has a good chance of persisting in the new crystal.

Indeed, there should be a good chance that additional strains would

form which would even cause new crystal boundaries so that the new
crystals would, in such cases, be smaller in size than the old crystals.

Such a break-up of crystals during allotropic change (as from 7- to a-Fe)

is of common occurrence in metallurgy.

c. In metallurgical work it frequently happens that substance B
may be ‘‘dissolved'^ in solid solution in substance A above some definite

temperature, but below that temperature individual solid phases separate

out which are either A and the ionic compound AxB„ or a solid solution

of B in A and a solid solution of A in B. This involves much greater

atomic motion than the processes which we have so far considered.

Obviously atoms of B can travel through the body of the metal only

by taking advantage of interstices between the atoms of A. It cannot

be assumed that the compound AxBy, as such, travels through the metal;

the interstices between atoms of A are hardly large enough, even at

high temperatures. The effect of travel of A^By can, however, be

obtained solely through the migration of B plus slight motions of the

atoms of A. It will be shown in Chap. XVIII that there is good reason

for assuming all the atoms of B in a solid solution to be combined with A
to forip ‘‘molecules^’ of the ionic compound A*By. It will be shown,

too, that the apparent migration of A^By can be accounted for if we
assume that, when each B” ion* migrates, it returns the valence electron

which it has borrowed from an adjacent atom of A on one side and that

it borrows a valence electron from another atom of A on the other side.

Each ion of B~ is thus always a part of an ionic ‘‘molecule^' of A^By,

but it is not always combined with the same A+. In this way, although

only ions of B“ travel through the metal A, each one is at any instant a

real part of some ‘‘molecule'' of A*By. If this picture is accepted, a
discussion of the effect of migration of the B“ ion will, in general, serve

to explain both the formation of crystals of AxBy and the formation of

crystals of solid solution A-in-B, or B-in-A.

* This statement is worded in terms of B being the negative ion. The changes in

wording when A is the negative ion will be obvious.
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It is evident that, if an ion B“" is to move from the left side to the

right side of an atom (or ion) of A, (1) the heat motion must happen to

cause all the atoms (or ions) of A lying to the right of B” to move simul-

taneously away from each other, leaving a hole through which B*" can

pass, and (2) at the same time the heat motion of B^ must happen to

move it in the direction of the hole.* The number of accidental oppor-

tunities of this sort per second will decrease as the temperature is decreased,

partly because the average motion of the atoms is slower, and partly

because a smaller fraction of the openings formed will be large enough in

diameter. If, in their random wanderings, two ions of B” find themselves

in the correct configuration with each other and with the ions of A to

conform to crystal structure of A*Bj/, then, if this configuration

represents a de crease in the potential energy of the system, the configura-

tion will tend t ‘ be stable €i^' gh to persist. If now a third ion of B“
migrates to the correct position with respect to the other two, the con-

figuration tends to become still more stable. This process is repeated

until a crystal of A xBy ia formed. It is not to be assumed, however, that

this crystal will be perfect.’^ Its very method of formation involves

the chance of atoms of A being enclosed as impurities in the crystal, thus

causing local distortions which would give the effect of mosaic structure.

If the configuration of A^Bj, does not represent a sufficient decrease in

the potential energy of the system, ions of B~ will tend to migrate off

until they happen to hieet other ions of B~. If the resulting crystal f

of B represents a decrease in the potential energy of the system, the

crystal will tend to be stable enough to persist and it will grow if other

ions of B" happen to migrate to it. Since the migration of both A and

B will be haphazard, the crystal of B will not be entirely free of A.

Stray atoms of A may become enclosed mechanically in the crystal of B.

These will exist as ions of molecules of A^B^ so that what we have called

a crystal of B is really a crystal of a solid solution of A (t.c., A^BJ
in B.^' Similarly, laggard ions of B"" will be left enclosed as A*By in

a ‘'solid solution of B (i.e., A^By) in A.^' This picture is consistent with

ordinary metallurgical experience. It will be shown in Chap. XVIII
that these dissolved ions will introduce enormous strains in the crystal.

These highly localized strains can only result in a mosaic type of structure.

SECONDARY CRYSTAL STRUCTURE

We have now discussed the various important methods of crystal

growth, and in every case we have come to the same conclusion, namely,

that imperfection is the natural state of a crystal. We have seen that,

* See Chap. XVIII.

t When such energy conditions exist, then if two B" ions meet, each must return

its extra valence electron to A so that atoms of B exist in contact with each other.
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for crystals grown from the vapor or from the melt,* these imperfections

may be pictured as being due to the formation of a skeleton of needle-like

growths which is later filled in with solid crystalline material. We
must now try to find, in the very nature of the crystalline state, (1) some

reason for the existence of such a skeleton and what its probable spacing

is, and (2) the effect of such skeletons on the physical properties of crystals.

1. The Nature of the Skeletal Structure (Zwicky “Pi” Planes).—We
need first to satisfy ourselves that there are spots on the surface of a

crystal from which growth may take place with comparative ease. The
following line of reasoning will show that this is indeed the case. We
have already seen that surface-tension effects are present in crystals.

p]stimates of internal pressure anjd measurements on the surface tension

of molten metals and molten salts at their freezing temperatures lead us

to believe that these surface-tension forces in crystals are very large.

We have seen that these forces may even be large enough, under the

proper circumstances, to force a crystal to abandon its polyhedral shape

in favor of a spheroidal shape. The surface of a crystal must therefore

be assumed to be under a heavy stress. It is inherent in the very nature

of surface tension that this stress must decrease with the depth below the

surface. Consider, for purposes of illustration, a minute seed crystal of

an alkali halide such as NaCd.f The surface tension must tend to bring

the surface Na+ and Cl“ iors closer together on the cube face, thus

decreasing the lattice parameter at the surface. "Evidently, the surface

cannot contract as a whole, for, since the effect decreases with the depth

below the surface, the smaller lattice parameter of the top layer would

bring, at definite intervals, an ion in the top layer directly above an ion

of the same sign in the next lower layer. Such an impossible situation

would be avoided if the surface were contracted in patches of substantially

the same size, with crevices separating the patches. The linear size

L of such a patch can be calculated by the method of Zwicky^® ast

L = 100^ (3)
7

* We have tjcen that there is good reason for assuming this same picture to hold

also for growth from solution. Oowth from the solid comes into the present dis-

cussion only to a minor extent, for the original crystals in the solid were formed either

from the vapor, or from the melt or from solution.

t The picture given here may be generalized so as to apply to a metal by assuming
the valence electrons to occupy positions in the crystal structure. The positive

metallic ions would correspond to the Na^ ions and the valence electrons would
correspond to the Cl“ ions. It will appear in later chapters that this sort of picture

has considerable justification. Of course each substance will have its own characteris-

tic dimensions for its crevices.

X These calculations arc identical with those made by Zwicky {loc, cit.) in the course

of a much less detailed discussion. The reader is referred to Zwicky^s articles in the

Physical Review and in the Proceedings of the National Academy of Sciences for a presen-

tation of his point of view.
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where ao is the length in -Angstroms of the edge of the unit-crystal of

NaCl and 7 is the percentage of contraction in the lattice parameter at

the surface. ZwicJfY has shown that, when a crystal of NaCl is put

under tension along its length, it suffers a lateral contraction which may
be as large as 5.4 per cent. (Lennard-Jones has shown^° that the lateral

contractions of all the alkali halides are of the order of 6 per cent.) We
shall assume, therefore, that the stress perpendicular to the surface of our

sefjd crystal of NaCl is accompanied by a contraction 7 at the surface

of 5.4 per cent of the normal lattice parameter. Then Eq. (3) becomes

L = 100— = lOoA., approx. (4)

Thai is, if the >urface of a newly aepositecl film of crystalline NaCl is

t .> avoid having ions of the same j§igr directly over each other, it must be

broken no by ices which lik more than lOOA. apart. Since there

IS riO reason w iiy these crev ices must be closer together, we shall assume

that they have a substantially regular spacing of about lOoA. Such a

surface sli >uld be one possessing minimum free energy.

Crevices of this sort will extend into the crystal to a rather definite

depth which we assume to be that at which the surface tension effect is

no longer detectable. This depth may be calculated for NaCl as fol-

lows:^® Let € be the decrease in surface energy due to the contraction

in 1 sq. cm. of surface. Then if the area of a single patch is 8, the decrease

in energy associated with the contraction is Se. Let S' represent the area

of surface in the crevice which is formed at the expense of the energy Sc.

Then, since the energy used up in making the crevice must come from

the surface energy, we have

Sc = sv

where <t is the surface tension of the NaCl. Calculation on the basis

of the ionic nature of NaCl gives c a value of about 220 ergs per square

centimeter. The related value of <r for solid NaCl is found* to be 156

ergs per square centimeter. If we assume that the surface tension

decreases uniformly with the depth below the surface, we have an average

value (t/2 = 78, so that 220S must equal 78S'. Within the precision

of the calculations we may say that S = \iS', Now the length L of one

side of a patch was found to be about lOOA., so that S = (100)^ sq. A.

Since there ^are four crevice surfaces per patch, the total length of the

* <r — 0 . 12-^, where e is the electronic charge and ao is the lattice parameter of the
ao**

crystal of NaCl. Then

("4 77 X
G = 0 . 12

'

0
'

x
'~

id~8y8
~ 1^® ^**2® square centimeter

For molten NaCl at 800°C.,

G = 100 ergs per square centimeter, approximately
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crevice per patch is 4L = 400A. The area of the crevice surface asso-

ciated with each patch must therefore be S' = 400c?, where d is the depth

in Angstroms of the crevice. Since S is approximately equal to

we have

(100)2 = 400d

3

so that d is in the neighborhood of 75A.

We therefore have the picture that by the time a seed crystal of

NaCl has grown to be several hundred atomic diameters across, its

surface is covered with a square network of crevices which are approxi-

mately lOoA. apart and about 75A. deep. Obviously the width of each

crevice must be at least the packing-diameter of a Na+ or 01“ ion. This

picture is perhaps too simple. It is not to be expected that these crevices

will be entirely empty. Near the top we must expect to find here and
there stray ions of Na"^ and Cl~ attempting to bridge across from one

wall of the crevice to the other. There is no reason to suppose that these

ions occur at any definite spacing with respect to each other, but, wher-

ever such a stray ion does exist, its exact position will be determined

by the electrostatic forces between it and its neighbors on the walls

of the crevice. These stray ions then would act as poor attempts at

bridges here and there across the crevices. They would give the crystal

as a whole somewhat more strength across the crevices than if they were

entirely absent.

In order to facilitate further discussion of the effect of these crevices,

we shall assume that the surfaces of the patches on the seed crystal all

lie in a horizontal plane. At the center of each patch, the ions are

pulled equally in all horizontal directions by the adjacent ions on all

sides. As we go closer and closer to a crevice we finally reach a region

where the electrostatic pulls are not exactly balanced; the total pull

toward the crevice is less than the total pull toward the center of the

patch. The horizontal interionic spacing will therefore be smaller and
smaller the closer we come to a crevice, and the potential energy between

adjacent ions will therefore become less and less. Similarly, on the

surface of a crevice, the vertical interionic spacings will be smaller and
smaller the closer we come to the surface of the patch, and the potential

energy must become less and less. Ions at the corners formed by the

intersection of two crevices with the surface of the patch will have the

least potential energy of all; they will be closest to their neighbors. As
the seed crystal grows vertically it is to be expected, then, that growth

will take place most readily at these corners, for the newly arrived ions

will be most tightly held at such points. This should result in a primary

crystal growth along a vertical needle-like skeleton, with a subsequent fill-

ing in on the surface of the patch. This filling in should occur most
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rapidly at the edges formed by the intersections of the crevices with the top

surface of the seed crystal, because of the relative closeness of packing

of adjacent ions almg these edges. The central portion of the patch

should be the last to be filled in. Obviously, a height will at last be
reached such that a horizontal crevice will be formed to relieve the distor-

tion along the surfaces of the vertical crevices. The argument in this

case is identical with the argument which originally led us to assume the

existence of vertical crevices,* with one exception. At the moment of

forming the horizontal crevice we have at each corner of each of the

original patches a vertical needle extending above the general level

of the patch. When the horizontal crevice is formed, these projecting

needles should determine the orientation of the new crystal fragment

s/hich will gro v above the horizontal crevice. The orientation of the

new growth ab* ve the crev’jfite will therefore differ from that below it

only by reaet>i of some small accidental tilting of the- projecting needles

at the moment of iorming the horizontal crevice.

Vv e hr. ve, then, arrived at a theoretical picture of the growth of the

NaCI seed crystal W’hich requires the final ^‘single crystal^' to be really a

mosaic of crystal fragments, all having nearly the same orientation,

having practically the same size and shape, and being separated by crev-

ices of substantially uniform spacing. Generalizing this picture so as to

make it apply to other salts and to metals, we may think of the structure

of a ^‘single crystaP^ as being a lattice-work of points (such as is described

by the theory of space-groups) on which is superimposed a coarser

structure represented by the crevices, f Following the terminology of

Zwicky,^®*2i ^0 shall call the planes of the finer structure ‘‘p-planes^'

and the walls of the crevices which outline the coarser structure

‘V-planes.^' Since each crevice must have two walls, it is evident

that TT-planes must come in pairs. We may call the crevices ‘V-crevices.^'

Just as the spacing of the p-planes is a characteristic of the material of

which the crystal is composed, so the spacing of the x-crevices must be a

definite characteristic of the material.

It is not to be expected that the surface forces which we have so far

considered are the only forces tending to form crevices in a crystal. For

instance we have neglected entirely thermal strains caused by the fact

that the latent heat of solidification is given up at the surface of the grow-

ing crystal. This heat must be taken away mainly by conduction through

the crystal itself so that, as the crystal is built up, it is subjected to rather

* Since the horizontal distances between the original vertical crevices are about

lOOA., and since our calculations have shown that the depth of a crevice is about

76A., it is evident that the horizontal crevices from the four sides of a given patch

will all meet, thus giving a continuous horizontal crevice.

t This type of picture is consistent with all the x-ray data on the degree of imper-

fection of crystals and leads directly to the outstanding mechanical and crystal-

lographic properties of crystalline materials.
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large local strains. These strains should tend to alter somewhat the

orientations of the* crystal fragments which compose the. mosaic, causing

slight irregularities in the walls of the 7r-planes, thus giving rise to

^^supercrevices.” Zwicky has shown^^ that electrostatic considerations

also point to the existence in a ^'single crystal'^ of a structure still coarser

than that of the 7r-planes. The walls of these supercrevices we

may call ^‘Il-planes^’ and the supercrevices themselves ^^Il-crevices.

According to Zwicky's calculations they may have a spacing as large

as 5000A. or possibly even 20,000A., depending upon the material of

which the single crystal is composed. Apparently the supercrevices

whose walls constitute the 11-planes are of somewhat greater width

than the crevices which we have called x-crevices.

The picture of Il-planes and of x-crevices is almost entirely a theoret-

ical picture. There is at present no direct experimental evidence of their

existence and it is hard to see how there ever can be. Because of the

changes in the density of a crystal from point to point along the edges (and

faces) of the mosaic, and because of the small width of the x-crevices in

comparison with the width of the mosaic units, x-ray diffraction from the

x-planes (^'.e., from the spacings of the mosaic units as a whole) should be

of almost zero intensity. The only real indirect evidence for the exist-

ence of x-crevices lies in the intensities df the x-ray beams diffracted from

the p-planes of crystals. It will be remembered from Chap. X that the

data on the intensities of diffracted x-ray beams show that most crystals

are almost ideally imperfect.’’ This imperfection of structure is, of

course, consistent with the idea of x-crevices but does not require them

to be regularly spaced. There does seem to be considerable indirect

evidence for the existence of Il-planes and H-crevices. This evidence

will now be outlined, using the assumption that the distances between

n -crevices are substantially equal. If this*assumption is not made, the

picture becomes somewhat less elegant, but the conclusions to be drawn
will not be seriously altered. In such a case the few changes in wording

required will be obvious.

2. Consequences of ^-planes andn-planes.—a. From the standpoint

of crystal growth no substance can be regarded as being really pure, for, if

an impurity is present only to the^extent of a few parts per million, it may
still affect the crystal growth by concentrating on the growing surface.

Most ordinary materials contain impurities in amounts ranging from a

fraction of 1 per cent up to several per cent. We may imagine these ions

(or atoms or molecules) of impurity to collide with the growing surface

in exactly the same manner as the ions (or atoms or molecules) of the

crystallizing material. The chemical bond between the impurity and the

crystallizing material may be (1) weaker than, (2) equal to, or (3)

stronger than that between adjacent ions (or atoms or molecules) of the

crystallizing material. (1) If the bond is weaker, the impurity will have



MECHANISM OF CRYSTAL GROWTH 387

a greater chance of leaving the surface than will the ions (or atoms or

molecules) of the crystallizing material. The impurity will therefore be

I'.resent mostly in t\e form of material entrapped in the 7r-crevices, in the

Il-crevices, or in the intercrystalline boundaries. Only a fraction of it

will be left to foul the growing surface and retard crystal growth. (2)

If the bond is practically equal, the impurity will enter into the structure

of the p-planes after the manner of the alums. (3) If the bond is stronger,

Cither the impurity will remain on the growing surface, fouling it so as to

retard growth, or the impurity will leave the growing surface, taking with

it that portion of the surface material with which it has combined, and in

such a case it must tend to concentrate at the ir-plt.nes, at the Il-planes,

and at the cr dal boundaries.

When aft inpurity tends to deposit on the growing surface of a

crystal, deposii 'on must oc('||r n^0Sl strongly near the corners and edges

cf the patcht‘% lor these are tho places where the potential energy becomes

hast But these are exactly the places which are, according to our

piviare. ’.he regions of fastest crystal growth. In other words, an

impurity tends to foul the growing surface in such a way as to retard

crystal growth most effectively. If it were not for diffusion of the

impurity from regions of higher to regions of lower concentration, there

would be little chance of having any unfouled surface. When, however,

the impurity adjacent to one group of patches is deposited on the growing

surface, the region above the surface finds itself with a lower concentration

of the impurity than its surroundings. The impurity at once tends to

diffuse into these impoverished regions, thus reducing the chance of some

other, adjacent, group of patches becoming fouled. These comparatively

clean groups of patches, therefore, will be able to grow more rapidly than

their fouled neighbors, thus forming macroscopic needles. Of course,

since these needles tend to grow sideways as well as in the direction of

their length, the sides become covered with patches bounded by IT-crevices.

A discussion similar to the above shows that the sideways growth will

eventually become a matter of sending out secondary needles, and that

these finally must send out tertiary needles, etc.* It may be assumed

that all these macroscopic needles predicted by theory represent the actual

needles of Figs. 1, 2, 3, and 4 and the needles described in the experiment

with sodium hyposulphite. A similar line of reasoning may be applied

to the dendritic structures so familiar to metallurgists.

6. Consider an undistorted ^‘single crystal,'^ and let its apparent

orientation be known from goniometer or x-^ray measurements. It is

* This needle-like skeleton corresponds to the ‘‘lineages” of M. J. Buerger**

except that it is brought out in this discussion that the ultimate needles of which each

large needle is composed can hardly avoid having transverse crevices. It is only fair

to Professor Buerger, however, to add that, although he accepts “lineages,” he does

not accept the idea of mosaic structure and of the ir-planes which that structure

implies
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a consequence of the mechanism of growth which we have described that

the individual fragments which compose the mosaic differ only slightly

in orientation from each other. Any given set of atomic planes will

appear to pass through one crystal fragment, across the 7r-plane, and

through the next crystal fragment with hardly a perceptible break.

This is illustrated in Fig. 7a. It may be assumed that for such a crystal

the orientation is also preserved across the boundaries of the IT-planes.

Such crystals may be expected to be mechanically weak.

The large spacings between adjacent 7r-planes and the still larger

spacings between adjacent Il-planes will offer good opportunities for

(a) (6)

Fig. 7.— (a) p-planes and tr-planes in an undistortcd crystal; (6) p-planes and ir-planos in a
distorted crystal.

slip. Slip must occur first between the planes of greatest spacing, z.e.,

between the Il-planes. This gives a reasonable explanation for the well-

known fact that in metals the slip bands have spacings which are rather

exact multiples of the smallest spacing between bands. Since the direc-

tion of slip does not, in general, coincide with the direction of pull,

torques will be set up which will tend to give somewhat different orienta-

tions to adjacent portions of the single crystal. The Il-planes would be

pretty well wrecked, and each portion of the single crystal would be

jammed crossways against its neighbors. In a very real sense the

original single crystal may be said to have been broken up into a large

number of smaller ones. This is consistent with the ordinary experience

of x-ray investigators. Slip must then take place between the planes of

next greatest spacing, i.e., between the x-planes in each portion of the

crystal. The torques set up will tend to rotate the fragments of which

the mosaic is composed so that they will no longer look like Fig. 7a but

will be like Fig. 76. Further slip can take place only between the

p-planes. This is not likely to take place because of the closeness of the

spacing. Before slip will take place between the it is to be

expected that rupture will occur along the line of the wrecked n-planes

or ir-planes.
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If we adopt this picture of slip, we have not only explained at once

why metals show block slip rather than a continuous shear but we have
made it necessary for the block slip to occur in small finite increments.

The picture requires that slip must occur first between the two weakest

n-planes. Slip will proceed until the plane becomes wrecked at some
point by the jamming of the x-plane structure of which its walls are

composed. Slip must then start in the next weakest H-crevice. This

process must continue until finally the process is taken up by the weakest

TT-crevice. In other words, slip must be a step-by-step process. Experi-.

ment shows that this is actually the case. Joff6 and Ehrenfest and later

Miss Klassen have shown^^ *^ that shear in zinc and in rock salt progresses

in small jumps. The magnitude of the jumps remains constant to within

10 per cent for thousands of jumps. The initial time interval between

successive jumps depends upon the difference between the applied load

and the elastic limit, but for a given shearing stress it gradually increases

until the jumps finally cease. The effect is illustrated in Fig. 8 which

is taken from Joff^^s ‘^The Physics of Crystals'' (McGraw-Hill Book
Company, Inc., New York, 1928).

It is well known that slip ordinarily occurs in the direction of those

p-planes which have the greatest interplanar spacing. Our discussion of

slip has therefore implied that the ir-planes and the Il-planes lie parallel

to those p-planes which have the greatest interplanar spacing in the

crystal. An examination of our discussion of the formation of ^-planes

shoWs that this is implied there, too, for crevices may be expected to form

most easily along the largest interplanar spacings of the growing crystal.*

* This in turn implies that the normal direction of crystal growth is perpendicular

to the slip planes in an orthogonal crystal. Cases in which growth appears to be in

some other direction may really be examples of a zigzag growth perpendicular to

members of the family of slip planes.
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Obviously, as the weakest IT-planes and 7r-planes are wrecked in suc-

cession so that they can no longer slip, the tensile strength of the crystal-

line material must increase, i.c., the crystal must strain-strengthen.

The only way to avoid strain-strengthening would be to keep the material

at such a temperature that the wrecked planes can repair themselves

as a result of the high atomic mobilities associated with thermal agitation.

The picture which has been given for the mechanism of slip explains

strain-stiffening also, for Joff4 has shown by x-ray methods^'^ that, when
a single crystal is bent beyond the elastic limit, it really suffers a large

number of minute shears of the block-slip type. Since the tensile

properties of materials are pictured as depending upon the Il-planes and
TT-planes, it is not surprising that the tensile strength of a crystal cannot

be calculated from the electrostatic forces between the ions in the p-planes.

As would be expected, the actual tensile strength of a crystal is always

considerably smaller than that calculated from the p-planes.

We have seen under part a that, next to the intercrystalline bound-

aries, the crevices between the Il-planes and between the 7r-planes offer

the most favorable place for the deposit of impurities during crystalliza-

tion. The idea may be expanded beyond the meaning ordinarily

attached to the word ^^impurity.^^ When, by reason of an appropriate

thermal history, an alloy ^^precipitates out^^ a new phase, then this new
phase will tend to collect at the crystal boundaries and in the crevices

between the Il-planes, and between the 7r-planes, provided only that the

atoms have sufficient freedom of motion to permit the necessary migra-

tion. The presence of the new phase between the Il-planes and between

the TT-planes must, of course, act to bridge over these crevices in an irregu-

lar fashion thus tending to tie the side walls together and making slip

more difficult. This offers a simple and apparently adequate explanation

of the strengthening of metals by the precipitation of a new phase.

The effect of carbon in the strengthening of steels comes to mind at once

as an illustration. Metallurgists will find many other examples in ordi-

nary metallurgical practice.

c. The theory has indicated that at the edges formed by the inter-

sections of TT-planes the molecules are especially close together, thus

forming structures of minimum potential energy, and that the spacing

(and therefore the potential energy) between molecules increases as we
go from the edges toward the center of a patch. Because of the lower

potential energy, the melting point of the edge portions must be somewhat
above the melting point of the main body of the patches. When a crystal

is brought just barely up to its melting point, we may assume that the

bonding of the Il-planes is first loosened, but the structure cannot melt

down because of the rigidity of the blocks of which it is composed; the

material merely becomes soft. Similarly, it cannot melt when the bonds

between the Tr-planes are loosened. Finally, the centers of the patches
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must melt out, leaving the edges of the patches to slough off without
melting. A similar statement could be made of the edges formed by the

intersection of the IT-planes. These unmelted ‘‘edges'' correspond to the

sloughed-off portions mentioned in our discussion of the growth of crystals

from the melt. We therefore have a theoretical explanation* of the

experiments of Goetz® and of Traube and v. Behren® which have already

been referred to, and the experiments of Richards® in which it was shown
that the whole material does not become a truly homogeneous liquid until-

a temperature is reached which is appreciably above the melting point.

We also have a rational explanation for the resuhs of Boydston,^® who
found that the electromotive forces of oriented bismuth crystals do not

dic’.appear at he melting point but continue until the “liquid" is heated

appreciably fbove the melting point. Applications of the theory of

sloughing to t i e ordinary mel ing operations of the metallurgical indus-

i’.iefe will be once obvious io all metallurgists.

The seme considerations of potential energy that we have already

usf^i in
,
>art c* serve to explain the action of etching reagents. An etching

agent must attack first the regions of highest potential energy. It must
therefore attack readily, not only the intercrystalline boundaries, but

also the centers of the patches, before it attacks the edges next to the

TT-planes and the 7r-planes themselves. Similarly, we must expect that

it will attack the Il-planes last. It is not surprising, then, that strongly

etched crystals will show etching pits. We may assume that the bound-

aries of the etching pits are parallel to the Il-planes and therefore to the

TT-planes and to the p-planes of greatest interplanar spaciiigs. If this

picture is granted, we have a theoretical basis for the technique of

Honess-*^ in determining crystal symmetries by means of a careful study

of etch figures. Goetz^® has found the etching pits of bismuth to be

characterized by steps which are separated either by a definite spacing

or by a simple multiple of that spacing. He finds this fundamental

distance to be 1.4 ± 0.2 X 10“^ cm. Since this is the correct order of

magnitude for the distance between pairs of Il-planes, he has published

his data as offering possible confirmation of the existence of a secondary

structure in crystals. In the opinion of the author, Goetz' work offers

one of the strongest pieces of direct experimental evidence in favor of

the existence of Il-planes. f

* This explanation offers a somewhat different point of view from that given by

Goetz, who apparently assumes that the sloughed-off portions represent whole patches.

t R. B. Barnes^® has shown by infra-red absorption measurements that, if large

crystals of rock salt are made plastic by soaking in water and are then taken out and

dried superficially, they- contain considerable water in the interior. This water can

be removed by heating 24 hr. at 160°C. Different crystals showed this property to

different degrees. If it could be shown by x-ray methods that the more permeable the

crystal the more nearly ideally imperfect it is, we would have an excellent piece of

direct evidence for the existence of ir-planes or of n-planes.
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e. We have already built up
the picture that, when a new
phase is precipitated in an alloy,

it will tend to concentrate itself

at crystal boundaries and in the

crevices between pairs of 7r-planes

and pairs of Il-planes, if only the

atoms have sufficient mobility to

permit the necessary migration.

If, however, the new phase finds

that the crevices between the 11-

® planes and between the 7r-planes

^ are already filled, then the new
S phase must crystallize as best it

I can in islands within the matrix.

I
These islands correspond to the

3 well-known segregate structures

^ of the Widmanstatten type. It

m has been pointed out by Mehl
5 and his associates^^^*®^*®^ that these

g islands are most likely to be

I formed so that some p-plane of

I,
the new phase lies parallel to a p-

§) plane of the matrix having

£ approximately the same intera-

2) tomic distances. All the islands

*i in a single crystal must therefore

6 take the form of thin plates

M and must have the same orienta-

I tion within the limits set by the

1

mosaic structure. When the

® nucleus of such a crystal island

2 is once formed, the region in its

immediate neighborhood becomes
impoverished with respect to the

new phase. Migration will there-

fore occur from surrounding

regions where the concentration

is still relatively high.

Since the crevices between the

n-planes are already filled with

other material, migration cannot

take place readily across the 11-

planes. A somewhat similar
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barrier must exist between each pair of Tr-planes, but because of

the narrower width of the 7r-crevices the barrier will not be so difficult

to overcome. We must expect, then, that migration toward the nucleus

of each crystal island will be limited to that portion of the new
phase which lies within the volume bounded by the nearest Il-planes.

There is therefore a very high degree of probability that there will be

only one crystal island of the new phase in each of these volumes.* In

other words, the average spacing between crystal islands should be

substantially uniform. It should be the same as the spacings between

adjacent Il-crevices projected in a direction perpt^ndicular to the length

of the crystal islands, f Figure 9 shows that these predictions are correct.

Through the courtesy of the New Jersey Zinc Company, the photomicro-

graph is taki n from the paper of Fuller and Rodda®* on Segregate Struc-

tures of th^- Widmanstatten Tyi>e Developed from Solid Solutions of

Copper in The photcMiicrograph was taken from a single-crystal

specimen v» h<jse plane of poUsh was such as to give symmetrical orienta-

ticas the Widinanstixtien figures. Lines were drawn showing the

planes of all the t races having a given orientation. Because of the small

area of surface (less than 0.9 sq. cm.) shown in the photomicrograph,

it is not to be expected that every Il-plane will be represented in Fig. 9

by a segregate structure line. It is evident, however, that the smallest

spacings are all of substantially the same width and that the larger

spacings are fairly exact multiples of this smallest width, as demanded
by the theory. Calculation shows that the fundamental distance apart

in the specimen is of the order of 5 X 10~^ cm. Because of the effect

of the orientation of the plane of polish, and because of the mutual

orientations of the planes upon which the segregate structures are found,

only the order of magnitude of this distance is of any real significance.

It is interesting to note that the spacing found here is of the same order

of magnitude (one-third as large) as that found in the Goetz etching

experiments on bismuth.

SUMMARY

We have taken up systematically the experimental evidence as to the

growth of crystals (1) from the vapor, (2) from the melt, (3) from solution,

and (4) from the solid and have discussed the physical conditions which

are associated with each. In every case we found imperfection to be the

natural state of a crystal. This conclusion is consistent with the mosaic

* This is really a special form of the theory of rhythmic precipitation in which the

limits of diffusion are set by the Il-crevices instead of by the concentration of solute.

t Dr. R. F. Mehl has pointed out to the author that not all materials will precipi-

tate out from the same material in the same crystallographic direction. This should

not, however, prevent the n-planes from determining the average spacing between

crystal islands "by setting limits on the diffusion which is tied up with rhythmic

precipitation.
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structures, mentioned in Chaps. I, X, and XI, which seems to be required

by the intensity data. of diffracted x-rays. Following the general lines

of the theory of Zwicky, we have built up in detail a theoretical picture

of the growth of crystals such that the imperfections are inherent in

the structure and such that the ordinary properties of materials (such

as manner of crystal growth, tensile properties, segregation of impurities,

properties of the melt, etch figures, and Widmanstatten figures) follow

as natural corollaries.
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CHAPTER XIII

THE PACKING-SHAPES AND PACKING-SIZES OF ATOMS AND
IONS

We have seen in Chaps. IX and XI that a knowledge of the packing-

dimensions of atoms and ions may be quite useful in solving the structure

of. crystals. The packing-size and packing-shape of an atom or ion are not

to be confused with its ^'actual'* size and shape. The actual shape and

size of an atom or ion depend upon the configuration of the electrons and

upon the various interelectronic distances in the atom. If we happen to

be thinking in terms of strictly physical or mathematical figures of speech,

we may express the actual size of an atom in terms of the characteristic

dimensions of the orbits of its outmost electrons. If, instead, we prefer

the less general but more easily visualized chemical figures of speech, we
may express the actual size of an atom in terms of the dimensions of the

framework of some type of static atom.* It is possible that these two

pictures are really only two viewpoints of the same fundamental picture,

for calculations based on one necessarily give identical answers with

calculations based on the other. ^ The packing-shape and packing-size

of an atom may or may not be simply related to its actual size and shape.

In the simplest cases, the packing-volume may be visualized as being

merely the actual volume plus a proper portion of the space between

adjacent atoms. In other cases the picture is rendered much more

difficult of interpretation by the mechanism of chemical combination.

For instance, if two atoms share electrons with each other, it is some-

times difficult to say where one atom ends and the other one begins. On
the other hand it would impose a serious limitation on our ability to

visualize crystal structures if we could not picture any given crystal as

being made up of building blocks packed tightly together, each building

block containing an individual atom or ion. These imaginary building

blocks may be called atomic domains (or ‘4onic domains ^0 • The high

incompressibility of solids indicates that each atom (or ion) must stay

inside its own ‘‘domain.'^ In other words, the atomic (or ionic) domains

are to be considered as being impenetrable at absolute zero when sub-

jected to ordinary pressures. To the crystal analyst the shapes of these

atomic domains in any given crystal are the “packing-shapes'' of the

atoms which compose that crystal, and the dimensions of the atomic

* In either case there is implied the assumption that electrons occupy definitely

defined volumes, an assumption which may be open to serious question.
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domains are the “packing-dimensions'' of the atoms. These shapes and
dimensions are the only atomic (or ionic) shapes and dimensions with

which the crystal aiiS,lyst is concerned, the only ones which may be
derived directly from his experimental data.

It is not to be assumed that the packing-shape or packing-dimensions

of a given atom (or ion) will be identical under various physical and
chemical conditions. Since the centers of adjacent Ca+"^ ions are closer

together in CaO than are the centers of adjacent atoms of Ca in calcium,

it is evident that the ionic domain of in CaO is smaller than the

atomic domain of Ca. It is not even to be assumed :hat an ion retains

the same packing-dimensions in different states of chemical combination.

In other words, **

'lere is no a priori reason why the packing-dimensions of

in CaO shp ild be identical with those of Ca++ in CaS or in CaCU.
There is, hdwov^e^, a body cf|c «cperimental evidence which indicates

tetrongly that \'j|iiin a given class of chemical compounds a given ion

tends to retain about the same packing-size and packing-shape. We have
already tak on advantage of this body of experience in Chap. IX in the

case of tricalciutn aluminate and in Chap. XI in the case of diopside and

topaz. It will therefore be worth our while to take up in detail the shapes

and sizes of the atomic and ionic domains of various elements and the

experimental evidence on which these shapes and sizes are based.

THE PACKING-SHAPES AND PACKING-SIZES OF ATOMS FROM CRYSTAL
STRUCTURE DATA*

Spherical and Spheroidal Atomic Domains.—Many elements crystal-

lize with a face-centered cubic structure. Since a face-centered cube is

one of the two alternative closest packings for spheres, it is only natural

to ascribe a spherical shape f to the atomic domains of these elements.

Such elements are Ne, Ar, Kr, Xe, Cu, Ag, Au, Ca, Al, j8-Tl, Ce, Pb, Th,

7-Fe, a-Co, Ni, Rh, Pd, Ir, Sr, Pt. Each atom is symmetrically sur-

rounded by 12 others. At any given temperature, the distance between

the centers of adjacent atoms is the “distance of closest approach" of

these atoms for that temperature. At temperatures above absolute zero,

this distance ought really to be thought of as being composed of three

segments. The two end segments would be the true radii of the domains

of the two atoms at the given temperature. The middle segment would

* It is realized that the shapes of atomic and ionic domains pictured in this chapter

will appear to the reader to be very crude, as indeed they are. They are at best only

approximations which have the virtue of representing a useful viewpoint. The
text will be found, however, to fulfill the aim set forth in the preface, namely, to put

the reader in possession of knowledge such that he can read the literature further by
himself whenever he needs to.

t The argument is not greatly altered if some close approximation to a sphere

(such as a dodecahedron) is substituted for the sphere. It would probably be impos-

sible to detect the difference because of rotations accompanying the heat motion.
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Table I.—Radii op Spherical Atomic Domains

Element Purity, per cent
Radius,

Angstroms
Temperature Data published by

Ne ? 1.60 Slightly above

boiling He
de Smedt, Keesom, and Mooy

Ar ? 1.92 Slightly above

boiling H 2

Simon and v. Siinson

Kr ? 1.97 Boiling H 2 Keesom and Mooy

Xe ? 2.18 Liquid air Natta and Nasini

Cu 99.9 1.2756. 18® C. Owen and Yates*

99.99 1.272 Room Davey

Ag 99.9 1.4415 18® C. Owen and Yates*

99.999 1.442 Room
i

Davey

Au Spectroscopically pure 1.4389 18® C. Owen and Yates*

99.999 1.437 Room Davey

Mg ? 1.59 Room Hull

Ca ? 1.97 Room Hull

Sr ? 2.18
I
Room King

A1 99.6 1.4286
!

18® C. Owen and Yate.s*

99.97 1 . 430 Room Davey

/9-Tl ? 1.71 Room Seikito

Ce ? 1.82 Room Hull

Pb 99.9 1 . 7464 18® C. Owen and Yate.s*

99.96 1.740 Room Davey

Th ? 1.77 Room Hull

7-Fe ? 1.27 Room Westgren

a-Co Electrolytic 1.267 Room Hull

Ni 99.9 1,2427 Room Private communication from E. R.

Jette

99.648 1.237 Room Davey

Rh S.P. 1.3419 d000 Owen and Yates*

Pd S.P. 1.3726 d000 Owen and Yates*

Ir 99.8 1.3646 18® C. Owen and Yates*

Pt S.P. 1.3844 18® C. Owen and Yates*

99.996 1.383 Room
j

Davey

* Also private communication from E. R. Jette.
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represent the mean separation of these atomic domains due to their

thermal agitation. Ordinarily, however, it is more convenient to con-

sider the middle segpaent as being included in the radii of the atomic

domains. In other words, at a given temperature, half the distance

of closest approach is taken as the radius of the atomic domain at that

temperature. Table I gives the packing radii of spherical atoms, deter-

mined from material of the highest obtainable purity.

The other alternative closest packing for spheres is the hexagonal^

close-packed structure when the axial ratio is 1.633. Co and Ce are

Table II.

—

Radii of Spheroidal Atomic Domains at Rd6m Temperature

Dleiru'iit
y,

percent
Axial

ratio.
1

i 1

IJquatorial

rEMiiiis,

A' igstrdms
f

Axial

radius,

Angstroms
Data published by

Be
T !

*0 '

‘

i

1.58
1

1.141 1.104 McKeehan

Zii 99.093 1.S563 1.3300 1.6117 Private communication

from M. L. Fuller

(New Jersey Zinc Co.)

Cd S.P. 1.8864 1.4868 1.7167 Private communication

from M. L. Fuller

«-Tl 1.69 1.73 1.69 Seikito

Ti 99.9 1.590 1.476 1.436 Patterson

Zr ? 1.589 1.611 1.668 Van Arkel

Hf ? 1.566 1.600 1.633 Van Arkel

Re ? 1.616 1.376 1.362 Goldschmidt

Ru ? 1.586 1.347 1.309 Barth and Lune

Os ? 1.584 1.362
1

1.321 Barth and Lune

the only elements which are able to crystallize with this structure whose

axial ratio is definitely accepted to be exactly 1.633. Both of these

elements are also found with the face-centered cubic structure. There

is some justification for including Mg among the hexagonal close-packed

metals with spherical atoms. It is listed in crystallographic tables as

having an axial ratio of 1.624, but the experimental and calculated

readings of interfacial angles do not agree precisely. The published x-ray

data seem to fit an axial ratio of 1.633 about as well as 1.624. In any

case, even if the accepted value of 1.624 is correct, the Mg atom cannot
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differ by more than about ^ per cent from a true sphere. Unlike Co and

Ce, Mg has never been found in the face-centered cubic form.

The other elements which crystallize with the hexagonal close-packed

structure have axial ratios ranging from 1.58 to 1.89. Since the axial

ratios of Be, a-Tl, Ti, Zr, Hf, Re, Ru, and Os are less than 1.633, their

atomic domains are considered to be oblate; spheroids.® The atomic

domains of Zn and Cd are assumed to be prolate spheroids since their

axial ratios are larger than 1.633. All these atomic domains are there-

fore given two radii which are half the major and minor axes of the

spheroid. The equatorial radius is half the distance of closest approach

of atomic centers in the direction of the hexagonal (X-, F-, and F-) axes

Fig. 1.—Unit body-centered cube made up of cubic atomic domains.

of the crystal. The other, which we shall call the axial radius, is the

radius of the spheroid along the orthogonal (Z-) axis of the crystal.*

Radii of this sort for spheroidal atoms at room temperature are listed

in Table II.

Cubic Atomic Domains.—The elements Li, Na, K, Rb, Cs, Ba, V,

Cb, Ta, Cr, Mo, W, and a-Fe, each crystallize on a body-centered cubic

lattice. It is a characteristic of this lattice that each atom is symmetri-
cally surrounded by eight other atoms. This is the closest packing for

equal numbers of spheres of equal radius having opposite electric charges,

but the ordinary physical and chemical properties of these elements
hardly justify a picture of half the atoms positively charged and half

negatively charged. A picture of the shape of the atomic domains of

* Hull® lists, instead, the two distances of closest approach of atoms. One of these
is the same as the equatorial radius.

.
The other is intermediate between this and the

axial radius. The axial radius is obviously the equatorial radius multipiied by
C/1.633, where C is the axial ratio.
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these elements which has been found free from objection so far has been
proposed by Hull.® Since the eight points of contact may be symbolized

Table III.

—

DimensiO'JS op Cubic Atomic Domains at Room Temperature

Element
Purity,

per cent

Edge of cubic

atomic domain,

Angstroms

Half body-diag-

onal of cubic

atomic domain,

Angstroms

Data published by

Li ? 1.75 1 52 Posenjak

Na ? 2 15 1.86 Posenjak

K Bakei v-hemical

Coi ' pany
Lot 62827

2 t)66

.

2.309 Posenjak

2.81* 2.43 Simon and Vohsen

Cs ?
j

3.02 2.61 Simon and Vohsen

Ba ? 2.507 2.171 King and Clark

V ? 1.505 1.304 HftgB

Cb ? 1.65 1.43 Meiscl

Ta 99.8 1.6557 1.4339 Owen and Iball

Cr 99.8 1.436 1.244 Patterson

Mo 99.5

99.8

1.552

1.571

1.344

1.360

Owen and Iball

Davey

W 99.9

99.999

1.5796

1.577

1.3680

1.366

Owen and Iball

Davey

a-Fe 99.9

99.937

1.4303

1.427

1.2387

1.236

(Owen and Yates

/Greiner and Jette

Davey

by the eight corners of a cube, he pictured these atomic domains as having

a cubic shape.* If such a picture is adopted, we must assume that

* The difference between spherical and cubic shapes of atomic domains may be

regarded, if we wish, as more a difference in degree than in kind. In discussions of

the theory of atomic structure use is made of the probability that a given electron

will find itself in some definite position in the atom. If the eight electrons in the

outmost ‘‘completed shell* ^ of an atom have a high degree of probability of finding

themselves at the comers of an imaginary cube, then the atomic domain might be

represented by a cube with its corners somewhat rounded. If we decrease the degree

of probability that the electrons are, at any one instant, at cube comers we necessarily
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tunnels of square cross-section are inherent in the very structure of

a body-centered cubic crystal of an element. It is evident from Fig. 1

that the cross-section of such a tunnel must be equal to the cross-section

of a cubic atomic domain. It will appear later that such a picture fits

in remarkably well with certain metalluirgical data.* Table III lists

the dimensions of these cubic atomic domains at room temperature,

both in terms of the edge of the cube and in terms of half the body-

diagonal of the cube, t.c., half the distance of closest approach of atomic

centers.

Tetrahedral Atomic Domains.—^The elements C, Si, Ge, and gray

Sn, each crystallize in a diamond cubic structure. This causes each

atom to be symmetrically surrounded by four others. These four points

of contact may be symbolized by picturing the atomic domains to be

tetrahedral in shape. Two dimensions of the tetrahedron are significant:

the length of the edge of the tetrahedron and the distance from the center

of the tetrahedron to one of the four corners, i.e., half the distance of

closest approach of atomic centers. These dimensions are listed in

Table IV.

Table IV.

—

Dimensions op Tetrahedral Atomic Domains at Room Temperature

Element
Purity,

per (jent

Edge of tetra-

hedral atf)mic

domain,

Angstroms

Distance from center

of tetrahedral atomic

domain to vertex,

Angstroms

Data published by

C Diamond 1.259 0.771 Ehrenberg

Si 99.79 1.9154 1.172 Private communication
from E. R. Jette

Ge ? 1.99 1 .22 Hull

Sn gray ? 2.28 1.40 Biji and Kolkmeyer

Other Shapes of Atomic Domains.—Frozen Hg^, black P®, As®,

Sb®, and Bi® crystallize as rhombohedra which may be regarded as dis-

torted cubes. At present the sizes and shapes of the atomic and molec-

ular domains of these elements are relatively unimportant. Oxygen
molecules crystallize on a body-centered orthorhombic lattice.^ From
the dimensions of the unit body-centered orthorhombic crystal it may
be calculated that the distance of closest approach of oxygen molecules

is 3.76A. Sulphur at room temperature apparently crystallizes by
molecules in space-group Vl^ of the orthorhombic system.® Selenium

and tellurium apparently crystallize by molecules of Ses and Tea on

increase the degree of rounding off the carriers of the atomic domain. An extreme

case of this would obviously yield a spherical atomic domain.
* The body-centered cubic structure is the closest packing for octrahedra, but such

a shape for the atomic domains would lack the tunnels at room temperature.
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a simple triangular lattice® which is such as to yield nearly a rhombohedral
lattice of atoms. Below 35.5°K., nitrogen crystallizes* as molecules

of N 2 on space-gr9i^p 2"^ This may be visualized as a face-centered

cube with the center of gravity of a N2 molecule at each lattice point

and with all the individual atoms lying on cube faces. The diameter

of the spherical molecular domain of N2 is 4.00A. It is interesting to

note^^ that CO also crystallizes by molecules on space-group with

. 4i00A. as the distance of closest approach of the molecules. This

agreement in both structure and dimensions is strictly in accordance

with the predictions of the Lewis-Langmuir theory of atomic structure.

OTHER ESTIMATES OF SHAPES AND SIZES OF ATOMS

; It is interesting to note that as ea^ly as 1873 Maxwell estimated

the size of moircules to be order of 0.001 wave length of visible

light. LunupTi^^ lists a totaj »f 21 methods, exclusive of crystal struc-

ture, which hil'S'c been proposed at one time or another for estimating

the sizes ci atoms and ions. As might be expected, these various methods

imply many viewpoints as to what it is that may be called the “size” of

an atom. For instance, some involve ideas as to the dimensions of

electron orbits, while others involve the diameter of a cloud of material

surrounding (and possibly attached to) an atom or ion. Five of the

methods mentioned by Lunnon apply to atoms rather than to ions, and

seem to give definite enough results to warrant notice. They are (1)

atomic volume; (2) viscosity of gases; (3) Van der Waals^ equation and
its modifications; (4) atomic structure theory; (5) ionizing potential.

To these we may add a sixth, the composite physico-chemical method
of Sirk, and a seventh, the method of the atomic-structure factor. It

will be interesting to take up, too, some calculations and lines of reason-

ing which depend for their success upon assumptions as to the shape of

atoms.

1. The Method of Atomic Volumes.—The atomic volume of a “mona-
tomic” element is defined as its atomic weight divided by its density.

The volume of an individual atom of the element may be found by
dividing the atomic volume by the Loschmidt (Avogadro) number and

multiplying this quotient by a factor, which represents the fraction

of the total volume actually occupied by atoms. The value assigned

to the factor v will depend upon the shape assumed for the atomic domain
and upon the configuration of atoms in the crystal. For instance, if

we consider the atomic domain to be spherical, v would be 0.52 for a

* Vegard also reports [Science, 77, 688 (1933)] a /3 form of nitrogen, stable above

36.5®K., with a hexagonal close-packed structure. The axial ratio is such as to make
the molecular domain practically spherical. Instead of interpreting the structure in

terms of coalesced atoms, he mentions the alternative explanation of moleculisa rotat-

ing in the crystal.
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simple cube, 0.68 for a body-centered cube, and 0.74 for a face-centered

cube. If, instead, we consider the atomic domain to be cubic, v would

be unity for a simple cube and 0.50 for a body-centered cube. The radius

of a sphere whose volume is V is the edge of a cube of volume V

is v^F, and its half body-diagonal

Apparently argon is the only solidified inert gas for which the density

.

has been measured by other than x-ray methods. Simon and Kippert^^

state that the density at 76°K. is 1.505. This density gives a radius

for a spherical Ar atomic* domain of 1.97A. in good agreement with

the value of 1.92A. shown in Table I from x-ray methods. Of course

it would have been just as good a check on the two types of measure-

ment of radii if we had compared the experimentally determined value

of the density of argon with that calculated from the crystal-structure

data. Similar agreement may be found in the case of other monatomic

face-centered cubic elements, t

2. The Method of Viscosity of Gases.—If we assume that the atomic

domains of the inert gases are spheres, their mean radii in the act of

collision may be calculated from viscosity data by means of the equa-

tion**’*®’**

0.087pF

where r = radius of atomic domain (z.c., mean radius in act of collision),

p = density of gas.

V = mean molecular velocity.

n = number of atoms per cubic centimeter.

ri =• coefficient of viscosity.

S == Sutherland's constant.

T = absolute temperature.

Radii obtained in this way are:^® Ne, 1.17A.; Ar, 1.43; Kr, 1.58; Xe, 1.75.

Comparison with Table I shows that these radii for Ne and Ar are about

three-fourths of the x-ray radii; the radii for Kr and Xe are about four-

fifths of the x-ray radii. It should be noted, however, that radii cal-

culated from viscosities relate to the atomic domains alone; those

calculated from x-ray data include also the equivalent half-spacing

between atoms at the temperature for which the data were taken.

* Both methods of calculating the size of the atomic domain contain an assumption

as to the shape of the atomic domain. This assumption enters into both calculations

in the same way so that, whatever shape is assumed, the agreement as to the size of the

atomic domains still remains.

t
** International Critical Tables,” Vol. I, pp. 103-104 and 340-341, McGraw-Hill

Book Company, Inc., New York, 1927.
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When we consider the smallness of the attractive forces* between the

atoms of these elements, we conclude that the difference between the

values for the twq Jypes of radii is not unreasonable.

3. The Method of the Equation of State.—The value of the covolume
6 in Van der Waals^ equation may be interpreted as being the volume
of the molecular domain. If we assume the domains of the monatomic
gases to be spherical, we can arrive at once at values for their radii.

Lunnon gives^® radii apparently calculated from values of b collected

by Pease^® for the inert gases. They agree with those of method 2
and are subject to the same comments. The radii are: Ne, l.lsA.; Ar,

1.46; Kr, 1.57; Xe, 1.71.

4. The Method of Atomic Structure.—This method may be illus-

trated by thq work of Turner^^ who has calculated the radii of the various

possible electn u orbits of th^ Jkali metals from the frequencies of light

ir their cha’licterisiic spectra. The distance from the nucleus to the

most disttjjQC part of the outmost orbit in the normal atom may be con-

sidered 1o be a radius for the normal atom itself. This will, of course,

be different from the radius of the atomic domain as determined by the

packing of atoms in a crystal. Turner^s end results are compared with

the x-ray results in Table V. It will be noticed that his atomic radii

are practically 1}^^ times the half-distance of closest approach of the

atomic domains.

Table V.—Comparison between Turner^s Results for Radii of Valence-
electron Orbits and Radii of Atomic Domains

Element

j

Radius of valence-

electron orbit,

Angstroms

Half body-diagonal of

cubic atomic domain,

Angstroms (see Table III)

Ratio

Li 2.38 1.52 1.57

Na 2.72 1.86 1.46

K 3.45 2.31 1.49

Rb 3.61 2.43 1.49

Cs 3.94 2.61 1.51

There are two obvious ways of explaining this discrepancy: (a) by
dismissing it as a temperature effect, and (6) by assuming a special kind

of interpenetration of atoms.

a. Not only is the atom alone out in space during the time that the

spectroscopic data are obtained, but it is also at an elevated temperature.

Data on ionic structure factors show that ions actually expand with

rise of temperature,^^ so that it is reasonable to assume that atoms

* The volume coefficient of expansion of liquid Ar is 0.004 at 90®K., whereas for

chlorine at 233®K. it is only 0.002 and for sulphur at 388-407®K. only 0.0004. This

must mean that at least in liquid Ar the atoms are comparatively far apart. Presum-

ably much the same conditions obtain in solid Ar near its melting point.



406 CRYSTAL STRUCTURE

show the same property. It may be expected, however, that the radii

of such expanded valence-electron orbits will be roughly proportional

to the radii of the corresponding atomic domains as found from a study

of crystals. Table V shows that this is indeed the case.

6. Since we do not know much about the expansion of atoms (as

distinguished from the increase in distance between them), it will be

interesting to speculate on what conclusions we must draw if we disregard

atomic expansion. Since we have on the average, for monovalent atoms,

two valence electrons per unit body-centered cube, we can only retain

cubic symmetry by relating either the orbits or the mean positions of

these valence electrons to the body-diagonals of the unit-cubes. The
structure is complete for eight adjacent unit-cubes* and requires the use

of such diagonals that ^^no two of the diagonals in any four cubes whose

centers are in one plane are parallel or intersect.^^t Apparently, if we
are to adopt at room temperatures radii such as Turner’s and at the same

time retain the correct crystal symmetry and the correct lattice parame-

ter, we must imagine each valence electron to have an orbit which lies

partly in one atom and partly in an adjacent atom.

In any case, since it is with the atomic domain at room temperature

that the crystal analyst has to do rather than with the size of the atom
under spectroscopic conditions, he may perhaps be pardoned if he con-

tents himself with showing merely that the atomic-structure calculations

yield results which are roughly proportional to the sizes of the corre-

sponding atomic domains.

In Chap. XV we shall have occasion to calculate various properties

of the alkali metals. These calculations will be based on the assumption

that the valence electrons occupy fixed positions in the crystal in the same

sense that atoms do. In accordance with the results of the theory of

space-groups they will be placed on the appropriate body-diagonals of the

unit-cube, midway between adjacent atoms, t

6. The Method of Ionizing Potentials.—It is a consequence of the

theory of the Bohr type of atom that the radius of the circular orbit of

the single electron in a hydrogen atom is

* /.c., unit-cubes as determined by x-ray diffraction methods in terms of atoms alone.

t If we choose to consider the valence electron to rotate about the nucleus instead

of about a point on the body-diagonal of the unit-cube, then this may be interpreted

as meaning (1) that the plane of the orbit is constrained to be such as to include

the body-diagonal of the unit-cube, and (2) that the possible positions assigned by the

theory of space-groups are the intersections of the orbits with the body-diagonalr.

It is easier, however, for the crystal analyst to think of the valence electrons as havin.:?

definite mean positions in the crystal lattice just as the positive ions (atoms minus their

valence electrons) do. It will appear later that there is considerable justification fer

this point of view.

X Any other location on the body-diagonal would be the equivalent of assuming

equal numbers, of positively and negatively charged metallic ions, an assumption which

we have already found reason to reject.
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_ ^ '

energy of the electron eV ~ V

where e is the chAxge on the electron and V is the ionizing potential of

the atom. If this simple sort of formula could be applied directly to

the atoms of other elements, we would have at once the law that the radius

of an atom is inversely proportional to its ionizing potential, A
similar conclusion can be drawn for the chemist\s static atom.^’23 Actu-
ally it is not so simple. The additional electrons in the atoms of elements

other than hydrogen alter the electrostatic forces, and the equation

becomes more complicated. This means that tlie atomic radii may be
expected to be only approximately proportional to the reciprocal of the

ionizing pot* itial. The approximation should be best in the case of

the monovab it elements whose atomic structure is so simple that they

may be repiacM*d by a poiix^i oe^ti v’^e charge and a single electron, z.e.,

the alkali m Trial shows that even here the product of the ionizing

p6tentia* ^ and the radius^' from Table III is not constant to within

lU per cent ('f the mean. But here again we must recognize that the

radius of the* orbit of tlie valence electron is not the radius of the atomic

domain. B. Davis^^ has proposed that the product of the radius of the

atomic domain and a quantity (/ — R) should be approximately con-

stant, where I is the ionizing potential of an atom and R its radiation

potential. This gives a more constant product than that of Eve and
Saha. Anderson^^* has calculated the approximate radii of the orbits

of the valence electrons of the alkali-metal vapors on the assumption

that the ionizing potential is one-half the calculated potential of a point

on the orbit of the valence electron and that the distribution of the elec-

trons in the kernel of the atom is that given by Bury and Bohr. His

values are compared with the distances of closest approach in the crystal

Table VI.—Radii of Atoms of Alkali-metal Vapors from Ionizing Potentials

Element

j

“ Radius from

ionizing potential,

Angstroms

Half body-diagonal of

cubic atomic domain,

Angstroms

Li
1

1.379 1.62

Na
j

1.80 1.86

K : 2.21 2.31

Rb 1 2.46 2.43

Cs 2.696 2.61

in Table VI. The agreement is probably accidental. The distance of

closest approach includes the mean distance between the true atomic

* See Landolt-Bornstein (1923) or “International Critical Tables,” ’ Vol. VI,

pp. 70-72.
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domains, and Anderson's calculations evidently yield an orbit for the

valence electron which just fits into this space.

6. The Composite Physico-chemical Method (Sirk's Method).

—

This method^® combines the values of four specific constants,

Tk = critical temperature in degrees Kelvin.

D = density at the boiling point.

X = internal heat of vaporization in calories per gram.

M = molecular weight.

with the value of the Loschmidt fAvogadro) number*

L = 6.061 X 1023.

in such a way as to yield the radius of the molecule. Since the density

and molecular weight are involved,, it is evident that this method yields

a radius of the molecular domain. Except for the fact that this method

deals with the properties of boiling liquids, this radius should correspond

to the half-distance of closest approach in the crystalline form.

Sirk arrives at the molecular radius in the following way: The surface

tension of a substance may be considered^^ ^s being composed of two

parts, one of which vanishes at absolute zero and the other of which is

relatively independent of molecular motion. Debye finds^® that this

second portion which we shall call S may be expressed as

Ztt ar^n^
""

8
‘ ( 1 )

where a and r are molecular constants, n is the number of molecules per

unit volume, and d is the molecular diameter. From this it is evident

that S varies with the temperature only because it varies directly with n^.

Since n varies as 1/F, we may write

A = Zl
So 72

where So and S are, now the temperature-insensitive portion of the sur-

face tension at absolute zero and the boiling point, and Vq and V are the

molecular volume at absolute zero and the boiling point.

Af , Mr-^andn-j;

It is this use of the molecular volume which causes Sirk's method to give

the dimensions of the atomic domain.

Following the classical treatment of Ramsay and Eotvos, we have
for So,

* Sirk used L
accepted value.

So (3)

6.23 X 10*^. His results have been recalculated in terms of the
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Debye obtains the latent heat of evaporation in c.g.s. units per gram-
molecule as

5

Eliminating a, r^, and from Eqs. (1) and (4) we have

d-=3.2^

(4)

(6)

By the use of Eqs. (2) and (3) we may eliminate S from Eq. (5), giving

Tec
6 .72^^

•\ (6)

or, since A — , ISM\ X 10" and F =» M/D,

d 1.6i X (7)

Sirk las calculated diameters, and therefore radii, for several gases.

Of these we have av^ailable x-ray data for Ar, N2 ,
CO, and O 2 . We shall

use the case of the monatomic element Ar as an example of Sirk^s applica-

Tablb VII.—Comparison of Sirk's Diameters with Distances op Closest
Approach

Element
Sirk’s

diameter.

Angstroms

Distance of

closest approach,

Angstroms

Ar 3.6 3 . 84 (reference 30)

N 2 3.9 4.00 (reference 11)

CO 3.9 4.00 (reference 11)

O2 3.6 3.76 (reference 7)

tion of Eq. (7). Since it has been shown® ^ by x-ray methods that Ar
crystallizes on a face-centered cubic lattice, f.e., the closest packing of

spheres, we have that*

Equation (7) therefore becomes

3
/

M2\
d X 10» = ^0.192^

* Consider a face-centered cube of edge a and therefore of volume a*. Since it

contains four atoms, the ‘‘atomic volume” is Ko®. The actual diameter of each

atom, considered as a sphere, is and its actual volume is therefore H7*’(a/'v/2)®*

Therefore the actual volume is, within the precision of the rest of the data, l/\/2 X
atomic volume.
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For Ar this gives a diameter of S.oA. at the boiling point, 87°K. This

is to be compared with the value of 3.84A. at 85®K. from Table I. Con-

sidering the relative indirectness of Sirk's method, and the experimental

difficulties involved in the exact determination of some of the quantities

required by Eq. (7), the agreement is remarkably close. Sirk^s diameters

are compared in Table VII with the distances of closest approach in

crystals.

7. Wollan®^ has calculated from the x-ray scattering by gaseous neon

a curve for the density of distribution of electrons along the radius of a

neon atom. His curve extrapolates to zero very close to a radius of l.bA.,

corresponding to the value shown in Table I from the lattice parameter

of solid neon.

8. Consequences of Spherical Shape of Atomic Domains.—In the

foregoing discussion we have really been considering the volumes of

atomic domains. In order to arrive at those linear measurements which

we have called radii, etc., we have had to assume a shape for each atomic

domain. It will therefore be of interest to cite two different lines of

reasoning which depend for their success upon the correctness of our

assumptions as to the shapes of the atomic domains. The first of these

will deal with temperatures of fusion, the second with diffusion in metals.

a. The melting point of an element which has a spherical atomic

domain should depend upon the over-all expansion of the element to such

an extent that the effects of cohesive forces are of secondary importance.

This may be shown as follows The
(1 1 1) planes of a face-centered cubic

crystal and the (00-1) planes of a

hexagonal close-packed crystal have
their atomic centers at the vertices of

equilateral triangles. If we assume

that the atomic domains are spheres,

then at absolute zero these spheres

should be in contact with each other

and a single plane would appear as

shown by the circles in Fig. 2. The
next layer immediately above this plane will have its atoms above the

black spots of Fig. 2. If a solid body such as copper, with a structure

like this, is to become liquid, it must evidently expand sufficiently to

enable the atomic domains in the layer just above the paper to pass

through the ‘Galleys between the atomic domains in the plane of the

paper. It may be calculated readily that, for the case of atoms at rest,

this expansion must be 434 per cent along each cube-edge.

But in the actual case this expansion is the result of a random heat

mdtion such that MaxwelPs distribution law may be applied. Exami-
nation of a face-centered cubic model shows that at each corner of the

Flo. 2.— (1 1 1) planes of a face-centered

cube at absolute zero.
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cube a tetrahedron is formed by the atoms at the centers of the adjacent

faces and the atom at the corner. Examination shows further that if,

of the four tetrahedra which meet at a common point on the exterior

cube face of the crystal, one is expanded enough to permit an atomic

domain to slide out of its position, then all four tetrahedra will be able

to disintegrate.* If this condition obtains at every such meeting place

of tetrahedra on the crystal surface, the surface will slough off, i.e,, the

surface will melt. Since each unit-cube contains eight tetrahedra, this

Fig. 3.—Maxwell’s distribution law plotted on probability paper.

means that, on the average, 123^^ per cent of the tetrahedra belonging

to the surface unit-cubes must expand by at least as much as per cent

of their 0°K. size. This, in turn, means that 123-^ per cent of all the

tetrahedra in the whole crystal must experience si^ch a critical expansion.

This leaves, at the melting temperature, per cent of the tetrahedra

with expansions below the critical 43^ per cent. Figure 3 shows the

Maxwell distribution law plotted on probability paper (see Chap. VI

for a description of this kind of coordinate paper). According to the

graph, if 87>^ per cent of the tetrahedra are still below some critical

expansion, then the most probable expansion is only 1.0/1.7 of the critical

value. Therefore a gross linear expansion of 1.0/1.7 X 4.6 =* 2.6 per

cent above the dimensions at absolute zero is a prerequisite to the melting

of a face-centered cubic crystal made up of spherical atomic domains.

* This may be seen easily if the model is held with the (111) planes horizontal.
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Added to this will be the expansion of the true atomic domains themselves

and the slight additional expansion occurring while (and if) the atoms

take up additional heat energy to overcome the forces of cohesion.

Coefficients of expansion for face-centered cubic metals over various

temperature ranges may be found in Landolt and Bornstein’s

^‘Tabellen/^ Vol. II, pages 1217 to 1219 (1923). These data go to low

enough temperatures so that we may feel fairly safe in extrapolating to

0®K. Taking these data as they appear in the “Tabellen,^’ we arrive

at the following total expansions from 0®K. to the melting point for

metals which we have assumed to have spherical atomic domains:*

Ag, 2.3; Mg, 2.4; Al, 2.4; Ni, 2.9; Cu, 2.4 per cent.f There is, however,

considerable doubt as to the correctness of the coefficients listed near the

melting points, partly because of the mechanical weakness of such metals

near their melting points and partly because of the effect of oxidation. A
careful measurement^® in hydrogen of the total expansion of copper from

room temperature to the melting point gave values which, when added

to those from the “Tabellen” for lower temperatures, indicate a total

expansion in copper of 2.9 per cent from 0®K. to the melting point. Not
only is this large enough to take care of the necessary geometry described

above, but it also gives a not unreasonable margin to take care of cohesion

and atomic expansion. Presumably similar measurements on pure

Ag, Mg, and Al would make similar changes in the final results. Marked
changes in the data for Ni are not to be expected in view of the well-known

resistance of Ni to oxidation.

If the atomic domains of these metals had not been assumed to be

spherical (or at least some close approximation to spheres), the results

of our calculations would have been quite different. For instance, sup-

pose we had considered the metals listed in Table I to have had cubic

atomic dpmains. Then there would have been no geometrical limits

imposed upon the expansion as the metal was heated up to the melting

point. The only limit to the melting temperature for cubic crystals whose

atomic domains are cubic must be set by the forces of cohesion. In

other words, for a pure metal, belonging to the cubic system, whose atomic

domains are cubic, the total expansion from 0®K. is not the most impor-

tant prerequisite for fusion; the temperature of melting should depend

primarily upon the ultimate tensile strength. Tensile-strength data

* If we had assumed spherical atomic domains for elements having the body-cen-

tered cubic structure, the expansion necessary to permit the melting would have been

1.0/1.6 X 50 s 31 per cent of the dimensions at 0®K. Data on Mo and Ta [A. G.

Worthing, Phys, Rev,, 28, 190 (1926)] and on W (*^ International Critical Tables,”

Vol. II, p. 462) give expansions from 0®K. to the melting point of 2.0, 2.46, and 1.7 per

cent, respectively. Obviously we cannot by any stretch of the imagination consider

these atomic domains to be spherical.

t The CMC of 7-Fe is complicated by the fact that we never have pure Fe in the

7 state either at 0®K. or at the melting point.
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for the face-centered cubic metals Cu, Ag, Au, Al, Pb, Ni, and Pt, given

in the ‘‘International Critical Tables'' (Vol. II, pages 478 ff,) show no
relation between tensile strength and melting temperature. Evidently

the atomic domains of face-centered, cubic metals can not be cubic.

In contrast to the face-centered cubic metals, we find that for the

body-centered cubic metals the greater the tensile strength the higher

is the melting point. This is brought out in Table VIII, which lists along

with the alkali metals the best data available for Fe,* Mo, Ta, and W
Table VIII.

—

Dependence of Melting Point on CoHEsnE Forces for Pure
Metals Having Cubic Atomic DomAins

j 'lement
Melting

Ppiit

Ultimate tensile

strength, kilograms

per square centimeter

Fe 1535*^ C. 29.6*

Mo 2620 70

T. 2850 93

W '

1

3370 150-420

Depending upon heat treatment. The low values given in ** International Critical Tables'* are

for annealed electrolytic iron which probably corresponds in condition most closely with the other

metals listed.

(see “International Critical Tables," Vol. II, pages 478, 592). There is

evidently considerable justification for considering these atomic domains

to have a cubic shape, and nonef for considering them to have a spherical

shape.

6. It has already been mentioned that if we assume the atoms of

body-centered cubic metals to have cubic atomic domains, then it follows

that body-centered cubic crystals are traversed by tunnels whose square

cross-section is equal to that of the cubic atomic domains.}

* Fe is included in this table because it has the body-centered cubic structure both

at the melting temperature (5-Fe) and at the temperature of the tensile strength data

(a-Fe).

t See preceding footnote in connection with the expansion of Mo, Ta, and W from

0°K. to the melting point.

t It might seem at first sight as though permeability of pure iron to hydrogen would

furnish a crucial test of this picture. In a^Fe at room temperature the tunnels

should be 1.43 X 10“* cm. square (Table III). They are therefore too small for

molecular hydrogen (effective diameter 2.4A.®^) to pass through. If we assume an

effective diameter of 1.2A. for a single atom of hydrogen, then we should expect iron

to be permeable to atomic hydrogen at room temperature. It is true that iron is

impermeable to molecular hydrogen and that it is permeable to nascent, t.e., atomic,

hydrogen.®®'*® But unfortunately for a crucial test of the existence of tunnels, there

is considerable evidence®^ (some of which will be touched upon in a later chapter)

that the atomic hydrogen unites chemically with the iron to form an iron hydride.

This would, of course, cause the hydrogen atom to lose its valence electron to some

iron atom in its neighborhood. The resulting H'*’ ion, consisting of only a single
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It is a well-known fact that it is extremely difficult, if not impossible,

in a vacuum to cause carbon to leave a crystal of graphite and diffuse

through a block of a iron. But it is easy to get atomic carbon on the

surface of iron by the decomposition of CO, CH 4,
NaCN, or other organic

matter, and carbon thus obtained diffuses readily through the a iron if

the temperature is high enough. There is such a wealth of evidence as

to the existence of the compound FezC that we can hardly imagine the

migrating carbon to be in any other form than that of an ion.* Because

of its size, C cannot be expected to travel through the ‘^normar^

tunnels of the iron at room temperature (1.4 A.sq.). At such tempera-

tures it is only when some portion of a tunnel next to a C ion has

opened up sufficiently that the ion can move another step.f With

increasing temperature the chance of a wide enough opening increases. If

we plot the reciprocal of the absolute temperature against the logarithm

of the rate of migration, we should get a straight line. This line should

have a much greater slope in the case of a body-centered cubic metal

than in the case of a face-centered cubic metal. That this is so is indi-

cated even in the case of hydrogen. The 1/T vs, log-rate curve for

hydrogen in iron rises steeply over the temperature corresponding to

a iron, shows a sudden drop at the Az point, and then rises at a much
smaller rate over the temperatures corresponding to y iron.

Obviously, according to this picture, the Si ion, because of its

larger size, should require higher temperatures or longer times than

C to show the same diffusion effects in iron. Also we should expect

that C ought to diffuse through Mo or W somewhat more readily

than through Fe because of the larger dimensions of the tunnels. These

conclusions are in accord with metallurgical experience. Without the

picture of tunnels it would seem difficult to account for the speed of

migration of carbon and silicon in iron and similar metals at temperatures

so far from the melting point and at the same time to account for the

practical absence of migration at room temperature.

proton of negligible dimensions, should be able to travel freely and with considerable

rapidity through the crystals of the iron. Presumably the valence electron should

travel along from atom to atom of the iron keeping pace with the H"'' ion. Experi-

ment shows that the ion recaptures its valence electron on the emergent face of

the metal and combines with some other atom of hydrogen thus giving H 2 once more.

Enough hydrogen can be diffused through a sheet of iron in this way to give a per-

ceptible reading on a pressure gauge on the emergent side of the iron. This picture

leads us to believe that the transfer of hydrogen is not limited to metals which have

tunnels, for the H'*' ion should be able to travel through any metal which is capable of

holding- its valence electron. Experiment shows that this is indeed the case.

* Even in ‘^molecular,” i.e,^ electron-sharing, compounds of carbon we seem com-

pelled to assume that the shared electrons are much farther from the carbon nucleus

than they are from the nucleus of the other element. This assumption is made use of

in Chap. XIV and is brought up again in Chap. XIX.

t See discussion of the Max well distribution law in connection with Fig. 3.
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We have, then, considerable justification for our pictures of spherical

and cubic atomic domains and for the dimensions assigned to them.

Equally convincing arguments could be brought forward, if space per-

mitted, in favor of the spheroidal and tetrahedral shapes of other atomic
domains. It will be sufficient to say that organic chemistry, both of

carbon and of silicon compounds, would be difficult to understand except

in terms of tetrahedral atoms. The shapes and sizes assigned to atomic
domains give us a set of pictures in terms of which we can more readily

interpret those directive fields of force v^hich bind atoms together and
which have so much to do with the properties of eloinents. It is only

natural to assume that, if similar pictures could be made of the various

ioni$ domains, m**' ideas of ionic compounds would bo similarly clarified.

The remainder of this chapter will deal with various attempts which have
be en made in this direction.

THE PACKIlfG-SHAPES AND PACKING-SIZES OF IONS

There are two ordinary ways by which two elements may be held

together in chemical combination.* One is by the direct transfer of

valence electrons from the atoms of one element to the atoms of the other

element. This method produces ^4onic'^ compounds in which the crystal

of the solid is made up not of atoms but of ions. When crystals of this

sort are dissolved in water, the resulting solutions are electrically con-

ducting. V/hen these crystals are fused, they conduct by ionic conduc-

tion and the compound may be decomposed by electrolysis. All simple

inorganic salts and all oxides and sulphides of metals with a valence of

one or two are supposed to be of this sort. It is a characteristic of these

compounds that they crystallize in such a way that each ion of one ele-

ment is surrounded by ions of the other element, symmetrically placed

and equally spaced. In NaCl each Na"*" is surrounded by six "Cl-.

Three of these Cl“ form an equilateral triangle above the Na+, and three

form an equilateral triangle below it. Each Cl~ is similarly surrounded

by six Na+. In CsCl each Cs+ is in tl^e center of a cube of Cl"", and each

Cl~ is similarly surrounded by eight Cs"*". In CaCOs the rhombohedral

crystal may be thought of as a distorted NaCl cube in which Ca+“^

replaces Na+ and CO3— replaces Cl“ Other illustrations may be found

in any r^sum6 of crystal-structure data.

The second method produces ‘‘molecular'' electron-sharing)

compounds and “ radicals." These include the oxides of elements such as

Si, Al, Cr, Fe, with a valence of three or more, many organic crystals, and

such radicals as NOa”", COs—, SOa—,
etc. It is true that we may think

of one of the components as having given up its valence electrons to the

other (for instance, in Chap. VI we have already considered SiOa to be

made up of Si++++ and two O—,
and we shall do so again in Chap. XIV)

;

* See Chap. XIX for a discussion of five types of chemical combination.
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still, the end result is different from a truly ionic compound in that the

two components seem to be more definitely attached to each other. For

example, very pure AI2O3 is not a good electrical conductor even when
strongly heated. When an NO3— radical is dissolved in water, the N
and three 0 do not wander apart as separate ions. These compounds
are characterized by the fact that they crystallize with the molecule

or “radical^' as a unit. In Si02 each Si has two O which are closer to it

than to any other Si; in AI2O3 three O form an equilateral triangle with

one A1 immediately above the center of the triangle and a second A1

immediately below; the CO3— group has an equilateral triangle of 0 with

a C in the center of the triangle.

The packing-size and the packing-shape of an atom in the crystal of a

compound are, in general, quite different from what we have found in our

previous discussion for the same atom in the crystal of the element, and
the packing-shape and packing-dimensions in a molecular compound
have no necessary direct connection with what we find for the same atom
in an ionic compound. If an element can have more than one valence,

the ion may be expected to have a different packing-size and shape for

each valence. The packing-radii of atoms when sharing electrons are

hardly as definite as the radii of true ions, for it is largely a matter of

interpretation where the positive atom is supposed to end and the nega-

tive atom to begin. We shall therefore take up first the shapes and sizes

of the domains of true ions.

Shapes of Alkali and Halogen Ionic Domains.—Just as it was possible

to assign definite shapes to the domains of atoms, in the same way it

is possible to assign shapes to various ions on the basis of their crystal

structures. For instance Csl has a body-centered cubic structure with

Cs"^ at the corners of each unit-cube and I~ at the center. This is the

closest packing for equal numbers of positively and negatively charged

spheres of approximately equal size. We are therefore tempted at

once to assume that the domains of Cs"*" and I~ are spherical in shape.

Such a packing-shape is about what we might have expected of an ion

of such high ionic number if it were not for the commonly accepted

picture that the 1“ (or Cs+) has only eight electrons in its outmost shell.

Possibly the ionic domain of I~ (or Cs'*') represents a compromise between

a sphere and a cube. The spherical picture would appear to gain con-

siderable support from the experimental data. The distances of closest

approach of Cs"*" and I” in Csl and of Cs+ and Br“ in CsBr are measured

along the body-diagonals of the unit-cubes of the crystals. In RbBr
and Rbl the corresponding distances are measured parallel to the edges

of the unit-cubes. This gives us two directions which are 54® 30' apart.

If, now, we use the chemical symbol to represent the distance from the

center of an ionic domain to the point of contact with an adjacent

atomic domain we have, by experiment,®®
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(C8+ + I-) = 3.947 ± O.OO4A.

(Cs+ + Br-) = 3.713 ± 0.004A.

(Rb+ + I-) = 3.662 ± O.OO4A.

(Rb+ + Br-) = 3.434 ± 0.004A.
Then

(Cs-'- + I-) - (Cs-*- + Br-) = I- - Br- = 0.234 + O.OOSA.

measured along the body-diagonal of the unit-cube;

(Rb-^ + I-) - (Rb+ + Br-) = I- - Bi - = 0.2.J8 ± O.OOSA.

measured parallel to the edge of the unit-cube.

Jt is hard imagine that these difiPercnces in distance could be
identical within he precision of rhe data if the two ionic domains were
not substantially spherical.* ^ .th this much direct evidence of the

spherical shape ot the 1“ ionic domain, we can probably assume safely

that the do’aain of Cs+ is also spherical, for Cs+ has the same number
of oxtranuciear ( lecljons as I~ and the two ions differ in nuclear charge

by only 2 per cent from the mean.

We have made the implied assumption in the foregoing that the ionic

domain of Br” is also substantially spherical. We might continue the

reasoning that was so successful in the case of Cs+ and I” and argue that

the ionic domain of Rb+ is also spherical. We could then compare the

corresponding data for Csl, CsCl, Rbl, and RbCl with the following

results:

(Cs-*- + I-) - (Cs-*- 4- C1-) = 0.392 ± O.OOSA.

measured along the body-diagonal of the cube;

(Rb-*- + I-) - (Rb+ + C1-) = 0.377 ± 0.007A.

measured parallel to the cube-edge.

Here we see that the agreement in the two directions is again within

the possible experimental error. Similar calculations for Csl, CsCl,

KI, and KCl agree even more closely, so that we are tempted at once

to assign spherical ionic domains to Cs+, Rb+, K+, I"”, Br”, and Cl“.

We must be prepared, however, to permit slight departure from

sphericity as long as the changes do not alter the characteristic dimensions

of the ionic domain too greatly. For instance we could substitute for

a sphere a cube with well-rounded comers. If the comers were rounded

off sufficiently, the cube would become a sphere with six small ffat

spots which could not be distinguished from a true sphere within the

* For instance, if the ionic domains had both been cubic in shape, the differences

would have had to be in the ratio of 1.00:0.58. A compromise between the spherical

and cubic shapes will be proposed later.
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precision of. Table IX.* There is a great deal to be said in favor of such

a picture. Both. the chemist’s static-atom picture and the physicist’s

kinetic atom give to these ions certain of the characteristics of a cube.

There is no trouble in imagining a set of well-rounded corners for a

‘‘cubic” ionic domain enclosing a kinetic type of ion, and even the most

enthusiastic supporter of the chemist’s static-atom picture would hardly

deny that the “positions” assigned to the electrons represent more than

mean positions of vibratingf electrons. We may, therefore, perhaps be

pardoned if we assume in connection with our crude mechanical pictures

of “domains” that the alkali and halogen ionic domains are essentially

spherical in shape with possibly six flat spots on the sphere to make it

simulate a cube. It might not be amiss to assume that the flat spots

are less pronounced in the case of Cs+ and I” than in the case of ions of

lower ionic number.

ZnO crystallizes with the Zn++ in a hexagonal close-packed lattice.

Each O— lies at the center of a tetrahedron of Zn++. ZnS (sphalerite)

has the Zn+'^ in a face-centered cubic lattice with each S in the center

of a tetrahedron of Zn++. This is taken to mean that the domain of

Zn^^ is essentially spherical and that the ionic domains of 0— and S

—

may be relatively small. We thus have the interesting picture that,

when an atom of Zn loses ivfo valence electrons to become an ion, the

domain changes from the spheroidal shape of Zn to the spherical shape

of Zn++.

Radii of Ionic Domains from X-ray Data.—No matter what picture

of atomic structure we adopt, it is evident that the electrostatic forces

inside of a “metallic” atom will be altered by the subtraction of each

valence electron, with the result that the positive ion must be smaller

than the neutral atom. The greater the number of valence electrons

which are subtracted, the greater will be the change in the electrostatic

forces arid the smaller will the positive ion become. Similarly, a negative

ion must be larger than the corresponding neutral atom; and the greater

the valence of the element, the more will the negative ion swell beyond

the size of the neutral atom. When an attempt is made to determine the

absolute sizes of these ions from crystal-structure data, it is at once

found that the data give only n — 1 equations with which to determine

n ionic radii. These n — 1 equations alone, therefore, will not enable us

to calculate radii but only differences between radii. These differences

* Let a true sphere and a cube of the same volume have a common center. The
diameter of the sphere is 1.24 times the length of the cube-edge. Now let the sphere

be sliced off at six points opposite the six faces of the cube in such a way as to bring

each flat spot to the mid-point between the cube face and the end of the diameter

of the sphere. The decrease in volume in going from the true sphere to the sphere

with six flat spots is only of the order of 6 per cent.

t Or, according to one of the early pictures, rotating about the body-diagonals

of the cubic domain.
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are listed in Table IX. The data^* *®-*^ are all in terms of NaCl = 2.814A.

as a standard. It will be noticed that, if we exclude Li+, Na+, and F“,

these differences are constant for any two ions to within the precision of

Table' IX.—Differences in Distance of Closest Approach of Ions in Alkali
Halides*

Iodide Bromide Chloride Fluoride

Cs 3.947 + 0.004A. 3.713 ± 0.004A. 3.666 ± 0 004A. 3.0oA.
Rb 3.662 ± 0.004 3.434 ± 0.003 3.285 ± O.C03 2.81

Diff. 0.285 ± 0 008 0.279 ± 0.007 0.270 ± 0.007 0.19

Cs 3.947 ± ) 004 3 713 d- 0.004 3.656 ± 0.004 3.004 ± 0.003A.
K 3.526 > 0 004 3.285 ± 0.00.3 3.138 ± 0.003 2.664 ± 0.003

Diff.

U. -

0.422 r4) 008 0.428 + 0.007 0.418 ± 0.007 0.340 ± 0.006

ClI
j

3 '*47 ± 0.004 3.713 ± 0.004 3 566 ± 0.004 3.004 ± 0.003

Na 3.231 ± 0.003 2.968 ± 0.003 2.814 2.310 ± 0.002

Diff. 0.716 ± 0.007 0.745 ± 0.007 0.752 ± 0.004 0.694 ± 0.006

Cs 3.947 ± 0.004 3.713 ± 0.004 3.566 ± 0.004 3.004 ± 0.003

Li 3.01 ±0.01 2.745 ± 0.003 2.566 ± 0.003 2.007 ± 0.002

Diff. 0.94 ±0.01 0.968 ± 0.007 1.000 ±0.007 0.997 ± 0.006

Caesium Rubidium Potassium Sodium Lithium

I 3.947 ± 0.004 3.662 ± 0.004 3.625 ± 0.004 3.231 ± 0.003 3.01 ± 0.01

Br 3.713 ± 0.004 3.434 ± 0.004 3.286 ± 0.003 2.968 ± 0.003 2.746 ± 0.003

Diff. 0.234 ± 0.008 0.228 ± 0.008 0.240 ± 0.007 0.263 ± 0.006 0.26 ± 0.01

I 3.947 ± 0.004 3.662 ± 0.004 3.625 ± 0.004 3.231 ± 0.003 3.01 ± 0.01

Cl 3.665 ± 0.004 3.286 ± 0.003 3.138 ± 0.003 2.814 2.666 ± 0.003

•Diff. 0.392 ± 0.008 0.377 ± 0.007 0.387 ± 0.007 0.417 ± 0.003 0.44 ± 0.01

I 3.66 iKHI
F 2.81

Diff. 0.85 0.861 d: 0.007 0.921 ± 0.006 1.00 ± 0.01

Data revised from Phya. Rev., SI, 143 (1923), except RbF, which is from Naturwiaaenachaften,

14. ,477 (1926).

the data. In other itords, contrary to what mignt have been expected,

the radii of these ions are at least approximately independent of their

state of chemical combination. The fact that this is obviously untrue
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for Li^”, Na'^, and F“ makes it seem likely that more precise data would
show slight changes in the values for the other ions. In our present state

of knowledge it is sufficient to say that Cs^, I~, Rb+, Bir, K+, and Cl“ are

so much more constant in size than Li+, Na+, and F" that we may con-

sider them to act like rigid objects.

In order that we may advance from differences between radii to the

radii themselves, it is necessary to make some plausible assumption which

will furnish an additional equation. Several such assumptions are to be

found in the literature. The most plausible of these is furnished by the

x-ray diffraction patterns themselves.®® When the diffraction patterniS

of the alkali halides are examined, it is found that Cs+ and 1“ have, as

nearly as can be determined, equal diffracting power. Rb+ with Br“,

and K"*" and Cl~, respectively, also seem to have equal diffracting power.

These three pairs are the only ones among the alkali halides for which

this is so. A glance at the periodic table shows that each pair lies adja-

cent to an inert gas, and that each of the ions of each pair contains the

same number of electrons as the adjacent neutral atom of the inert gas.

The theory of diffraction leads us to believe that the only way in which

equal numbers of electrons can show equal diffracting power is for them

to be arranged similarly in atomic domains of equal volume. If our data

on equality of diffracting power were quite reliable we would have three

independent equations:

Radius of Cs+ = radius of 1“

Radius of Rb+ = radius of Br~

Radius of == radius of Cl~

An actual trial shows that these equations are approximately true, for

they give fairly consistent values of ionic radii in spite of having two more
equations than are needed. * That they are not anything more than good

approximations may be shown as follows: The periodic table would
tempt us to make a fourth equation, similar to the other three, stating

the equality of radii of Na+ and F"". But in this case the x-ray evidence

clearly shows that the 10 electrons in Na+ do not have the same diffracting

power as the 10 in F” and that therefore their radii are probably different.

This is not surprising when we remember that the 10 electrons in F“ are

pulled inward by a nuclear charge of 9, while in Na+ they are pulled in by
a charge of 11. It would therefore seem as though the other pairs of

ions should not be of exactly equal radius. This is confirmed by Table IX

* These assumptions give the following radii:

Cs+ 2 1.974A. 2 I-

Rb+ 2 1.717A. 2 Br-

K+ 2 1.669A. 2 Cl- •

A similar assumption gives

Na+ 2 1.166A. 2 F-
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which shows that Cs*^ — Rb+ is not equal to I" — Br“ and that Cs*^ — K+
is not quite equal to I- ~ Cl~. Since the ions Cs**- and I~ have the

highest atomic numbers of any of the alkali and halogen ions, we shall

assume that the best approximation will be had by considering that their

radii are equal to each other and therefore that each has a radius equal

to one-half the distance of closest approach of Cs+ and I” in CsL This

assumption, together with the differences listed in Table IX, gives us the

ionic radii of Table X. It should be noted that, since Cs"*" is probably

Table X.

—

Radii of Domains of Alkali and Halogen Ions on the Assumption
That Cs+ * I

*

Cs+ 1.974 X 10-»< in. I- 1.974 X 10“’‘cin.

Rb+ 1.696 Br- 1.740

1 548 Cl- 1.689

.Na' • F“

in Nai 1.267 in CsF 1.030

iv NfaBr 1.231 in RbF
in NaOl 1.226 in KF 1.116

in NaF <1.16 in NaF >1.16

Li+

inLil 1.03

in LiBr 1.01

inLiCl 0.98

inLiF <0.86

a little smaller than I“, the radii listed for the alkali ions all represent

upper limits, while those listed for the halogen ions represent lower

limits.

The same type of reasoning which led us to assume that the radii of

the domains of Cs^ and I~ were substantially equal would lead us to

assume that, to a lesser degree of approximation, the domains of Ba++

and Te— may be considered equal. BaTe crystallizes with the NaCl
type of structure. The edge of the unit-cube containing four BaTe is

6.986 ± 0.002A.^2 Thia gives, according to the assumption made
above,

Ba++ z 1.746A. 2 Te—

Similar assumptions for SrSe, CaS, and MgO would give

Sr++ 2 1.668A. 2 Se—
Ca++ 2 1.421A. 2 S—
Mg++ 2 I.05A. 2 O—

Just as we found more definite values for the radii of the alkali and

halogen ionic domains by considering Cs+ = I“, so we may hope to arrive

at more definite values for the radii of the domains of the ions of the
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alkali earths and of the oxygen series by considering Ba++ = Te .

The lattice parameters given in the literature for compounds in the

A++B— class are given in Table XI. Approximate radii calculated from

Table XI.

—

Lattice Parameters for A++B— Class of Compounds of the
Alkali Earths

BaTe 6.986A. V. M. Goldschmidt, Zeit. Kryst.^ 69, 411 (1929)

BaSe Aeie M. K. Slattery, Phys. Rev., 21, 22 (1923)

BaS 6.36 S. Holgersson, Zeit. anorg. Ghent., 126, 179 (1923)

BaO 6.50 V. M. Goldschmidt, Natunuissenschaften, 14, 477 (1926)

SrTe 6.48 V. M. Goldschmidt, Naturmssenschaften, 14, 477 (1926)

SrSe 6.234 M. K. Slattery, Phys. Rev., 21, 22 (1923)

SrS 6.86 S. Holgerson, Zeit. anorg. them., 126, 179 (1923)

SrO 6.10 T. A. Wilson, Phys. Rev., 31, 306 (1928)

CaTe 6.345 I. Oftedal, Zeit. phys. Ghent., 128, 154 (1927)

CaSe 6.914 W. P. Davey, Phys. Rev., 21, 213 (1923)

CaS 5.686 W. P. Davey, Phys. Rev., 21, 213 (1923)

CaO 4.790 W. P. Davey, Phys. Rev., 21, 213 (1923)

See also:

I. Oftedal, loc. dt.

MgTe*
(a = 4.62

Jc = 8.33
W. Zachariasen, Zeit. phys. Ghent., 128, 417 (1927)

MgSe 6.462 E. Brooh, Zeit. phys. Ghent., 127, 446 (1927)

MgS 5.190 E. Broch, Zeil. phys. Ghent., 127, 446 (1927)

MgO 4.203 L. Passerini, Gazz. chim. ital., 69, 144 (1929),

* Wurtzite type. All others are NaCl type.

Table XI are listed in Table XII. Inasmuch as the purity of the speci-

men is not known in most cases, the results are rather open to suspicion,

but at any rate they will serve to give an idea of the general size of the

Table XII.

—

Approximate Radii of Ionic Domains of the Alkali Earths and
OF the Oxygen Series

Ba++ 1.746 X 10-8 cm. Te-- 1.746 X 10-»cm.

Sr++ 1.66 Se— 1.66

Ca++ 1.39-1.42 S~ 1.42-1.6
Mg++ 1.01 - 1-22 0“ 0.97-1.09

radii of these ionic domains. Since O should be larger than Mg++,
we are tempted to accept the limiting values of 0— = 1.09A. and
Mg’+^ = ,1.01A. for the correct radii of the ionic domains in MgO.*

Just as we found variable radii for the ionic domains of Li+ and F“,

so we find variable radii for Mg"*^ and O— and even for Ca++ and S—

.

* It is interesting to note that this value for the packing-radius of the O— is

consistent with the fact that the oxygen-to-oxyfeen distance in carbonates is 2,18A.
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This was to have been expected. Certainly the radius of an ionic domain
should depend upon the nearness of the ion to other ions, especially to

those of opposite ;jign. The higher the valence and the smaller the size

of the ion, the more marked should be the effect. The wonder is not

that the domains of these small ions show variations in size from com-
pound to compound but rather that the larger ionic domains show as

much constancy of size as they do. It was this possibility of variation

in size which led us in Chap. IX to allow a leeway of 10 per cent in the

sizes of ionic domains when fitting them into a crystal structure.

Using the radius of Te from Table XII and the lattice parameters

of FeTe,^® we find that the radius of the ionic domain of ferrous iron is

2 OM
It is not nown hov^ far this niothod can be extended in calculating

the dimension ; of ionic hut probably its reliability decreases

Tapidly as iht valence of th-* ions is increased. The next step would

aecm to be to consider 10++“^ 2 Sb— in InSb, Ga++‘^ As— in GaAs,

Table Alll.*—

A

pproximate Radii op Trivalent Ions of the A1 and P Series

1 .39 X 10-"cinJ Sb
1.22 2 As

AF+-»' 2 ,.,7
,

2 P

and A1+++ is P— in AlP. The data in the literature'*^ lead to the values

given in Table XIII. These radii are able to predict the interionic

spacings of GaSb and GaP to within about 2 per cent. The difficulty of

getting pure enough materials to make any higher precision worth while

will be apparent to any one who has ever tried it. Even if the data in

Table XIII are taken to really represent the dimensions of the ionic

domains in the compounds mentioned, it is not to be assumed that the

same ions have the same dimensions in other compounds. We must

remember that the ions we are now dealing with have a complex and

possibly variable structure which is reflected in the dimensions of their

domains. For instance, if we are to trust the data in the literature at

all, then the lattice parameters of FeSb^^ would indicate that the radius

of the ionic domain of ferric iron is Fe'^’^'*' iz 1.27A. Such a result is

obviously absurd when we remember that the domain of Fe"*"^"^ should

not only be smaller than that of Fe but also that it should be even smaller

than that of Fe++. It is evident, then, that we have gone as far as we

dare in assigning dimensions to ionic domains in terms of measurements

of lattice parameters. We must find some other basis on which to make

further estimates. Such a basis may be found in the theory of Chap, X*

In Chap. X it was shown that, if we had sufficient knowledge of the

intensities of diffracted beams of various orders from a given crystal,

we might hope to arrive at a fairly definite idea of the concentration of
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electrons at different distances along the radii of the atoms (or ions)

composiQg the crystal. If curves expressing the results of such calcu-

lations are drawn, it is found that they indicate more or less definite

‘‘dimensions'^ for the atoms (or ions). In reading such curves care must

be taken to include the whole of the atom (or ion) and not merely to

include the most obvious portion immediately surrounding the center.

When such precautions are taken, the ionic-structure-factor results agree

remarkably well with the packing-dimensions given above.

Some of the pioneer work on the atomic-structure factor was done

by R. J. Havighurst,^® who has published graphs of the electron densities

in various directions for KI. His graph for the direction perpendicular

Fig. 4.—Havighurst’s graph for electron distributions in KI perpendicular to the (100)
planes.

to the (100) planes is reproduced here as Fig. 4. This graph indicates

that 56 per cent of the K"^ — 1“ distance “ belongs " to the 1“ ion and that

44 per cent “belongs" to the K+ ion. This gives dimensions of 1.97A.

and 1.55A., respectively, for the domains of 1“ and K+.* The corre-

sponding packing-radii from Table X are 1.974A. and 1.548A. The
graphs for the (1 1 1) and (1 1 0) planes are considerably harder to inter-

pret. Apparently the radius for I"" perpendicular to the (111) plane is,

within the error of reading the graph, 16 per cent of 12.2A. = 1.95A.

The radius perpendicular to the (110) plane seems to be somewhere
between 1.59A. and 2.49A. Within the error of reading the graphs there

would seem to be considerable justification for our picture of a substan-

tially spherical 1“ ion which we arrived at from a discussion of lattice

parameters. It is interesting to note that the graphs seem to show that,

perpendicular to the (100) planes, the K+ and 1“ ionic domains “touch,"

* These electron distributions are for ions at room temperature. We assume
therefore that the graph shows electron distributions such that the domains are com-
parable with those considered in Table X,
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but that perpendicular to the (1 1 0) and (1 1 1) planes there is a free space

between the domains. This is to be expected in terms of substantially

spherical domains.

Havighurst also gives graphs for the electron distribution in NaCl.

His graph for the distribution perpendicular to the (100) planes is repro-

duced here as Fig. 6. This graph shows that Na"*” requires 45 per cent of

the Na"^ — Cl~ distance and that Cl“ reuuires 56 per cent. This gives the

ionic domain of Na"^ a radius of 1.26A. and of Cl"* a radius of 1.65A.

The corresponding packing-radii from Table X are 1.22A. and 1.59A.

The graph for electron distribution perpendicula • to the (1 1 1) planes

shows that Cl“ requires 18 per cent of 9.75A. = 1.75A. Since this is

greater than 1.55A. and less than 1.55\/3A., the ionic domain of Cl""

Fig. 5.—Havighurst’s graph for electron distributions in NaCl perpendicular to the (100)

planes.

would seem to be a cube with rounded corners, i.e., a sphere with flattened

spots. This again is in accord with the picture which we found as a

result of our study of lattice parameters.

A similar graph plotted by James and Firth^^ for 290°C. yields

radii of 2.14A. and 2.72A. for Na*^ and C1-, respectively, in a direction

perpendicular to the (111) planes. On the assumption that these ions

are not far from cubic, this would correspond to radii perpendicular to

the (100) planes of 1.24A. and 1.57A., respectively. The agreement

is about as good as could be expected when it is remembered that not

only were the temperatures different from Havighurst's but even the

equations for the . calculations of electron density differed somewhat.

It is interesting to note that Havighurst finds^* that the electron-distri-

bution curves indicate that Na"^ in NaF is a little smaller than Na+ in

NaCl. This is in agreement with Table X.

Wollan®^’^® has investigated the electron distributions in MgO.
Using the radial distribution scheme of Duane and Havighurst, he finds
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for Mg+”^ a radius of 1.25A., and for O— a radius of 1.05A. Using Comp-
ton’s equation for calculating the electron distribution above a plane

in the crystal, he arrives at a graph for the [111] direction which

nowhere reaches down to the zero of electron density. We must now
make a choice between two possible assumptions. Either we may
accept the x-ray intensity measurements as representing nothing but

the diffraction of a single wave length of x-rays, or else we may assume

that, since only a Zr02 filter was used with Mo rays, the diffraction of

MoKa was superimposed upon a background of scattered white”

x-rays. If we make the first assumption, we are at once tempted to

extrapolate the Mg++ and O— humps down to the zero of electron

density in such a way as to make the areas under each of the humps
correspond to the ionic number 10. The distance between the inter-

cepts of the extrapolated curves would then represent the “diameters”

of the ions. For all planes in the crystal such an interpretation would

show overlapping atoms. But, if we are to retain any idea of impenetra-

bility of ionic (or atomic) domains any idea of low compressibility

of solids), we ought to have at least one direction in the crystal for which

the ions do not overlap. This contradiction makes it hard to retain the

first of the alternative assumptions. If, instead, we take the second

assumption, we must do as we have already done by implication in

Figs. 4 and 5, i.e., we must allow for the scattered white x-rays by taking

the lowest part of the electron-distribution curve as our base line of

intensity. Such an interpretation shows for Mg"^"^ a radius of

' 0.24 X 4.21 X V3
in a direction perpendicular to the (1 1 1) planes, and for 0— in the

same direction a radius of 0.26 X 4.21 X \/3- Assuming that these

ionic domains are nearly cubic in shape this would give radii perpen-

dicular to the (100) plane of about l.OlA. for Mg^*^ and l.OOA. for O—

.

The corresponding values from Table XII are: Mg++, from 1.01 to

I.22A.; and 0—,
from 0.97 to l.OOA.

Land^®*^ has made a very interesting assumption, namely, that the

Li+ ion, being composed of only a positive nucleus and two K electrons,

is negligible in size and therefore fits into the chinks between the I~ ions.

He therefore takes half the distance of closest approach of adjacent I""

ions in Lil as the upper limit of the radius of 1“. He then obtains the

values for the radii of the other alkali and halogen ions by subtraction

from the distances of closest approach in the crystals of the alkali halides.

The lattice parameters used by Land6 have since been shown to be con-

siderably in error. His results have therefore been recalculated for

Table XIV. It will be noted that all his radii for the domains of negar

tive ions are to be taken as upper limits. They are all larger than the

corresponding values <of Table X. His radii for the domains of positive
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ions are all to be taken as lower limits. They are all smaller than the

corresponding values of Table X. The two tables are therefore com-
pletely consistent with each other.

Radii of lopic Domains from Compressibility Data.—Richards*^ has

made a very interesting assumption in terms of which ionic radii may
be calculated.^ The “molecular volume (molecular weight divided

by density) of an alkali halide is less than the sum of the “atomic vol-

umes'^ of the alkali and halogen from which it is made. He assumes

that this contraction is related to the compressibilities of the elements

involved. For each of the halogens he plots the cont.action in volume
which occurs during chemical combination with the various alkalies

against the comp *?ssibilities of the alkali metals. Epch of these curves

Takijb: XIV.—Radu Alkai.i ani» H. Ions on the Assumption That the
Radius o Negligible

Ion Radius

Cs-»- s 1.82A.

Rb+ s 1.44

K+ s 1 40

Na-" s 1.07 - 1.10*

I- 2 2.13

Br- 2 1.90

ci- 2 1.74

F- 2 1.19 - 1.27t
* Depending upon the halogen with which it is combined,

t Depending upon the alkali with which it is combined.

is extrapolated to zero abscissa to give the contraction which the halogen

might be expected to experience if it were combined with an imaginary

incompressible alkali. The difference between this extrapolated value

and the atomic volume of the halogen is, then, the “ionic volume" and

is proportional to the actual volume of the halogen ion. For instance,

the atomic volume of Cl is

Atomic weight _ 35.46 _ i

Density 1.412

The contraction of Cl for zero abscissa is 12.5. This gives 12.6 for the

ionic volume of Cl”. The ionic volumes of Br” and I” are similarly

determined as 17.6 and 23.7, respectively. Since each gram-atom con-

tains 6.062 X 10^® atoms, the volumes of these halogen ions can be

expressed at once in cubic centimeters, i.e.

;

Cl” = 20.8 X 10”24 cc.,

Br” = 29.0 X 10”24 cc.,

I- = 39.1 X lO”’*^ cc.

In order to go from the volumes of these ionic domains to their radii we
must make some assumption as to their shape. If the domains were
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cubic and the crystal had a structure like NaCl* the distance of closest

approach would be parallel to the cube-edge and the radius of the halogen

would be 0.50^V, where V is the volume. If, instead, the domains

Table XV.—Comparison op Radii of Halogen Ionic Domains by Compressi-

bility Method and by Lattice-parameter Method

Ion

Radii by compressibility method Radii by crys-

tal structure

methodSphere Cube Average

1.38- A. 1.54I. i.soA.

1.56- 1.73 1.74

1.70- 1.90 1.97

were true spheres of volume F, the radius would be 0.62^ F. We have

seen that we may consider these ionic domains as being spheres with six

flat spots, or, what is the same thing, as cubes with well-rounded cor-

ners. The true radius will therefore lie somewhere between 0.50-v^ and
0.62-^F. Table XV shows that the radii from crystal-structure data

are not far from halfway between these two limits.

Radii of Ionic Domains from Optical Data.—From a consideration of

molar refractive indices of crystals, Wasastjerna®^ has arrived at the

Table XVI.-“Empirical Radii op Ionic Domains prom Optical Data
Cs+ 1.75A. I- .. 2.19A.

Rb+ 1,60 Br- .. 1.92

K+ 1.30 Cl“ .. 1.72

Na+ 1.01 F- .. 1.33
0— .. 1.32

S-- ... 1.69

empirical radii for ionic domains listed in Table XVI. It will be noted

that his values agree very closely with those of Land6 given in Table XIV.

IONIC SIZES IN TERMS OF LATTICE ENERGIES

Up to this point, the term ‘4onic domain has been used in this chap-

ter to include not only the actual domain itself but also a portion of the

interionic volume. This extended meaning has been justified by the

fact that it gives a set of dimensions for various ions such that, if the radii

of and are added together, we get an approximation (within

10 per cent) to the distance of closest approach of ionic centers of and

B”“ in the crystal. Information of this sort has already been found useful

in previous chapters. It would be possible to arrive with even more

certainty at the same sort of result if we knew the dimensions of the

* Actually .it is impossible to pack equal numbers of cubes of two different sizes

to give an NaCl lattice. For such a lattice the corners of the cubes would have to be

well rounded.
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actual ionic domains and if, in addition, we had some way of accounting

for the free interionic distances. Bom^^ and Pauling®^»“ have made
calculations of this sort. We shall take up briefly the calculations of

Pauling since they are especially well suited to our purpose.

Pauling uses as his starting point the well-known equation* of Bom
for the lattice energy of an ionic crystal

:

z^e^A

r (1 )

where ^ = crystal energy per “molecule.^^

ze = charge on an ion (z -= valence).

r = a chr ictcristic distance between ionic centers in the crystal.

A (the Ma«^elung constant) and B = constants for a given crystal.

For any given fiifr; ngemenl of ipr.s in the crystal, A may be calculated

from the laws o V|3iectrostatics and B is chosen so that at equilibrium r

will hevf^ the vaJue R found experimentally for the given crystal. Since

at equiiibrii.m

we obtain from Eq. (1)

B

Equation (1) can therefore be

U =

oIIe^l

n (2)

written in the form

z^e^Af ^
l\

(3)RV-n)
where U is the crystal energy at equilibrium. Measurements of com-

pressibilities show that for the alkali halides the value of n is in the

neighborhood of 9.

By applying the perturbation theory of quantum mechanics, Pauling

shows that the potential energy of two ions M and X, situated a distance

r^x apart, is approximately

(p =
ZuZxe^

Vmx
+ /

3mx
(rM + rx)”

rMx
Bo (4)

in which and are ** standard radii characteristic of the ions M
and X, Bo is a constant for all ions, and /Smx values which depend upon

the model assumed for the ions. Bo has a value of unity when M and X
are univalent ions of opposite sign, a value of 0.76 wheu they are both

* For the purposes of this chapter equations are merely stated without going into

the details of their derivation. Pauling’s derivation®* is expressed in the symbols

of quantum mechanics and should be studied by all those who have had the necessary

training.



430 CRYSTAL STRUCTURE

univalent negative ions, and a value of 1.25 when they are both univalent

positive ions. If we have a compound MX, whose crystal structure is

of the NaCl type, then each ion is surrounded by 6 ions of opposite sign

and 12 ions of the same sign. If we neglect all the rest of the ions in the

crystal, it may be shown that

B = M] (5)*

where B and So are the same as in Eqs. (1) and (4), and r_ are the radii

of M'*' and X”, respectively, and f{g) is a function of (1) the number of

closest anion-cation, cation-cation, and anion-anion contacts per

molecule^' of MX, and (2) a quantity which has to do with the geometry

of the crystal.

From Eq. (2) we have

By substituting (5) in (6), we have

R =
1^ (7)

If now, the values of the constant, and of the and r_ are so chosen

that, for the special casef where r+/r_ is 0.75, R becomes equal to
n

(r+ + then Eq. (7) becomes, for a crystal of the NaCl type,

ft = (r+ + • ft(p)

where p is the “ radius ratio ” r+/r-, and where

F{p) = (1 + pY + §++{y2py‘ + ^—

(

V2)"

(1.75)" + ^++(V2 • 0.75)" + |8-(V^)"/

(8)

(9)

may be considered as being a correction factor which shows how the inter-

ionic distance in NaCl-type crystals depends upon the radius ratio p.

This dependence is shown graphically in Fig. 6.

We have already seen from Table IX that the interionic distances

in the alkali halide series are not strictly additive; there were small devia-

tions in the case of Na"*" and F“ and pronounced deviations in the case of

Li+. Presumably, more accurate measurements of lattice parameters

would have disclosed less striking but definite, small deviations in the

case of the larger ions also. If in a binary compound, crystallizing like

NaCl, one of the two ions is small enough, the departure from the additive

This is Eq. (18) of reference $4.

t This really means that we are makmg F(p) of Eq. (9) arbitrarily equal to unity

when p is 0.75. This is evident by an inspection of Fig. 6.
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law has a simple mechanical explanation.®®*®® Imagine equal numbers
of spheres of two sizes, packed together in the NaCl arrangement. Let
one set of spheres be kept unaltered, and let the diameters of the spheres
of the other set be reduced step by step. It will be found that when the
diameters of the small spheres are reduced to 41.4 per cent of that of the

large spheres (i.e., if p is made 0.414), the large spheres will come in con-

tact with each other. Further reduction of the diameters of the small
spheres cannot bring the larger spheres closer together, for they are

already in contact with each other. As the small spheres are made still

smaller and smaller in diameter they will lie more and more loosely in the

spaces left by the large spheres. This would cause the distance between

0.3 0.5 0.7 0.9 1.1

9
5ia. 6.—The variation of Fip) with p (solid line). The broken line shows the form of the

function for solid spheres, t.e., when n is infinity.

centers of adjacent large and small spheres to be in excess of that required

by the additive law, by a factor shown by the dotted line of Fig. 6.

Pauling has pointed out®® that, in the case of actual ionic crystals, the

additive law should fail for values of p considerably larger than p = 0.414.

There are two reasons for this: (1) The large ions will act like still larger

spheres because of the separation produced by the repulsion of like

charges; (2) in the case of Li+ the second term of Eq. (1) becomes of

importance near the ‘‘edge’’ of the ion thus introducing still a second

repulsive force which acts between the Li+ and the halogen ion. The
solid line of Fig. 6 was made to accord with this view by making F(p)

equal to unity for p = 0.75 in Eq. (9). The correction factor F(p) for the

distance of closest approach of oppositely charged ions then becomes

substantially unity when p is larger than 0.70. For values of p smaller

than 0.70 the correction factor is larger than that shown by the dashed

line.

If some value (or set of values) is assumed for n in Eq. (8) (Pauling

assumes a uniform value of n = 9), and if F{p) is considered to be known
from Fig. 6, then we can set up simultaneous equations in which the
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values of R are related to the radii r+ and r_ of the “true^^ domains of the

alkali and halogen ions. As in the discussion of Tables IX and X, we
have here one more unknown quantity than we have equations, and some
plausible additional equation must be found. Pauling chooses, on
theoretical grounds, the equation

P (10)

where and Zj^- are the actual nuclear charges and /Sm+ and Sx- are

the ‘^screening constants of the two ions M+ and X""; i.e., Z — S is the

‘‘effective^' nuclear charge. He takes the calculated values of this ratio

for the case of K+ and Cl“ and for Rb+ and Br“ and thus finds values for

^ci-f Values for the remaining alkali and halogen

ions come out at once from the simultaneous equations. He thus

obtains a self-consistent set of radii for the true ionic domains which,

when used with Eqs. (8) and Fig. 6, give close to the correct distance of

closest approach of M+ and X“" in crystals of the NaCl type. When the

simultaneous equations are used for CsCl, CsBr, and Csl (none of which

are of the NaCl type), the radii obtained for Cs+ and I"" are the radii which

these ions would have had if Csl had had the NaCl structure.

The radii of the true domains of the alkali and halogen ions, calculated

in this way, are listed in Table XVII.

It should be emphasized at this point that all ionic radii listed in this

chapter represent approximations of one sort or another. The approxi-

mations on which several of the previous tables are based have already

been stated. The fundamental approximations and assumptions on

which Table XVII is based are: (a) Eq. (1) ; (6) Eq. (4) ;
(c) the simplifica-

tions leading to Eq. (5) ;
(d) the assumption that F(p) will equal unity for

p = 0.75; (e) the use of a single value, namely 9, for n, instead of a

different n for each salt;* (/) equality of p with the inverse ratio of the

* The various values proposed for n by Born, Herzfeld, and Pauling are:“

Born Herzfeld Pauling

NaCl 7.84 9.1 8

NaBr 8.61 9.5 8.5

Nal 8.45 9.5

KP 7.9 8

KCl 8.86 9.7 9

KBr 7.78 9.5

KI 9.31 f 10.5

RbBr 10

Rbl 11

Since appears in the exponent of (8), variations in n will make considerable

variations in the values assigned to and r..
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Table XVII.—Pauling^s Radii for the *^True” Ionic Domains
C8+ •• 1,434A. I- 1.867A.
Rb+ 1.294 Br- 1.702
K+ 1.173 Cl- 1.689
Na+ 0.873 F" 1.226
Li+ 0.674

Table XVIII.—Calculated and Obbbbved Interionic Distances in the Alkali
Halides (Pauling^s Method)

Salt p - r+Zr- F (p) [Eq. (9)1

n

(r+ + r-)»-i
-(r. + r.)n"

R cn.1 ulated
frtom .3q. (8)

R observed*

0. G3 1.042

t

1.936
1

1.971
2.007
2.009

LiCl 0 3* 1 2.882 2.577
2.566
2.566

LiBr '^357
> 1.094 2.522 2.760

2.745
2.745

Lil
;

0.307
i

l.lll 2.729 3.032
3.01
3.025

NaF 0.713 1 002 2. .502 2.306
2.310
2.310

NaCl 0.550 1.023 2.756 2.819
2.814
2.814

NaBr 0.513 1.029 2.898 2.982
2.968
2.981

Nal 0.468 1.041 3.108 3.235
3.231
3.231

KF 0.958 0.995 2.675 2.662
2.664
2.664

KClt 0.738 1.001 3.136 3.139
3.138
3.140

KBr 0.689 1.005 3.281 3.297
3.285
3.293

KI 0.629 1.010
3.535
3.526

RbF 1.057 0.997 2.827 2.819
2.81
2.815

RbCl 0.815 0.997 3.291 3.281
3.285
3.268

RbBrt 0.760 0.999 3.436 3.433
3.434
3.434

Rbl 0.693 1.004 3.650 3.665
3.662
3.663

CsF 1.171 0.999 2.994 2.991
3.00
3.005

CsCl 0.903 0.995 3.471 3.454'
(3.555)
(3.560)

CsBr 0.843 0.996 3.618
(3.713)
(8.715)

Csl 0.769 0.999 8.832 3.829
(3.947)
(3.96)

* The upper value is from Table IX. The lower value is that choeen by Pauling.**
t Starting points for cidoulation of Table XVII.
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effective nuclear charges. These approximations are justified because

of the simplification which they entail. Anyhow, it is of more importance

to the crystal analyst to have a consistent set of radii for true domains

which can be used in an equation than to have true radii. In fact, since

each electron and each proton exerts an influence over an infinite distance,

there may be no true radii of true ionic domains.

For convenience of reference the calculated and observed distances of

closest approach for the alkali halides are listed in Table XVIII. In this

table the second column gives the radius ratio p, calculated for each salt

from Table XVII; the third column gives F{p) from Fig. 6 for each of the

values of p; the fourth column gives the value which the distance of

closest approach 72, would have had if this distance had been independent

of the radius ratio; the fifth column gives the final value of the distance

of closest approach after the corrective factor F(p) has been taken into

account; the experimental value of the distance of closest approach is

given in the last column. The agreement is close enough for all practical

purposes in crystal analysis.

Still another set of radii, based on much the same sort of considera-

tions has been proposed by Zachariasen.^^

SIZES AND SHAPES OF ATOMS WHEN IN NON-POLAR
(ELECTRON-SHARING) COMBINATION

It is easy to find the shape of radicals like NOg”, COg
,
etc., for

the answer is contained in the solution of the structure of the crystals

which they help to build. For instance, in all alkali nitrates the simplest

structure for NOg"” which fits the data consists of an equilaterial triangle

with an oxygen atom at each corner and a nitrogen atom at the center.

The COg— radical has a similar structure (see Q, Fig. 13 of Chap. V).

Similarly the shapes of other radicals can be determined whenever

sufficient crystal-structure data can be found. This is also true of

‘‘molecular compounds'' such as Si02, AlgOg, FegOg, Cr20g, and crystals

of most organic substances. Si02 is an elbow-shaped molecule (see

Fig. 23 of Chap. VI). Oxides having the composition MgOg have the

three oxygen atoms at the corners of an equilateral triangle. One atom

of the metal is immediately above the center of this triangle, and the other

is immediately below it. The three oxygen atoms evidently “belong"

to the two atoms of the metal, for they are closer to them than to any

other atoms of mfetal in the crystal. Similarly, the metal atoms are

closer to their own three oxygens than to any other oxygen atoms in the

crystal.*

* It will be shown in Chap. XIX that such a structure may be taken as evidence

of the absence of a polar (i.c., ionic) structure. For non-polar compounds the ‘^mole-

cule” is a real physical entity. For inigtance, AUOs does not electrolyze readily; even

up close to its melting point it is a good insulator. Quartz is a good insulator at room
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In all of these, however, there is no way of telling, from a study of

lattice parameters alone, how much of the interionic space belongs to

one atom and how much to the other atom. In calculating the radii

of ionic domains it was found that the lattice parameters alone always
gave one equation fewer than there were unknown quantities. Our
discussion of ionic radii obtained by various methods was really, there-

fore, a discussion of attempts to find a suitable additional equation

and a comparison of the results obtained by the use of the various

equations that have been proposed. In the case of the radicals and
molecular crystals the lattice parameters also give one equation fewer

than there are unknown quantities, and there is a noticeable scarcity

of assumptions on which to base an additional equation. In the absence

r{ an additional equation an infinite number of radii could be proposed,

any given set oJ which would be njiu ually consistent. In the early days

of crystal analysia W. L. proposed a semiempirical set of radii

for the dornoins of atoms in molecular compounds and in radicals,®®

bas<yl on he assumption that in Fi‘^2 the iron atoms are in contact with

each other anrt that the sulphur atoms fit into the chinks between iron

atoms. In the absence of any other data at the time, he proposed the

same radii for atoms in the ionic state until better values could be found.

Unfortunately his radii were adopted uncritically by many people in a

way that was not intended, and he has since withdrawn those values.®®

In a study of MgAl204 ,
Bragg and Brown suggest®^ that the distance

of closest approach of oxygen atoms in such a compound is of the order

of 2.7A., thus giving a radius of l.SsA. From this, approximations

to the domains of other atoms could of course be estimated by subtraction

from the proper lattice distances. Bragg and Brown emphasize the

danger in such computations because of the lack of constancy of the size

of the atomic domain.

It is evident that the data of atomic-structure-factor studies of non-

polar compounds would give information as to the radii of the atoms

temperature because at such temperatures it, too, is molecular, not ionic. There is

this difference, however, between quartz and alumina. The alumina remains molec-

ular up to its melting point; quartz does not. At room temperature the Si in quartz

is not very much closer to its ^^own” oxygens than to the oxygens of its neighbors.

The greater vibration path at higher temperatures permits the Si to get close to the

oxygens belonging to its neighbors, so that the molecular nature of the crystal is lost

and it acts like an ionic conductor, •

Even in the case of molecular combination, however, we must not take the phrase

“electron-sharing” too literally. There seems to be less true “sharing” of electrons

than was at first supposed. We can hardly think any longer of the shared electrons

being owned equally by the two atoms. It will appear in Chap. XIV that in COs
we must think of the carbon as having given up practically all claim to its four outmost

electrons—they belong almost entirely to the oxygen so that COs would really be

[C++++Os—]. This is consistent with the data of organic chemistry on molecular

rearrangements.^
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which compose them. Such data have already been given in Figs. 10

and 11 of Chap. XI. These indicate that the radius of the domain

of oxygen in molecular compounds is of the order of 1.2 or 1.3A. This

is in agreement with the estimate of Bragg and Brown.

SUMMARY

We have discussed the distinction between actual atoms (and ions)

and their packing-domains. We have distinguished between the ^Hrue^'

domain (which is separated from its neighbors by an amount depending

upon the absolute temperature) and the fictitious domain (called simply

the ^Momain^’ for convenience) which is in contact with its neighbors

at the temperature of the experiment. The fictitious domains have the

merit that, in the simplest cases, they yield a good enough approxima-

tion to the distance of closest approach by simple addition.

We have outlined the various methods of investigating the shapes

and characteristic dimensions of the domains of the atoms of the ele-

ments and have found them to be all in essential agreement. We have

outlined also the methods for finding the shapes and sizes of ionic domains

in the single case of binary compounds and have again found substantial

agreement within the limitations of the various methods. We have

pointed out in a general way the nature of the calculations and approxima-

tions necessary to find usable semiempirical radii for the true ionic

domains and have shown how to use such radii to compute the distance

of closest approach of oppositely charged ions in a binary compound.

Finally, we have discussed the problem of the sizes of the domains of

atoms in non-polar compounds.

It has appeared that the discussions of all x-ray methods for estimat-

ing ionic radii center about the search for an additional equation, not

based on lattice parameters, which must be included in our calculations

in order to arrive at definite numerical results. These additional equa-

tions are based on widely different assumptions the nature of which

depends largely upon the type of training and upon the direction of the

scientific interest of each investigator. The purpose of this chapter

will have been realized, (1) if the reader has gained a vision both of the

crude mechanical pictures and of the polished quantum theory on which

the various assumptions have been based, and (2) if he has been stimu-

lated to use both the pictures and the theory as a basis for the interpreta-

tion of data in other fields.
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CHAPTER XIV

THE REFRACTION OF LIGHT BY CRYSTALS

If we could know enough about the fundamental properties of matter,

we ought to be able to calculate all the physical and chemical properties

of any given crystalline material. The calculation of each of the

properties of crystal requires, in general, a knowledge of some or all

0? the following ;

1. The Ftrueti»« of the eryst-iil.

2. The vario'ii iateratoniic (or ^ ) distances in the crystal.

3. The detaiis of tlie mosaic structure (ir-planes, Il-planes, etc.)

4- The i\ner structure of the atoms (or ions) which compose the crystal.

5. A method of calculating the energy of the crystal lattice.

We have already learned in Chaps. IV to XI inclusive how to deter-

mine 1 and 2. In Chap. XII we went part of the way toward 3. A
study of atomic (and ionic) structure factors, of optical emission spectra

and of the chemical properties of atoms and ions goes a long way toward

4. Item 5 does not seem so simple, and we shall therefore postpone it

until the next chapter. In this chapter we shall take up the calculation

of the optical properties of crystals, for such calculations can be

made in terms of 1 and 2 with the aid of additional quantities which,

although they depend ultimately on 4 and 5, can be determined in semi-

empirical fashion without direct reference to 4 and 5. In other words,

the optical properties of a crystal can be calculated by considering each

atom (or ion) as a unit with very little reference to the internal architec-

ture of the atoms (or ions) themselves.

The calculation chosen is that of W. L. Bragg^ on the optical con-

stants of calcite and aragonite. These minerals are both CaCOs, but their

crystal structures are different.?** '* It is well known that both of these

crystals are birefringent, z.e., the degree with which they can bend a

beam of polarized light depends upon the orientation of the crystal with

respect to the plane of polarization of the light. It is generally assumed

in physical chemistry that the optical properties of a compound may be

calculated if only we know the optical properties of each of its compo-

nents. This is approximately true in the case of isotropic substances,

e.gf., jellies, solutions, and crystals belonging to the cubic system. Bragg

makes the additional assumption that in all other crystalline solids the

crystal structure must also be taken into account, for in a crystal the

arrangement of atoms markedly affects the forces acting between them.

439
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The customary procedure in the case of isotropic substances is to

picture the electric vector in a beam of polarized light as pulling the

electrons of the various atoms in one direction and pushing the corre-

sponding protons in the opposite direction. In this way each atom is

thought of as becoming an ^‘electric doublet,” i.e,, it acts like a tiny rod

with a plus charge at one end and a minus charge at the other. The

change in the strength of the electrostatic field (electric polarization) in

a definite small volume, caused by the doublets thus formed, is then

calculated by considering the effect of such doublets arranged in a hit-or-

miss fashion in the isotropic substance. Such a calculation may be

expected to apply to the case of a substance crystallizing in the cubic

system, for all three directions are necessarily equivalent. It will not

apply, however, even approximately, to substances crystallizing in other

systems, and for these the configuration of atoms in the crystal has to

be taken into account. Bragg has made the necessary calculations for

calcite and aragonite, taking into account the arrangement of the atoms

in the crystals, and (within the degree of approximation to which the

assumptions hold for isotropic substances) these calculations lead at once

to the correct values for the indices of refraction of the crystals.

INDEX OF REFRACTION OF ISOTROPIC MEDIA

It is reasonable to assume that, if a substance is placed between two

charged electrodes so that a constant electrostatic field is imposed on it,

all the electrons in the atoms* of that substance will be pulled over slightly

toward the positive electrode and all the protons will similarly be shifted

over toward the negative electrode. Let s be the distance which is now
assumed to exist between the center of gravity of the negative charges

and the center of gravity of the positive charges in a given atom. This

distance will be proportional to the strength of the electrostatic field

in which the atom finds itself and to the charge e on each electron and
proton. It will depend, too, upon the magnitude of the electrostatic

forces between the electrons and protons in the atom. It will be assumed

that this restoring force is independent of the orientation of the atom,

and this force will be included, for any given kind of atom, in the factor

of proportionality. We may therefore write

5 = E'e\ (1)

where X is characteristic of the atom under consideration. The factor X

may be defined as the displacement per unit force on the atom. It is

the elastic yield of the atom to the polarizing force. If Eq. (1) is written

82

X2 (2)

For the sake of brevity, the word atom is used in the first part of this chapter to
mean atom (or ion).
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the expression s'/\ may be interpreted as representing the strength of

the doublet.

Let E be the average value of the strength of the electrostatic field

(due to the charge on the electrodes) throughout the whole substance

which has been placed between the electrodes. Since the dielectric

constant of a vacuum is, by definition, unity, the increase in the field

strength caused by the presence of the material substance is (K — 1)^,

where K is the dielectric constant of the substance. This change in

the field strength is called the polarization per unit volume'' and is

designated by P. Assume that in each cubic centim ^ter of the substance

there are Ni atoms having a displacement constant Xi and therefore an.

electric momerl« Sie; N2 atoms of displacement constant X2 and electric

moment S2e; etc. Then

1)E = P "1“ N282^ "
1
“ * * *

= iV1^X16 + + • * •

= jB'JV 16^X1 + E^N28^y^2 -[-••• (3 )

Now consider some single atom located at a point A, for example.

There will be some doublets so close to it that they may be regarded as

making individual contributions to the strength of the electrostatic field

at A, Other doublets, more remote, may be regarded as being so far

from this point that they act with their neighbors to give the effect of a

substantially uniform electrostatic field. The field strength P' which

acts on any individual atom in an isotropic substance represents the

average strength E of the field imposed by the charged electrodes plus

the effect of these more remote doublets. The additional effect of the

doublets which are near the atom at A may be determined as follows:

Let a sphere be drawn with A as a center and with a radius large enough to

reach to the more remote doublets mentioned above, and let all the

doublets inside this sphere be removed. On one side of A the surface

of the sphere acts as though it were covered with a continuous coating

of positive electricity; on the other side of A it will act as though it had a

continuous coating of negative electricity. It may be shown that the

field due to these charged halves of the sphere is If the substance

between the electrodes is isotropic, the average effect of the doublets

inside such a sphere is zero. The net effect is that the total electric

field acting at the point A is now

“ S
= '

Equation (3) must therefore be altered to read

p = (f + i^P)JVie*Xi +{E + + • • •

= (f + HP)XNe^
= E'SNe^ (6)
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or

K-l=?-= ^
E E' - VzP

E' •

E'{1 - VsLNe^)
me^

1 - HXNe^X

Equation (6) will still hold true if the field across the electrodes is an

alternating field such as would be produced by the electric vector of a

light wave, except that near all resonance frequencies the value of X will

depend upon the frequency of the field. Equation (6) may be made more

useful' for our purposes by means* of the well-known principle that, if

the dielectric constant of a substance is measured for fields of the same

frequency as the light which we happen to use, then that dielectric

constant is inversely proportional to the square of the velocity of light in

that substance. Remembering that the ratio of the velocity of light

in a vacuum to the velocity in a given substance is the index of refraction

of that substance we have,

e __
(velocity of light in vacuum)^ _ 2

Xvaru.i ..
(velocity of light in substance)^

Since the dielectric constant of a vacuum is, by definition, unity, we can

replace K in Eq. (6) hy n^, giving

n2 - 1 =
1 - (7)

If M is the molecular weight of the substance and p is its density, then
- 1 M,

the quantity

;

-is approximately a constant which is substantially
72.^ -(- 2 p

independent of the physical state of the substance, provided it is isotropic.

It is called the “molecular refractivity’^ of the substance and is denoted

by J?.* From Eq. (7) we have at once

M
P

- 1 1 M
+ 2

^
3 p

(8)

Now N\y N2 ,
etc., represent the number of atoms of kinds (1), (2), etc.,

M M
per cubic centimeter. Ni—j ^2

--^ etc., are therefore the number of

atoms per gram-molecule and may be represented by aNoj hNo, etc.,

where No is the Avogadro number. In terms of iVo, Eq. (8) becomes

R = a{HNoe^\i) + biHNoe^\2) +
= CLA

I

-f- 6X2 -f"
• • •

(9)

where Ai, A 2 ,
etc., are the atomie refractivities. * On the basis of their

* /i, liy etc., would represent the ionic refractivities of Ca''’+, O— ,
etc.
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optical properties in isotropic substances it is possible to assign values for

the refractivities for the atoms and ions of many elements, and the

molecular refractivity of a compound is approximately the sum of the

atomic (or ionic) refractivities of its constituents, provided only that

the substance is isotropic.

INDEX OF REFRACTION OF NON-ISOTROPIC MEDIA

So far we have assumed that the immediate neighbors of any given

atom were situated around it in an entirely haphazard fashion. Although

not so arranged in the case of crystals of cubic symrietry, the math^
matics of cubic crystals is such as to lead to essentially the same result.

This is not the cave for non-cubic crystals. The net electrostatic field at

a pbint due to t^^e more closely situated atoms is no longer zero. It

must be calculaWd in terms of I he relative positions of these atoms

(or ions) and tbo;ilistance betwofr. them as given by crystal analysis.

Consider an atom situated at the origin of coordinates, and let one

of the doublets in its immediate neighborhood have coordinates x, y, z, so

that it is at a distance

r = \/

from the origin. The a;-component of the field which it sets up at the

origin is, in Heaviside units,

I I

Mg
,

^XZ

47rr^ y.2 47rr® 47rr®

where /x*, /Xy, and are its components of polarization. Fields of this

sort from each doublet in the neighborhood are superimposed on the field

which we considered in the case of isotropic substances, so that the simple

form of Eq. (4) must be replaced by a group of equations of the form

iL
Xi

X2

+ k)
(s + lp)

e + {aiSxe + a^s^e + • *
' )^)

\e + (&i5i^ “1“ 62^2^ 4“ * *
* )^)

( 11 )

The new terms a^SnC give the changes to the field which have been

contributed by doublets of strength SnC. All doublets of a given kind
^

situated at a distance r from the origin of coordinates are included in the

same term. For instance, if for the doublets of strength Sie the com-

ponents of polarization are m» = Mv = M* = 0; then Eq. (10) gives

the value of ai as !

1

ro 4'wrr® r*
(12)
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In general, fiy and /*» will not be zero, but the error introduced will be

small and can be allowed for in numerical calculations if desired.

The equations illustrated by Eq. (11) may be written in the form

£ = (^ + ip)c + (jaie'Xx + go*e*X*

Calculations based on values for ai, a2 ,
etc., given by Eq. (12), and on

values for Xi, X2 ,
etc., given by atomic refractivities, give values for the

second parentheses which are small (±0.2 for calcite and aragonite) in

comparison with {E + so they may be represented by a corrective

factor thus:

g
-

For non-isotropic media, Eq. (5) therefore becomes

P = Ci(^ + VzP)N,e‘^\, + Ci{E + VzP)Nie'^\i +

and Eq. (7) becomes

C^Nle^\l “h C2N2^^^2 ± ’ *

l‘^(CiiNrie^Xi ± C2N2^^^2 ±

We are now ready to consider calcite and aragonite and to compare

their indices of refraction as calculated by Eq. (14) with the results of

experiment.

STRUCTURE AND OPTICAL PROPERTIES OF CALCITE AND ARAGONITE

The rhombohedron of calcite has been shown in Chaps. V and IX to

have a distorted NaCl structure. When a calcite crystal, bounded by

^ ^ its cleavage planes, is placed so that its short

JL Cd f ^ body-diagonal is vertical, the structure may be

^ Coi
)

thought of as being made up of three interpene-

(
simple triangular lattices. The arrange-

j
ment of atoms, looking down vertically upon such

J ^ crystal, is shown in Fig. 1. The CO3— group

V 1 equally spaced from each of three Ca+'’' ions
^ below and three Ca++ ions above. The oxygens
Fig. 1 .—Arrange- lie midway between one of the lower Ca++ and one

looking along the short Upper Ca
diagonal of the rhombo- Although aragonite belongs to the ortho-
hedron. {Bragg.)

rhombic system, the positions of the Ca"*"'*' and
CO3— are very nearly what they would have been if the structure had
been triangular close-packed. The arrangement of atoms, looking along



THE REFRACTION OF JjIGHT BY CRYSTALS 445

the Z-axis of the prism is shown in Fig. 2. Here again the CO3— group

is equally spaced from each of three Ca'^+^ ions below and three Ca+“^

ions above, but now each oxygen lies midway between three Ca*^+ ions.

When the electric vector of a polarized light wave is parallel to the

planes of CO3 in calcite, the index of refraction,* w, is 1.658; when it is

perpendicular to these planes the index of refraction, €, is 1.486. If

aragonite had true hexagonal symmetry, it, too,

would have two indices of refraction, one w with

the electric vector perpendicular to the CO3—
planes (i.e., parallel to the Z-axis) and a second e

with the electric vector parallel to the CO3—
planes (i.c., in tla plane of the X- and F-axes).

But since the s '^mractry of aragonite is only

pseudo-hexagonet and is actually: that of the

orthorhombic syitem, it has three indices of refrac- xnent^^of atoms^ ^in ^ ara-

tion. These are: a = 1.530 when the electric gonite, looking along the

vector is parallel to the pseudo-hexagonal Z-

axis; ^ = 1.681 w^hen it is parallel to the orthorhombic (pseudo-ortho-

hexagonal) X-axis; and 7 -- 1.686 when the electric vector is parallel to

the F-axis. Aragonite, therefore, is not far from being a uniaxial crystal

with CO = 1.683, and € = 1.530.

Values found in the literature® for the ionic refraction of calcium,

carbon, and oxygen indicate that the calcium ions (/ca++ 1^99) are

responsible for only about 15 per cent of the total refractivity of calcite.

Assuming that the molecular volume of CaCOs in calcitef is

M— = 36.13
P

the expression Ne^\ in Eq. (14) becomes [see Eqs.#(8) and (9)]

ATe^x = 3^7c.** = 0.165 (15)M
for the calcium ions in calcite. The corresponding molecular volume in

aragonite is 34.01, giving a value for of 0.175. The rest of the refrac-

tivity is to be accounted for by the carbon and oxygen. It remains,

therefore, to apportion the renaainder between the carbon and the

* For the D line of sodium.

t This value is the one recorded by Groth and used by Bragg. The actual density

of calcite is 2.71, which gives a molecular volume of 36.93 and a value for Ne^\ for

Ca‘^+ of 0.162. The final value of N (calculations of the first approximation) on this

basis is 1.469 as compared with Bragg’s value of 1.468. Since the difference is of the

same order of magnitude as that caused by the uncertainty in /q—

,

there is little

point in trying' to correct Groth’s value for the molecular volume. In any case, it

would hardly affect the values for the differences in the corresponding indices for cal-

cite and aragonite. As Bragg has pointed out, it is these differences that are Inost

important.



446 CRYSTAL STRUCTURE

oxygen. Wasastjerna has shown that ions and molecules of the type

XO3 have nearly identical refractivities. For instance: == 10,6;

10.8; R^or = 10.4; R^o- = 11.1. It is evident, therefore,

that most of the refractivity is due to the three oxygens and that

the element to which they are directly combined in the crystal has but

little effect. This fits in very well with the theories published by Lewis,

Langmuir, Kossel, and others, in which they picture each of the three

oxygens as having two extra electrons so that for our purposes they

may be considered as acting like negatively charged ions. In the case

of the CO3 radical, this leaves the carbon with only its positive nucleus

and the two K electrons. The effect of such a should be very

small in comparison with that of the three 0 ions. On this basis the

refractivity of O must be a little less than 11.1/3 = 3.7. If, instead,

we use the value from NOs", it must be a little less than 10.4/3 = 3.5.

Bragg assumes that the allowance for should be such as to give

3.30 for the refractivity of 0 . For oxygen the value of Ne^\ in Eqs.

(14) and (15) is, then,

rt 3 X 3.30 ^ Qoo *
13 * — = 0.822 in calcite,

OD.lo

and

3 •
- ^ 0.873 in aragonite

OT-.V/l

where N is, as in p](i. (3), the number of atoms (in this case oxygen ions)

per cubic centimeter.

Confining our attention for the

present to calcite, we now have the

' following values ready to substitute in

Eq. (14):
I

For Ca++, Nie^\i = 0.165

For O--, Nie’‘\2 = 0.822

For C++++, iVse^X, = 0
Fio. 3.—Diagram of COj group.

The electric vector is perpendicular [i,e,, it is Considered to be negligible in
to the plane of the diagram (extra- tt, i

ordinary ray for calcite). {Bragg.) (14) Or in an equation of this type].

These are all calculated on the basis of

the number of ions per cubic centimeter because our original equations,

such as Eq. (3), were based on a volume of 1 cc.

It' remains to find values for the coefficients Ci and C2. Since the

refractivity of Ca++ is small, there will be but little error introduced into

the final answer by calling Ci unity. The value assigned to C2 for the

oxygen terms will depend upon how far we wish to carry our approxima-
tions in finding the radius of the sphere mentioned in the derivation of
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Eqs. (4) and (11). The roughest possible approximation, short of

blindly calling Cj equal to unity so as to give the sphere a radius of zero^

is to consider a sphere which is so small as to take in only the three 0

ions of a single CO “ group; i.e., r in Eq. (12) equals x. H in Fig. 3 the

electric vector is perpendicular to the plane of the COj group, then

the polarization of each 0“ is given by Eqs. (11a) and (12) in terms of

ss/Xz. In Eq. (12) r is 2.25 X 10-» cm., and since the X-axis is in the

direction of the electric vector of the light wave, x = 0. In Eq. (11a),

therefore, as = for each of the two oxygen ions at the circumference

of the sphere. The negative sign indicates that the polarization repre-

sented by this tepu opposes that of the (E -t- ) :iP)c term Equation (13)

now becomes

' ?*

t X,

(16)

The factor is the Cs of Eqs. (13) and (14). The numerical

1 -I-
~—

-

2irro’

value of this factor may be found by an equation like (15),

Xsc’^Xs = 3-30 X
3jj^

Since

MjVa = iVo = Avogadro’s constant = 6.062 X 10*’

P

and since

HXoc’Xs = 3.30

we have

e*Xs = 1.63 X 10-**

and

e*Xs

2irro’

1.63 X 10-*»

2ir(2.25)’ X 10-»
0.228

. 1

1.228
0.815

Ct is therefore
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We are now ready to substitute all our numerical values in Eq. (14).

Such a substitution gives

0.165 + (0.815 X 0.822)

1 - )^{0.165 + (0.815 X 0.822)}
1.155 (17)

or

n = 1.468

Since the electric vector was assumed in Fig. 3 to be perpendicular

to the plane of the CO 3— group, n will be the index of refraction for the

extraordinary ray. The experimental value is 1.486. In view of

the crude assumptions made in the calcu-

lations the agreement is very satisfactory.

In Fig. 4 the electric vector lies in the

plane of the CO 3 group and is in the direc-

tion of a line joining the carbon to one of

the oxygens. This fixes the X-axis. The
two oxygen ions on the circumference of the

sphere have coordinates

-I\ X 4 Vo

St(b)« /

®2(C)®

Fig. 4.—Diagram of COs
group. The electric vector is

parallel to the line joining the

carbon to one of the oxygens
(ordinary ray for calcite). There
{Bragg.)

X = 1.95 X 10“® cm.

2/
= 1.125 X 10"« cm.

2 = 0

will now be three 82/^2 equations

corresponding to the three sets of arrows in

Fig. 4. We shall assume that the elastic properties of 0 ions are the

same along all three coordinates so that \2 will be the same in all three

equations. The three S2 values, however, will be different since the

field strengths differ. Thus

S2(<i)

X2

3 X (1.95)» - (2.25)^

(2 .25)2
52(4)6

,
3 X (1.125) X 1.95

(2 .25)2

P]e + |^p^(2.50ss(6)e + 2.6052(c)e)e

^> = + j— (i.2552(«,e - 82<»e)e

= 4;^,(l-3052(a)e - 282(c,e)e

Solving these three simultaneous equations we have

5(
f+S2(a) = 1.36f
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' +

The mean polarization in the direction of the electric vector of the

light wave is

= 1.17^1 +

A corresponding calculation for Fig. 5 leads to the ;)ame value for the

coefficient of (E + }^'sP)e, This is as it should be, because of the sym-
metry of the C0«’ group.

We are now. i^eady to substitute the

following values i|i Eq. (14) ^

For Ca-^+ Niei, ^ 0.165; Ci « 1.00

For 0—, .V26% - 0.822; C2 = 1.17

For 0“^+++, iVse^As — 0 (i.e., considered to

be negligible).

This gives a calculated value for n in

calcite of 1.676. Since the electric vector

of the light wave is in the plane of the

COa group, this should correspond to

the index of refraction for the ordinary’^

ray. The test value is 1 .658. Here again the agreement is good when the

rough approximations on which the calculations were based are considered.

These calculations may be refined by using a sphere of larger radius

around each oxygen so as to include a larger number of neighboring ions.

Such a computation ought, strictly, to take into account the effect of

O on Ca+'‘", Ca^'*' on O—,
Ca++ on Ca"*"*", and O on O . If the

radius of the sphere is increased from 2.25 X 10“® cm. to 6.00 X 10“* cm.,

each sphere in calcite would include 42 neighboring ions. In aragonite

it would include 50. The uncertainty in the value for the ionic refrac-

tivity of oxygen makes it seem unwarranted to go through such a calcu-

lation without introducing certain simplifying assumptions. Bragg

points out three assumptions of this sort, viz:

1. Components of polarization not in the direction of the field are negligible except

in the case of the two nearest oxygen ions. This assumption is justified by the pre-

viously determined value for «2(c)/X2 in calcite.

2. The effect of Ca++ on O is negligible. Bragg’s computations show that this

assumption affects the accuracy only in and beyond the third decimal place.

3. For Ca'^'*’ the constant C is unity.

In Eq. (16) the two oxygen ions on the surface of the sphere of radius

2.25 X 10““® cm. introduced a term

Fig. 5.—Diagram of CO 3

group. The electric vector is parallel

to the line joining the two oxygens.
{Bragg.)

^ = 1.07^E

^2(c)

X2
= 0.103^J
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£?
X2

2
e%.

If the radius of the sphere is increased to 4.50 X 10”* cm., additional

ions are brought in whose effect is of the opposite sign, thus decreas-

ing the value of the negative term. If the radius of the sphere is fur-

ther increased to 5.5 X 10”* cm., the additional ions add a negative

quantity to the previous result. If the sphere is increased to a radius

of 6.0 X 10“* cm., a small positive quantity is added. In other words,

increasing the radius of the sphere adds alternately positive and nega-

tive quantities which rapidly decrease in amount with increasing radius.

For a radius of 6.0 X 10”* cm., Eq. (16) becomes

+ (18)

The variations in the second term of Eq. (18) caused by further slight

increases in the radius of the sphere are of the order of 10 to 15 per cent

so that the variations in the calculated indices of refraction are of the

order of one or two in the second decimal place. Using a radius of

6.0 X 10”* cm., we have the following values for C2 in Eq. (14)

:

Calcite;
^

1 . Polarization perpendicular to the plane of the CO 3 group, C2 = 0.847.

2. Polarization parallel to the plane of the COs group, C2 = 1.100.

Aragonite

:

1. Polarization perpendicular to the plane of the COs group (t.e., parallel to the

/ Z-axis and corresponding to the a index of refraction), C2 = 0.874.

2. Polarization parallel to the X-axis and corresponding to the /3 index of refraction,

C2 = 1.118.

3. Polarization parallel to the F-axis and corresponding to the 7 index of refraction,

C2 = 1 .100 .

The corresponding refractive indices are given in Table I. The
agreement between the calculated and observed values is considerably

Table I.—Comparison between Calculated and Observed Indices of Refrac-
tion FOR Calcite and Aragonite

Calculated

Observed

r = 2 . 25A. r = 6 . 00A.

Calcite «= 1.468

1.676

€ = 1.488

« = 1.631

€ = 1.486

« = 1.668

Aragonite a =1.603
i8
= 1.730

7 = 1.730

S “I” 7 = 1.730
2

a = 1.638

i9
= 1.694

7 = 1.680

^ T

2

a = 1.630

/? = 1.681

7 = 1.686

= 1.683
2
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better for the larger radius of the sphere and is clearly within the limit

of error mentioned above. It is to be expected that a further increase

would iron out most of the remaining differences and even make the

calculated value of y larger than that of 0,

INTERIONIC SPACINGS FROM OPTICAL CALCULATIONS

JlU the light of the preceding calculations it is possible to make some
interesting inferences as to interatomic spacings in certain crystals.

For instance, by assuming a succession of values for the distance between

the 0 ions in calcite it is possible to compare the calculated values

of the indices of refraction with the values determined by test. It is more
convenient to f'smpare the values fr»r the ‘Monic birefringence^^ of O—

,

which are found as follows; The ordinary ^^molecular birefringence”

is found as the-difference, ~ iJ., l>etween the molecular refractivity,

for the oidhiary refractix/e index and the corresponding molecular

refractivity, A,,- for the extraordinary refractive index. The expression

for inolecuiar refractivity is given in Eq. (8). The ionic refractivities,

R'J and /?/, of CO3 are found by subtracting the ionic refractivity of

the metal ion from and /?«. Assuming the effect of to be negligi-

ble, this gives the ionic birefringence of 0— as RJ — iJ/. If we assume
that the metal ion contributes about equally to both R^^ and R^, then

RJ — RJ is approximately equal to R^ — 22*.

Table II gives Bragg^s values® for RJ — 22/ for assumed —
O spacings in calcite. The experimental value of RJ — 22*' is 2.94.

It is evident that the C++++ — O distance is between 1.20 and 1.30

X 10“® cm.
;
interpolation gives 1.24® X 10~® cm. From x-ray diffraction

data W. H. Bragg estimated this distance as between 1.24 and 1.34.

Wyckoff, using the Laue method, estimated it^ as being close to 1.24.

This illustration shows the possibilities in using optical data to supple-

ment the ordinary data of x-ray diffraction in determining the structure of

crystals. For instance, NaNOs has the same sort of structure as calcite,’*®

but the molecular birefringence is greater in the ratio of 4.83:2.94.

Table II would seem to indicate that this means that the O ions are

closer together in the NOa^ group than they are in the CO3 group.

W. L. Bragg has made calculations similar to those in Table II for NaNOs

Table II.—Dependence of Ionic Birefringence upon Interionic Distances

d RJ R,'
RJ - R.'

( ~ Rta 22«)

1.00 X 10"* cm. 13.56 6.75 6.80

1.10 12.21 7.48 4.73

1.20 11.33 8.01 3.32

1.30 10.89 8.39 2.60
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using Wasastjema’s value of 0.75 for the ionic refractivity of Na+.

His calculations show that the distance between N+++++ and 0 ions

of a single NOs" group is 1.09 X 10“® cm. This is consistent with the

current pictures of the ionic structure of NOs" and CO3 ,
for the three

O— ions should be more strongly attracted by N+++++ than by C++++.

Similar calculations on the birefringence of AI2O 3 lead Bragg to

assign 1.45 — 1.48 X 10~* cm. as the distance from each 0 ioijf to

the center of the equilateral triangle on which it is situated. This is to

be compared with 1.45 X 10~* cm. as indicated by x-ray diffraction.

It is interesting to note that this gives a packing-radius of 1.04 A. to

0— in agreement with Table XII of Chap. XIII.

SUMMARY

Using calcite and aragonite as examples, we have seen how it is

possible to calculate the indices of refraction of crystals from a knowledge

of the configurations and spacings of atoms (or ions) in crystals. Con-

versely, we can use the index of refraction of a crystal to determine some

of its lattice parameters. This was done by making the assumption

that CaC03 is composed of Ca++, C++‘'"'', and three 0 ,
but without any

further assumptions as to the inner architecture of these ions. Similar

calculations lead to correct lattice parameters for NaN03 ,
and AI2O3.

These calculations are tedious to make, but they place us, as scientists,

one step nearer the goal of building a picture of Nature from which we
can predict all her properties.
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CHAPTER XV

THE CALCULATION OF LATTICE ENERGIES

In Chap. XIV we calculated the optical constants of crystals on the

assumption that we could treat atoms (or ions) as units without reference

to their internal structure. We shall now calculate some of the other

properties of materials on the basis of the simplest possible sort of struc-

ture for the atoms of which they are composed. Having thus obtained a

point of view iu terms tif which we may think of the ultimate source of

these propertity, we are ready point out the path for the more compli-

cated cases and to indicate a short-cut in the path which helps to make
the actual computation less laborious.

It would seom at first sight that the outstanding physical properties

of a substance could be expressed in terms of the forces between its atoms

and in terms of the forces which hold together the atoms themselves.

Actually, our calculations will be in much more usable form if they are

made in terms of energy rather than force. In calculating the potential

energy of an atom it is necessary first to assume a simple structure for

the atom which is consistent with the known facts and then to assume a

law of force between the component parts of the atom. The two assump-

tions to be made may or may not be correct; at any rate they must not

be inconsistent with any known fact. Their ultimate justification must

lie in the degree of accuracy of the predictions which may be made in

consequence of making these particular assumptions. In terms of these

two assumptions and the known configuration of atoms in the crystal,

the potential energy of a metallic ion and of a valence electron may be

calculated. This makes it possible to calculate many properties such

as the compressibility, surface tension, and threshold of the photoelectric

effect. It is the purpose of this chapter to give the basis for the assump-

tions which must be made and to show in detail how some of these

calculations may be carried out.

THE POTENTIAL ENERGY OF AN ATOM IN A CRYSTAL

It is universally accepted that an atom of an element is composed of a

positively charged nucleus which is surrounded by electrons whose num-
ber is such as to neutralize the nuclear charge completely, thus giving a

net electric charge of zero to the atom as a whole. Most of the mass of

the atom resides in its nucleus; for instance, the mass of the nucleus of a

hydrogen atom is 1,846 times as great as the mass of its electron. Most
453
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of the other physical properties of an atom, and all its chemical proper-

ties, are supposed to be caused by the number and configuration of its

electrons. If the electrons are stationary, and if the ordinary inverse-

square law of electrostatics is assumed to hold for intra-atomic distances,

it is easy to calculate that the repulsive force of the electrons against

each other is less than the attractive force between these electrons and the

positive nucleus. This leaves us four alternatives:

1. We must consider the inmost electrons to be in contact with the positive nucleus

and the remainder of the electrons to be nested in close contact in one or more outer

layers, something like the grains of corn in a pop-corn ball.

2. We must arbitrarily assign stich a structure to the nucleus as will produce a

non-uniform field of force in the atom.

3. We must assume a modificatioir of Coulomb’s inverse-square law for small

distances.

4. We must introduce a new repulsive force for the electrons.

The first alternative can hardly be accepted in the light of existing

experimental data. We have already seen that the atoms of the elements

pack in crystals like solid elastic bodies of one shape or another. If

these atoms contained electrons in contact with each other, pop-corn-ball

fashion, the only straight paths through a crystal would lie in those natural

voids which might be inherent in the crystal structure. It is well known
from the work of Geiger^ that a particles from radioactive substances

can travel in straight lines through metal foil. The stopping power of a

pop-corn-ball atom for an a particle would have to depend, therefore,

primarily upon the crystal structure of the element. Actually it seems

to depend^ only upon the square root of the atomic weight. In other

words, the stopping power of an atom depends upon the mass of its

nucleus, not upon the way the atom groups itself with other like atoms

t o form a crystal. This would seem to require an atomic architecture

quite different from the pop-corn-ball type.

The second alternative is to assume a nuclear structure, such that in

certain directions the attractive force of the nucleus on any given electron

will be decreased. If the shape of such a field of force could be so made as

to enable electrons to find positions of stable equilibrium, the problem

would be solved. But as soon as we have admitted that in certain direc-

tions the attractive force between the nucleus and an electron may be

less than that required by Coulomb's law, we are dealing with a special

case of the third possible alternative. We shall therefore pass at once to a

consideration of that alternative.

The most obvious modification of Coulomb's law would be to super-

impose upon the inverse-square law a sine or cosine law with a decrement.

If the decrement were large enough to leave only the inverse-square law

at points outside the atom, the modified law would satisfy the existing

experimental data. A simple modification, and one which lends itself
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more readily to numerical calculation, has been proposed by J. J. Thom-
son® and by I. Langmuir.'* According to their assumption, if, in an

atom of atomic nuipber iV, an electron with a charge e is at a distance r

from a positive nucleus of charge Ne, then the force between them is

f - -
?)

(1)

This gives a law which degenerates into the ordinary inverse-square law

at a distance determined by the value of c.

The fourth alternative is one proposed by Bohr/’ If the electrons are

imagined to rotate in orbits about the positive nucleus, the effect of their

centrifugal forces would be added to the Coulomb repulsive forces between

the various electrons. If the linear ^ elocity of each tilectron in its

orbit is properly adjusted tO th^ radius of its orbit, the centrifugal force

will be just enough to keep the electron from traveling in toward the

nucleus. Definite values are assigned to the radii and therefore to the

velocities of the electrons by additional assumptions which need not be

discussed here.

Since these last two alternatives are both attempts to find forces which

will keep the electrons of an atom from falling in toward the positive

nucleus, it is inevitable that the inverse-cube correction applied to

Coulomb^s law should give the same numerical result as the centrifugal

forces of the Bohr atom. Any refinements to these various theories of

atomic structure can hardly make any very great changes in the sort of

calculations which we are about to make. It is therefore permissible to

make our calculations on the basis of either hypothesis, for the results

from one may be applied quantitatively at once to the other, at least to a

first approximation. Since the calculations are very much easier in the

case of the inverse-cube hypothesis, we shall follow the lead of J. J.

Thomson® and make them on that basis.

For the sake of simplicity we shall limit ourselves at first to univalent

metals, i.c., to those which have only a single valence electron. Although

no element crystallizes in a simple cubic lattice, it is the easiest structure

to visualize. We shall therefore illustrate the method by first calculating

the potential energy of a fictitious univalent metal crystallizing in a simple

cubic lattice. In doing this it will simplify the work to assume at first

that only the Coulqmb inverse-square forces exist. The result so

obtained can then be corrected to include the inverse-cube forces.

For the sake of simplicity, we shall assume that all the electrons of the

atom, except the valence electrons, lie so close to the positive nuclei that

the net effect is the same as though these electrons and the nuclei were

replaced by single positive charges. Our simplified atoms therefore each

consist, in effect, of only a single positive charge and a single valence

electron. Imagine the valence electrons to lie at the comers of a simple



456 CRYSTAL STRUCTURE

cubic lattice, such as is shown in Fig. 1,* and let the positive charges lie

at the body-centers* of these cubes. Then these positive charges will

themselves lie at the corners of a simple cubic lattice. Our fictitious

univalent element will therefore have a simple cubic structure whether

we consider only the valence electrons or whether we consider only the

remainder of the atom. If such a lattice is extended to infinity in all

directions, each electron will be shared equally by eight cubes. Each

simple cube of electrons will contain eight-eighths electrons and will

have a single positive charge at its center. There will therefore be an

average of one valence electron for each of

the positive charges which we have used to

represent the remainder of the univalent

atom. To be sure, no one valence electron

can be said to “belong” to any one partic-

ular atom, but this constitutes no objection

to the model, for such a communal possession

of valence electrons introduces nothing which

is inconsistent with any known physical or

chemical data, f

Our problem is to find the potential energy of such an “atom”
(metallic ion plus its valence electron) iii a simple cubic crystal. This

will be done in two steps, first finding the energy of the valence electron,

then finding that of the metallic ion. The sum of these will be the energy

of the atom. Let us choose the electron 0 of Fig. 1. On the basis of a

purely inverse-square law of force, the potential energy of the electron is

where the summation is taken over all the charges in the crystal. Thom-
son finds that, if the charges associated with each unit-cube in Fig. 1 are

considered together, the summation comes out in the form of a rapidly

converging series. He therefore calculates the various terms of such a

series until they become negligibly small.

It is evident from Fig. 1 that there are eight identically similar cubes

which have the point 0 in common. Each of these has electrons at

three points like A, C, and D, whose distances from 0 are the edge a of

the unit-cube. The coordinates of A are (0,0, p a; of C, (0,1,0) a;

* In connection with his studies of the properties of crystals (see especially p. 1779
of reference 6), Zwicky,® too, is led to assume that the valence electrons of elements
occupy definite positions in the crystal lattice.

t If by some stretch of the imagination we suppose each valence electron to be
tied to one definite metallic ion, even then we would have to consider our fictitious

element as having a simple cubic structure, for the “atoms” would repeat their posi-

tions in space in such a way that, considered as points, they would lie on a simple
cubic lattice.

Fig. 1.—Simple cubic lattice

of valence electrons of a fictitious

univalent element.
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of -P; (1)0)0) 0 . The distance from 0 to 4 may be expressed as

(V0* + 0* + 1“) a. Since only one-eighth of the electron at A belongs
to the cube OABCDEFG, the contribution of A from that cube to the
potential energy of 0 is

Y 1 = 1 ?!

8\\/6*~+"0M-~Tvo 8‘o

A. C, and D, together, then contribute % • e^/a. Similarly the electrons
at the three points B, E, and G contribute

3/ 1 _ _y ^
+ 07® 8^2

4

and the electron at F contributes

V 1 y ^ _JL .1'

: rv« 8\/3 a

The coor^iinates of the positive charge at the center of the cube are

/4i Its contribution to the potential energy of the electron at 0
is therefore

{viHr + i}4r + (M)^)®

= _ _2_ .

Vs o

The whole cube therefore contributes

3

8\/2
2 yj
Vya

and the eight cubes meeting at 0 contribute a potential energy

3

aA2

16

V3/®
-3.53894-

a

to the electron at 0.

There are 24 cubes like DEFGHIJK, The positive nuclei at the

centers of these cubes have as coordinates the successive permutations of

(±H, ±Hy ±H)(i

Each of these nuclei therefore contributes

+ (H)* + (^)*)®

_2_ .?!

to the potential energy of the electron at 0. The electrons at the comers
contribute the following from the cube: DEFGHIJK,
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D: y -...1 > -l.t
8.\Vl* + O’’ + 02;la 8 a

E and G each: H y ^ 1

sVv'i’* + 1* + 0^fa 8\/2 a

F: V-
1 ^ 1

8Wl' + 1' + 1-/}a
~ 8V3 a

H: 1/.... 1 ^\fl
1 e'

8\V22 + 0^ + O';fa
~ 16

‘ a

I and K each: y 1 ' _ ?!

+ 1' + O';fa 8a/5 a

J: y .
1 1 el

8VV2' + 1' + V}a 8VB a

The cube DEFGHIJK therefore contributes a total of — 0.003743eV^

toward the potential energy of the electron at 0. All 24 of these cubes

contribute a total of — 0.0898326Vu*

Table I shows results of similar calculations for 30 types of cubes in

the lattice of the fictitious univalent simple cubic element. It is evident

that for cubes whose centers are not too close to the origin the final results

group themselves into clusters of positive and negative values which

practically cancel each other out up to the fourth decimal place. Limit-

ing ourselves to cubes whose centers are less than 5a from the origin,

we have a total potential* of

(-3.675 + 0.066)- = -3.609-
^ 'a a

on the assumption that only inverse-sejuare forces are present.

The potential energy of the electron due to the inverse-cube forces

will be proportional to i.e,, it will be equal to where k is the

proportionality constant. The reason for introducing the inverse-cube

forces was to decrease the effect of the inverse-square forces. Since the

inverse-square energy is negative in sign, it is evident that k must be

positive. The total potential energy of the electron at 0, Fig. 1, is

therefore

(

3.609

a

* The fourth and fifth columns are carried out to six decimal places because we are

dealing with a multiple of a difference. This is justifiable because the decimal fractions

represent common fractions which are known from solid geometry. Our final answer
is expressed only to three decimal places because of the uncertainty introduced by
using only a small number of cubes.
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If we neglect any effect of temperature, the structure of our fictitious

element will be stable if the quantity in the parentheses is a minimum,

Table I.—Potentials f>F Various Types op Cubes in Lattice op Fictitious

Univalent Element

Type of coordi-

nates of metallic

ion at center of

cube*

Square of

distance from
origin to

center of cube

Number of

equivalent

ctibes of type
listed in

column 1

Potential of

valence elrc-

trons per

cube X o/c2

Potential of

metallic ion

per cube X o/c®

Resultant poten-

tial of all cubes of

type listed in

column 1

H 8 +0.712334 - 1 . 154701 -3.53894 cVa
24 +0.5992SO ~0.603C23 -0.08983 cVo

* 24
!

+0.460283 -0.458831 + 0.03485 eVaW2H 8 +0.386346 -0.384900 +0.01157 eVa
HHH 2^: +0.383747 -0.384900 -0.02767 eV«

4t ^
1 -t-0. 338098 -0.338062 +0.00173 eVa

, 24
1

+0.306269 -0.304997 + 0.00653 eV«
24 +0.280154 -0.280056 +0.00235 e9/a

24 +0.260527 -0.260378 + 0.00368 eVtt

Mi^2 8 +0.231041 -0.230940 + 0.00081 e^/a

24 +0.279760 -0.280056 -0.00710 eVo
48 + 0.260302 -0.260378 -0.00366 cVa
24 +0.244354 -0.244339 + 0.00036 e2/«

48 +0.230959 -0.230940 + 0.00091 eVa

1

48 + 0.219571 -0.219529 + 0.00202 cVo

24 +0.201049
i

-0.201008 + 0.00098 cVo
MiH 24 + 0.201026 -0.201008 + 0.00043 eVo

J'iMi 24 +0.193373 -0.193347 + 0.00062 eVo
24 + 0.180360 -0.1 80334 + 0.00062 eVo

MMi 8 +0.164975 -0.164959 4 0.00013 cVo

MM
I

24 +0.219432 -0.219529 -0.00228 eVo

HH>2 48 -i 0.209613 -0.209657 -0.00211 cVo

M0i 24 + 0.200992 -0.201008 -0.00038 cVa
‘OK 48 +0.193343 -0.193347 -0.00019 eVo

HHH 48 +0.186508 -0.186501 + 0.00034 cVo

24 +0.174754 -0.174741 + 0.00031 eVo
48 +0.174747 -0.174741 + 0.00029 eVo

M0i 48 +0.169648 -0.169638 +0.00048 eVo

M0i ‘OK 48 +0.160656 -0.160644 + 0.00068 cVo
^00'i ‘«K 24 +0.156657 -0.156652 + 0.00012 cVo

* The coordinates of the eight electrons associated with a given metallic ion may be found by adding

successively to these coordinates the fallowing H 02 •

-H, H; “>L H. -H; ^i, -H. -H; -H, -H, -H.
-H,H, H;

z,e,, if the first differential of that quantity is equal to zero

us the equation

3.609 2k

0* a»
”

or
, 3.609
fc=

2
®

. This gives
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The total potential enetgy of the electron at 0, Fig. 1, is therefore

so that

P.E.electron

/ 3.609
,

3.609a\ ,

P.E.electron

3.609 „

2a
^

(2a)

(2)

But 0 was any electron in the crystal of our fictitious element which was
far enough below the surface to be surrounded by all the cubes used in

our calculations. A glance at the coordinates of the centers of these

cubes shows that, in order that our calculations maybe strictly applicable,

the electron must lie at least four atoms below the surface.

We have so far assumed, with Thomson, that the ordinary Coulomb’s
law force was w’eakened by a subtractive inverse-cube term. Equation
(2a) for the potential energy therefore contains two terms, one of which
contains the inverse square of the length of the side of the unit-cube.

Suppose that instead of an inverse-cube term in the force equation we had
used an inverse-nth term. It is easy to show that the constant k would
become

k = 3.609
-c

n — 1

in—2

and Eq. (2) would become

P.E.eleotron (
3.609 3.6090"-^ \

\ a (n —

(3)

which differs from Eq. (2) by a constant factor whose value depends
upon the 'value of n. If therefore our final calculated results differ from
those of experiment, we shall expect that, for any given crystal structure,

they will differ by a constant factor. For the present we shall continue
our calculations on the basis n = 3.

In the original description of the crystal structure of our fictitious

element it was brought out that the positive ions of this element resided
on exactly the same sort of a lattice as the electrons. If we had wished,
we could have drawn Hg. 1 with the lines of the simple cubic framework
passing through the positive ions. This would have given a simple
cubic lattice of positive ions with an electron at the center of each cube.
Then a calculation identical with that which has just been carried out
would have given us the potential energy of a positive ion. But the
total energy of the atom is the sum of the energies of its positive ion
and of its valence electron. Therefore if the single atom of our
fictitious element is at least four atoms below the surface, its energy ia
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P.E.atom = —S.GOOe^/a. In a unit-volume of N atoms the effect of

each atom on every other atom is considered. Each atom is thus counted

twice and contributes effectively — 1.804eVo to the P.E. of the unit-

volume.

Similar calculations have been made by J. J. Thomson and Miss
I. Woodward® for elements which crystallize so that their positive ions

lie on body-centered cubic, face-centered cubic, and diamond cubic

lattices. These calculations apply directly to elements whose positive

ions have a simple type of architecture, i.e,, which resemble the inert

gases. They do not seem to apply to elements whose \ ositive ions have a

more complex structure (such as Cu), and this may nu an that we cannot

apply to such ^^iements Thomson’s simplifying assumption that the

positive ion may be considered ar merely i positive charge concentrated

at a point. As examples of ole^ints whose positive ions resemble the

atoms of the gases we may cite the univalent elements Li, Na, and
K, which crystallize as body-centered cubes; the bivalent element Ca
and the tri valent element Al, which are face-centered cubic; and the

quadrivalent element C, wdiich in the diamond is diamond cubic.

In each case it is necessaiy for the purpose of the calculations to assign

positions in the lattice to the valence electrons. Where two or more sets

of positions are possible, each with the requisite symmetry, it is found that

they all give results of the correct order of magnitude, but that some

one simple configuration of valence electrons gives results that agree

much more closely with the data of experiment than do any of the others.

Such a configuration is naturally chosen as representing the ‘‘correct”

configuration in terms of the static-atom (Lewis-Langmuir) picture of

atomic architecture. As has already been stated, the picture thus

obtained may be expressed later more or less completely in terms of any

other picture of atomic structure if we so desire.

For a univalent body-centered cubic element, such as Na, the positive

ions are, of course, to be thought of as being situated at the points of a

body-centered cubic lattice. This gives eight-eighths-plus-one positive

ions per unit-cube. Since we thus have two positive ions per unit-cube,

we must have two valence electrons per unit-cube. These are pictured

by Thomson as lying along a single body-diagonal of each unit-cube.*

In order to preserve the cubic symmetry of the crystal, these diagonals

are so chosen that “ in a cube built up of eight such small cubes no two of

the diagonals in any four whose centers are in one plane are parallel or

intersect.” These diagonals are shown in Fig. 2. It is a consequence of

this configuration that any two unit-cubes which meet only at one corner

have their valence electrons on parallel body-diagonals. Miss Woodward

* By compressing the metallic ion into a single point charge and by placing the

valence electrons halfway between these point charges, we avoid the difficulties

associated with Turner's calculations referred to in Chap. XIII.
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finds* that the effective energy of an atom of a monovalent element
having such a structure is -2.015e^/a. As before, it is assumed that the

atom is below the surface of the crystal. Since in a body-centered cubic

crystal there are two atoms per unit cube, the potential energy per unit-

crystal is —4.03eVct.

For a univalent face-centered cube the structure is assumed to be
like that of ZnS (Fig. 9 of Chap. V). The positive metallic ions take
the place of the Zn++ and the electrons take the place of the S— . The
effective energy per atom is —2J7^e^/a, Since there are four atoms per

Fig. 2,—Configuration of body-
diagonals on which J. J. Thomson suij-
poses the valence electrons to lie for the
alkali metals.

unit-cube, the potential energy per

unit-cube is —11. 12e-/a.

The structure of a bivalent face-

centered cubic element like Ca is

considered to be like that of CaF2

with the valence electrons occupying

the positions of the F“ (Figs. 10 and
11 of Chap. V). For such a config-

uration, Thomson finds that the

effective energy of an atom is

— 8.92eV«- Since a face-centered

cube contains four atoms, the poten-

tial energy of the unit-cube is

-35.68eVa.
In a trivalent face-centered cubic element like Al, Thomson assumes

two of the valence electrons to lie as in the case of Ca. The third has
the same relation to the A1+++ ion that Cl“ has to Na+ in NaCl. This
gives an effective energy for such an atom of — 14.24eV«- The potential
energy of the unit crystal is therefore — 56.96eVa-

Since a unit-cube of diamond contains eight atoms, it is necessary
to find positions in the unit-cube for 32 valence electrons. Thomson
assumes that one of these is situated at each of the middle points of the
edges of the unit-cube of the diamond, and one at the body-center of the
unit-cube. This gives an NaCl structure between four ions and
four valence electrons and may be considered to break up the unit-cube
into eight smaller cubes. He then puts a valence electron at the center
of each of the faces of these small cubes. Four of the small cubes already
have a C+'^“'‘+ at the body-center. He puts a valence electron at the body-
centers of the other four. Using this rather arbitrary structure f he finds

that it gives an effective energy of — 21.15eVa per atom or — 169.2c
per uhit-cube, provided only that we deal with atoms sufficiently far
below the surface.

* The results are expressed here in somewhat different form from that used by J. J.

Thomson and Miss Woodward.®

t The structure given by the theory of space-groups is discussed in Chap. XIX.
It would probably give results rather similar to those given here.
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Remembering that

e = 4.774 X 10“^® abs. e.s.u. of charge

and that

300 volts = 1 abs. e.s.u. of potential

we may express the potential energy of any unit-crystal in terms of the

number of volts required to give a single electron that same amount of

energy. For a body-centered cube this voltage is

300 X 4.03 X 4.774 X 10^®
(4)

a

where a is, as bqfore, the edge of the unit-cube. This enables us to

calculate the voltages for Li, Na, K, Rb, and Cs from the known values

of a. The a cAv* ff (?f these voltage j for the alkali metals are summarized

in Table II.
*

Table II.—Flectecn Voltage Ookhesponding to Enehgy of Unit-crystal

1

Klernont
a from direct x-ray

data
P.D./e in volts

P.D./c in volts;

using values for a

calculated from the

density

Li 3.50 X 10-»cni. 16.5 16.4

Na 4.30 X 10“8 13.4 13.5

K 5.20 X 10-« 11.1 10.9

Rb* 5.73 X 10-« 10.1 10.2

Cs* 6.16XlO-» 9.3 9.3

* Instead of the lattice parameters found from x-ray data (Chap. XIII) values of a are used which

are calculated from the density on the basis of a body-centered cubic structure. This Rives for Rb
(density 1.632) a parameter a = 6,73 X 10“« cm. instead of 6.62 as found by Simson and Vohsen.

We have, similarly, for Cs (density 1.87) a parameter a * 6.16 X 10~* cm. instead of 6.06 as found by
Simson and Vohsen.

PHYSICAL DATA CALCULATED FROM LATTICE POTENTIALS

Compressibility of Elements.—^The work required to compress a

unit-cube so that its side is decreased from a to (a — 8a) is

Wi = P.E.^^y (5)

where P.E. is the potential energy of the unit-cube. Since there are

1/a® unit-cubes per cubic centimeter, the work of compression per

cubic centimeter is

The change in the volume of a solid while undergoing, compression is

‘ proportional to the pressure applied and to the original volume, so that
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Pressure =

where V is the volume and k is the constant of proportionality and is

called the ^^bulk modulus.” The quantity 1/k is called the “compressi-

bility.” If W is the work done in compressing each cubic centimeter of

material, then the total work for V cc. is

WV — pressure X dV

= 2^-ySV

Then

w -K'
Since

dV „5a

V
= o

—

a

we have

W
=
K")’

Combining Eqs. (6) and (7),

For univalent body-centered cubic materials this becomes

(7)

(8)

fc = I
X 4.03^' (9)

This equation enables us to calculate the values for the bulk modulus k

given in Table III for Li, Na, K, Rb, and Cs.

Table III.

—

Bulk Moduli of the Alkali Metals

Element Calculated Experimental

Li 0.136 X 1012 0.114 X 1012

Na 0.060 X 1012 0.066 X 1012

K 0.028 X 1012 0.032 X 1012

Rb* 0.019 X 1012 0.026 X 1012

Cs* 0.014 X 1012 0.016 X 1012

* See note under Table II.

All these results for the bulk moduli of the alkali metals are compared
in this table with Prof. T. Richard^s experimental values. When it is

remembered that Eq. (9) contains to adjustable constants and that the
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calculations are based on the crude assumption that the positive ion may
be considered as a single positive charge concentrated at a point, the

agreement is quite striking. Similar results for polyvalent elements are

given in Table IV.

Calculations show that the moduli of all the alkali metals are not far

from what they would have been if they had had a simple cubic structure.

This is consistent with the fact that the directive forces which give these

metals a definite crystal structure are rather small. For instance, Li

tends to lose its crystalline characteristics considerably below its melting

Table IV.

—

Bulk Moduli of Polyvalent Elements

Element Calculated Expel imental

Oa
a = 6.5<V X 10~* cm.

. i

^.189 X 1012 0.182 X 10‘»*

\

a * 4.046 X 10 “* cm. 1 .08 X 10‘2 0.78 X 1012*

C
(Diamond)

a = 3.66 X 10-* cm. 6.27 X 1012 6.2 X 10>»t

* Richards,

t Adams.

point. ^ It is not to be expected that other metals will show a similar

freedom from the effect of crystal structure.

Calculations such as we have just made give results for Cu, Ag, and Au
which are much larger than the experimentally determined values.

These are the univalent metals whose positive ions are supposed to bear

no structural resemblance to the atoms of the inert gases. This seems to

indicate that for these metals the positive ion cannot be considered as a

geometrical point in making our calculations. It is as though these

metals had relatively incompressible positive ions. We have already

seen that the ions of the alkali metals pack in the crystals of their halides

as though they were relatively incompressible. But these ionic domains

are much smaller than the domains of the corresponding neutral atoms so

that we may assume that the relatively great compressibility of the alkali

metals is caused by the valence electron being spaced some little distance

from the border of the domain of the positive ion.* A study of models of

crystals makes it easy to assume that this distance is probably relatively

small for the univalent face-centered cubic metals. If this assumption is

correct, it would be necessary to take into account in the calculations the

structure of the positive ion in the case of Cu, Ag, and Au.

* Note that this conclusion is not consistent with the calculations of Turner (Chap.

XIII). The consistency is hardly improved by adopting the language of the Bohr

type of atom.
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A similar situation arises in the case of the alkali halides. Here we
seem to have the domains of two relatively incompressible ions in contact

at absolute zero. At room temperature they are assumed to be not quite

in contact. These salts should therefore have much smaller compressi-

bilities (larger bulk moduli) than can be calculated on the basis of

replacing the actual ions by simple point charges. Unpublished cal-

culations of Miss I. Woodward, taking into account an assumed structure

of the ions, are reported^ to have given fair agreement between the

calculated and experimental values for the alkali halides.

The Photoelectric Effect.—If Wi is the work required to expel an

electron from a unit-crystal, and if 1^2 is the work required to expel a

metallic ion from the unit-crystal, then

P.E. = + W2)

where P.E. is the potential energy of the unit-crystal. Assuming that

Wi is a constant fraction of the total energy,

Wi = a(P.E.) = + W2)

The difference in Wi for sodium and potassium is the contact difference

of potential for these metals. Then from Table II this contact difference

of potential is

a(13.5 - 10.9) = 2.6a = 0.4 volt

This gives

a = 0.15

Therefore the work required to ionize an atom from a unit-crystal of an

alkali metal is

Li 2.46 volts

Na 2.03

K *.... 1.63

Rb 1.53

Cs 1.41

Since these voltages give the minimum energy required for electron

emission, they may be translated by means of the quantum equation to

give the maximum wave length to which these metals will be photoelec-

tric. These calculated results should be slightly in error because the

photoelectric effect is a surface effect, whereas the potential energies of

Table II were calculated only for unit-crystals four or more atoms below

the surface.

It is difficult to determine experimentally what is the longest wave
length to which a given metal is photoelectric because for these limiting

wave lengths the intensity of the photoelectric effect is very small.
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Curves of data on the variation of intensity of the photoelectric effect

with the wave length of the exciting light are available for Li, Na, and K
in the solid state. Of these, the shape of the curves for Li and Na is

given with some detail. Results taken from these curves are compared
in Table V with the results that have been calculated in the foregoing.

That the values from the curve are only approximate is well shown by
the fact that the author's reading for the quantum voltage from the

graph for sodium is 2.03, while Richardson estimates 2.1 volts from the

Table V.

—

Calculated and Experimental Values for Maximum Wave Length
Which Will Produce a PiioTOEiiEcTRic Effect

CaU ilatod mini-
Maximum X for

Maximum Xfor

Element muD voltpge fa

liheiji electron

I

- 1 ...

photoelectric effect,

calctila^cd from

q|if atnm relation

photoelectric effect

from experiment

Ratio

Li 2.46 5,000A. 4,600A. 1.11

Na 2.03 6,100A. 5,600A. 1.11

Table VI.

—

Constancy of Ratio between Calculated Maximum Wave Length
FOR THE Photoelectric Effect and Experimental Wave Length for Maxi-

mum Photoelectric Effect

Element

Calculated mini-

mum voltage to

liberate an electron

Calculated maxi-

mum X for photo-

electric effect

Experimental X for

maximum photo-

electric effect

Ratio

Li 2.46 5,000A. 2,800A. 0.56

Na 2.03 e.iooA. 3,40oA. 0.56

K 1.63 7,600A. 4,400A. 0.58

Rb 1.53 8,100A. 4,800A. 0.59

photoelectric effect and 2.6 volts from the thermionic effect. Data are

easily available®’® on the wave length to which the first four of the alkali

metals show a maximum photoelectric effect. If our voltages as calcu-

lated are at all correct, we might expect them to be a constant fraction

of the quantum voltage corresponding to the maximum photoelectric

effect. That this is so is shown in Table VI.

A USEFUL SHORT-CUT

The calculation of lattice potentials of elements has been gone into

rather thoroughly in the foregoing, using as a basis three assumptions;

(1) that the valence electrons of an element occupy definite positions in

the crystal lattice; (2) that the positive ion of the element may be con-

sidered to be a point charge; (3) that the law of electrostatics between

unlike charges can be modified as in Eq. (1). If the reader has attempted
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to repeat the calculations leading to Tables III and IV, he has been

impressed with their tediousness. If he tries to repeat the calculations

of Miss Woodward on the alkali halides, he will find his task doubly

laborious, for he will need to account for the effect of each of the electrons

in the outmost shell of each kind of ion. This in turn involves assump-

tions as to the internal architecture of these ions.

A great deal of the work of such calculations can be obviated in the

case of alkali halides by assuming (1) that each ion is replaced by a

point charge, and (2) that the combined effect of the positive and negative

charges in each ion can be expressed by replacing Eq. (1) by the

equation^®'^^ ^

F = {Ne)^i - (10)*

where Ne is the charge on an ion, F is the force between adjacent ions

of opposite sign, r is the distance between centers of ions, and n + 1 is

a number of the order of 9, 10, 11, and even up to 15, depending upon

the ion and its state of chemical combination. The energy equation

corresponding to Eq. (10) is, of course,

$=_(Are)^A + | (11)

where 4> is the crystal energy per ^'molecule.^'

Since at equilibrium

j- = 0 and r = ro,
dr

we have

dr
^

^2 + y.n+1

so that

B =
n

Therefore, if the crystal is to be in a stable state, the crystal energy per

molecule must be

V - -^^(l - i) (12)

Ah energy equation of this general sort may be made the starting

point for a number of interesting calculations on chemical stability,

* In Eq. (1) we were dealing with the force between an ion and a single electron

so that the coefficient was (e) (Ne) = Ne^, In Eq. (10) we are dealing with the force

between two ions so that the coefficient must be (Ne) (Ne) — (Ne)\
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magnetic susceptibility, size of atomic and ionic domains, lattice con-

stants, compressibility, cohesive forces,* and a whole host of thermo-

dynamic calculations which belong to a text on thermodynamics rather

than to a text on crystal structure. f Many of the other calculations^*

are best taken up in connection with a detailed study of quantum mechan-
ics, so that they, too, would be beyond the scope of this book.

Although equations of the general type of (10), (11), and (12) are most
often used in connection with the crystals of compounds, it is of course

P'lG. 3.—Inverse power law of inter- Fio. 4.—Modified inverse power
atomic energy with distance. law of interatomic energy with

distance.

possible to use them for metals. This is done by assuming, as was done

at the beginning of this chapter, that the metal is really an ionic compound
in which the negative ions are the valence electrons. In fact, Eq. (1)

may be regarded as a special case of Eq. (10) in which n + 1 = 3. This

does not mean that we must necessarily “believe'^ that the valence elec-

trons of metals actually occupy definite places in the crystal lattice, but

it does mean that, for the sake of making any calculations at all, we
assume them to act as though they occupy definite mean positions.

R. H. Canfield has made some interesting calculations on the stability

of crystal lattices of elements. His assumptions differ from those of

Eqs. (10), (11), and (12) in that he treats the whole atom as a unit

without any separation of the valence electrons. The reader is referred

to the original paper^* for the details of the calculations. The end results

are that, if atomic domains are rigid spheres which attract each other

according to some inverse power of the distance between them, they must
pack to form either face-centered cubic or hexagonal close-packed crystals.

Such an energy law is illustrated in Fig. 3. If on the other hand the

atoms of an element are to pack in body-centered cubic crystals, the

energy law must be modified as shown in Fig. 4.

* Calculations on cohesive forces deal only with p-planes, not with ir-planes or

n-planes (see Chap. XII), and do not therefore check with the results of experiments

on tensile strength.

t A good review of crystal energies of ionic compounds and of their thermodynamic

applications has been published by J. Sherman.“
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SUMMARY

The calculation of each of the properties of a crystal requires, in

general, a knowledge of some or all of the following:

1. The structure of the crystal.

2. The various interatomic (or interionic) distances in the crystal.

3. The details of the mosaic structure.

4. The inner structure of the atoms (or ions) which compose the crystal.

5. A method of calculating the energy of the crystal lattice from items 1 , 2, and 4.

For a given crystal those properties which do not depend upon 3 may
be calculated from a quantitative knowledge of the energy of the crystal.

In a few cases the calculations have been gone into in some detail in

order to emphasize the basis on which such calculations must ultimately

rest. A short-cut in the calculations has been pointed out and refer-

ences have been given by which the reader who has the necessary training

may follow the subject farther. A second type of short-cut has been

pointed out by which certain general results may be obtained without a

knowledge of items 1, 2, or 4.
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CHAPTER XVI

THE DIFFRACTION OF X-RAYS BY AMORPHOUS MATERIALS

In Chap. XII it was shown that the molecules of a liquid are to be

thought of as continually building up crystal nuclei which are in turn

continually torn apart by thermal agitation. It is to be expected then,

that, if a liquid is subjected to a beam of monochromatic x-rays, dif-

fracted beams will be found which correspond to these temporary nuclei.

Similarly, it is, to be expected that the jellies and the glasses, which may
be congiderei^ fol* our purpoi^ . to be undercooled liquids, will contain

structures cf itesponding to crystal nuclei and that they, too, will show

x-ray diffraction effects. In monatomic gases, since each atom acts

almost as an independent entity, it is to be expected that x-rays will be

diffracted because of the internal structure of the atoms. In other words,

all the so-called amorphous states of matter should possess enough

regularity of structure to show some traces of diffraction effects with

x-rays. It will therefore be worth while to take up each of the amorphous

states of matter in turn, from the standpoint of x-ray diffraction.

LIQUIDS

The Cybotactic State,—X-ray diffraction effects in liquids were

known experimentally^’^-^'^’®'®’^’®’® before the existence of temporary

nuclei in liquids was generally recognized. Data are now available for

about 250 liquids. The outstanding experimental facts

to be explained may be summarized as follows:

1. The scattered x-ray beam does not decrease regularly with angle

as would be the case for ordinary light scattered by a fog. Instead it

shows, for a single wave length of x-rays, almost zero intensity except for

one or more broad but distinct bands (called halos ^0; ®^ch of which

falls between definite angular limits. These limits depend upon the

nature of the liquid and upon its temperature.

2. If, for a given wave length of x-rays, the half-angular limits are

substituted for 0 in Bragg's law, values of d are obtained which are of

the correct order of magnitude for the separation of the centers of molecu-

lar domains for the temperature and pressure of the experiment.

3. For the so-called “straight-chain" aliphatic compounds two

halos of difterent intensity are found. They are called the “primary"

* These references by no means exhaust the literature. They are picked so as to

give a convenient picture of the type of data available. In this connection see also

Chap. XIX.
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and the secondary halo. The position of the secondary halo depends

upon the number of carbon atoms in the chain, i.e., upon the length of

the chain. If the half-angular limits are substituted for 0 in Bragg^s

law, the values of d are directly proportional to the number of carbons

per molecule. For a normal paraffin the length of the chain comes out

to be

L = (1.24n + 2.70) X 10-« cm.

where n is the number of carbon atoms. The term 2.70 may be inter-

preted as the sum of the space used by the terminal hydrogens and the

intermolecular spacing. The length associated with each carbon atom
in a paraffin is therefore about 1.24A. Since the distance of closest

approach of carbon atoms in diamond is l.SoA., it is assumed that the

carbons must be arranged in a zigzag or in a spiral.

4. For straight-chain aliphatic compounds the primary, or principal,

halo shows angular limits which are substantially independent of the

number of carbon atoms per molecule. Since item 3 gives a value of d

which has been associated with the length of the molecule, item 4 is

open to the interpretation of relating to the molecular diameter.

5. Items 3 and 4 are consistent with measurements of the molecular

dimensions of saturated normal fatty acids as measured^® by the water-

spreading method in that they show constant molecular diameters and

increasing molecular lengths as the number of carbons in the chain is

increased.

6. The primary and secondary halos for normal saturated fatty

acids in the liquid state give spacings in Bragg's law which are similar

to (but not exactly equal to) those found for the corresponding solids.

7. When branched-chain hydrocarbons are tested, three halos are

found, corresponding to the three characteristic dimensions of a branched

molecule.

8. For branched-chain hydrocarbons, one halo corresponds to an

interplanar spacing greater than that for the principal halo of the straight

chain of the same number of carbons. Another halo corresponds to a d

smaller than for the secondary halo of the straight chain of the same
number of carbons.

9. The half-angular limits of the primary halos, and therefore the

corresponding values of d from Bragg's law, are practically identical

for normal saturated paraffins and their normal alcohols.

If we accept the picture of liquids given in Chap. XII* the explana-

tion of the above facts is simple. We have only to use the ideas of the

powder method of crystal analysis given in Chap. VI. The temporary

crystal nuclei take the place of the fragments of the powdered crystal

* G. W. Stewart has used the word ‘^cybotaxis” (space arrangement) to express

the existence of temporary crystal nuclei in a liquid.
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except that they are many times smaller. This extreme smallness of

size is shown in the rapid decrease in intensity of diffraction as the angle

is increased, so that liquids can show only one, two, or at most three,

spacings. The extreme breadth of the halos might be interpreted as

meaning that the temporary nuclei are so small as not to fulfill completely

the conditions for Bragg's law. The breadth might also be interpreted

as meaning that, even if the temporary nuclei were large enough to

satisfy Bragg's law from the standpoint of dimensions, they would
probably have somewhat variable interplanar spacings because, during

the short time of their existence, they would hardly have time to relieve

the strains and inhomogeneities incident to their rapid growth. The
breadth of tkh halo should depend upon the wave length used and

upon the shape of the diffracting particle. If the particle crystallizes

in the cubic s\^^em and is a <mhe c^'^ntaining unit-cubes each of edge

a, then dhe br^aiith of the hulo iihould bc^®

B . .

2

COS 6\ T / ma

where B = breadth of the halo at half-intensity.

6 = grazing angle of incidence between the x-ray beam and the

diffracting plane of atoms. It is measured as the angle

for maximum intensity of the halo. 20 is the angle of

bending of the x-ray beam and is Laue's Xh-

X = wave length of x-rays used.

For particles crystallizing in other systems or with other shapes the

corresponding formulas are much more difficult of derivation and, in

some cases, apparently impossible.

The intensity of a given halo should depend not only upon the wave

length (and the other quantities, such as angle of diffraction and width

of the halo, which are connected with wave length) but also upon the

temperature.^® If the intensity of a halo is plotted against the angle of

diffraction, the peaks shift toward smaller angles as the temperature is

raised. Such a shift would correspond, in terms of Bragg's law, to an

expansion of the lattices of the temporary nuclei. When a liquid shows

halos corresponding to more than one interplanar spacing, it is found

that all the peaks do not necessarily shift alike. Skinner finds that,

in general, the liquids fall into two classes. For class I a rise in tempera-

ture is accompanied by (a) a decrease in the height of the principal

peak (f.e., a decrease in the intensity of the principal diffracted beam),

and (b) a linear increase in the breadth of the halo. For class II, a rise

in temperature is accompanied by (a) an increase in the height of the

principal peak and (6) a much smaller linear increase in the breadth

of the halo than for class I. The percentage change in peak width per

degree change in temperature is about five times as great for liquids
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of class I as for class II. For both classes of liquids the x-ray scattering

at small angles (i.e.,. between the zero beam and the first halo) increases

as the temperature is raised. This increase is greater for liquids of

class II. There is no abrupt change in the height of the peak at the

boiling point.

Skinner’s data for the peaks are shown in Table I. Prof. J. G.

Aston^® suggests that there is a possibility of a chemical distinction

between the two classes of liquids of Table I, such that molecules of

liquids belonging to class I have only the carbon grouping

—C—C—C—
,

or —C = C—C—

,

whereas those of class II have the grouping

—C—C—C— or —C—C- C—

.

I 1

c o
I 1

The suggestion seems reasonable for two reasons: (1) Higher tempera-

tures by increasing the mobility of the molecules would increase the rate

of collision and therefore would increase the chance of formation of

temporary crystal nuclei. Although the side chains should decrease

the chance of molecules meeting with the correct orientation to form

nuclei, still those nuclei which do happen to form should persist at

higher temperatures due to the extra attachments afforded by the side

chains. (2) Because of the strong three-dimensional effect of the side

chains, x-ray diffraction effects are likely to be stronger in class II

than in the case of class I for temporary nuclei of the same general

dimensions. It might easily be that (1) and (2) together would lead

to an increase in the intensity of diffraction with increase in temperature,

provided the temperatures used do not exceed some limit which should

be characteristic of the substance. If Aston’s suggestion turns out

to be correct, x-ray diffraction effects at different temperatures may be

of considerable use in work on the constitution of fractions from

petroleums.

The Chaotic State.—^We have seen in Chap. XII that the tendency

toward disaggregation in a liquid should increase with rise of tempera-

ture. It is to be expected, then, that for each liquid substance there

must be a temperature above which temporary crystal nuclei will persist

for only extremely short times. The net effect should be, as far as x-ray

diffraction is concerned, the same as if the concentration of temporary

nuclei were greatly decreased. Any possible diffraction effect from the

non-nuclear portion of the liquid would therefore become of relatively

greater importance. It is interesting to note, therefore, that, theoreti-

cally, diffraction effects are to be expected from that portion of a liquid

which happens at a given instant to be non-nuclear.
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Kinetic theory indicates that the distribution of the molecules in any
small volume of a liquid cannot be absolutely uniform as in the case of a
perfect crystal. The density of matter in the liquid must fluctuate from

Table I.—Effect of Change of Temperature on Diffraction from Liquids

Liquid Class
Temper-
ature

di

(Second-

ary peak)

di

(Prin-

cipal

peak)

d.

Percentage change
in intensity of peak

di di di

Mesitylene II 23® C A. 6.0oA. 3 . 96A. + 18.0 -42.3
1.54 6.93 3.96

4-Hydroxyl 1.3 dimetb; 1 benzene II 2C ?4.f 5.10 3.86 +80.0 + 6.1 -30.0
13.6 .5.75 3.82

2-Hydroxyl 1.4diroet^*i benzene n i w 17.1 5.76 3.79 + 12.7 -37.8
200 6.17 3.92

Naphthalene II 80 5.17 + 4.7

210 5.76

Phenol 11 43 12.7 4.73 o00eo1 + 2.8

180 12.7 4.92

I 26 4.64 - 1.1

80 4.80

Cyclohexane I 28 5.08 -14.0
80 5.24

Di-n-propyl carbinol II 24 10.2 4.87 4.35 - 6.7 + 18.9

153 10.2 4.87

Heptylic acid 1 28 17.7 4.64 + 18.5 -12.2
193 18.5 4.80

Tertiary butyl alcohol II 27 8.51 4.80 -37.7 + 9.8

80 8.88 4.90

Lauryl alcohol I 27 22.7 4..54 - 2.4 - 5.6

140 24.0 4.80

Octane I 27 4.54 HIHI
120 4.70

2.7 Dimethyl octane* I 27 4.75 -10.3

150 5.17

2.2.4 Trimethyl pentane II 27 5.67 + 0.5

92 5.91

* This seems, according to Skinner’s published data, to be an exception to the generalization made
in the text.

place to place, and the character of the distribution will be influenced by
thermal agitation and other factors. If we were dealing with the

scattering of visible light, we could, because the wave lengths are large in
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comparison with the sizes of molecular domains, confine our attention to

the total quantity of matter present in volumes which are too small to be

observed under the microscope but which are big enough to contain a

large number of molecules. For purposes of discussion, let this small

volume be a cube whose edge is L. Then, if po is the average density of

the liquid, the density in any small region such as the cube under consider-

ation will be

P = Po + A

where A is the fluctuation in density. The work done in compressing

the fluid in the small volume so that its density is increased by A is

( 1 )

where is the isothermal compressibility of the liquid. Equating this to

RT/2N, we have for the mean square of the fluctuation in density

A2 = po^
RTp
NL^ (2)

where R is the gas constant, T the absolute temperature, and N the

Avogadro constant.*

The very mechanism postulated by the kinetic theory would require

that a condition of abnormal density must move from place to place in

the liquid as a sort of irregular wave of compression or rarefaction. It is,

therefore, not too much of a stretch of the imagination to picture a liquid

as being continuously traversed by irregular waves which resemble

high-frequency sound waves. As a convenient mathematical device^^

these may be resolved by a Fourier analysis into a set of fictitious plane

sound waves of different wave lengths. Assuming equipartition of

energy, A of Eq. (1) may then be replaced by its equivalent,

A = „ cos cos cos (3)

where I, m, and n are positive integers, and where x, y, and z are coordi-

nates of any point lying within the volume L®, f.e., 0<x<L,0<y<L,
0 < z < L. The potential energy in the sound wave whose amplitude is

Bi m n, integrated over the volume L®, is

P.E.
1

16 PO* ^
(4)

Applying the Boltzmann principle to a *'wave^' of amplitude Bimn, we
have for the thermodynamic probability of the average work,

• A will be positive as often as negative.
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where C is a constailu.

In the foregoing application of the Fourier analysis it was tacitly

assumed that, except for the fluctuations in density due to temperature,

the liquid could be regarded as a uniform continuum. In dealing with the

scattering of x-rays by a liquid this assumption no longer holds, for the

diameters of the molecular domains are of the same order of magnitude

as the wave lengths of the x-rays. The Fourier analysis must therefore

be applied to the determination of the actual distribution of matter in

the liquid. The result of the analysis will depend on the manner in

which the mol^ ales (or rather the total of the electrons composing the

molecules) are d ispersed in space. Since we are dealing with liquids at

such temperatiiife^ that temp(A'y crystal nuclei exist for only negligible

lengths of tinM:,lwe must expect to find a continuous distribution of inter-

moleculai fpscings with a most probable spacing equal, or nearly equal,

to the moan distance between the centers of adjacent molecular domains.

The following discussion amU show that this expectation is justified.

Imagine® in the liquid a cube the length of whose edge is normally

ao. If at any instant it is distended or compressed into a cube of edge ai,

the work done is

where is, as before, the isothermal compressibility of the liquid. Actu-

ally the thermal agitation might cause the cube to change shape as well

as to change volume. For simplicity we shall assume that the angles

always remain right angles, so that the original cube may be distorted

into a rectangular parallelepiped whose three edges may be either longer

or shorter than ao. There is only one chance in eight that the length of

all the edges would all be greater (or all less) than Oo. The average work

corresponding to a change in the length of an edge from Uq to ai may
therefore be taken as

and its thermodynamic probability in accordance with the Boltzmann

principle is

(8)

* This gives for the mean square of the amplitude,

1^ _.RTp

Since A* — HRimm reduces to Eq. (2).
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where A is a constant. If a\ is taken to represent a ''wave length'' in the

Fourier analysis of the distribution of matter in the liquid, Eq. (8) is the

formula for the "distribution of intensity in the structural spectrum."^

Equation (8) gives a peak at the wave length ai = Uo and the intensity

falls oS rapidly on either side of the peak.* In other words, we now
identify the length Uo of our hypothetical structural cube with the most

probable distance between the centers of adjacent molecular domains.

If n is the number of molecules per cubic centimeter, then Uo must be

proportional to 1/^n, t.c., ao = The value of the constant k

will depend upon the temperature, pressure, and shape of the molecular

domain. Raman and Ramanathan® find that it ranges from 0.8 to 1.0.

We have now arrived at the Qonclusion that at any instant most of the

molecules are pretty regularly spaced after all. The only physical differ-

ence between the chaotic state in a liquid and the cybotactic state appears

to be that (1) in the chaotic state the molecules have a random orienta-

tion, whereas in the cybotactic state the orientation forces are nearly as

strong as in a true crystal, and (2) in the chaotic state the intermolecular

spacings may be expected to be a little larger than in the cybotactic

state. It is a consequence of (1) that in the chaotic state there is only

a single length which has any great significance in x-ray diffraction,

whereas in the cybotactic state two or even three lengths may be signifi-

cant. The transition from the cybotactic to the chaotic state with rise

in temperature is brought out in Table I which shows two cases in which

a liquid loses a diffraction peak in going from room temperature to

higher temperatures.

Since we have assumed equipartition of energy in all the foregoing, it

follows that all the structural "waves" in the liquid have the same
amplitude. The intensity of x-rays diffracted by a liquid at various

angles, 26 ^and therefore, from Bragg's law, from a spacing d =

will depend only upon the probability of the existence of that spacing

in the liquid. The equation for the intensity of the halo diffracted from

a chaotic liquid will therefore resemble in form Eq. (8) and may be

written,®

.
2 -g)i} (9)

where ai is given by Bragg's law as nX = 2ai siu 6. It should be noted
* This may be interpreted to mean that wc are now dealing with real periodicities

in the distribution of matter and not merely with fictitious mathematical periodicities

as in the discussion of Eq. (5). These structural waves pass through the fluid in all

directions, and we might write instead of Eq. (8) a more appropriate equation,

where B is another constant and dU is the elementary solid angle.
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that the efficiency of diffraction will diminish so markedly with the angle,

20, of bending of the x-rays, that the order of diffraction n is unity for

most experiments.

Figure 1 compares Eq. (9) with the experimental data of Hewlett®

on the scattering of x-rays by benzene.* The similarity of form for the

theoretical and experimental curves, together with the fact that only one

peak was found experimentally, makes it lock as though a large fraction

Flu. .1. CofP.mriflon of Eo. ^9) v/ith experimental data from benzene. Broken line,

Eq. (9) ; solid line, Hewlett’s data.

of the benzene in Hewlett's experiments at 26°C. was in the chaotic state.

This is not surprising when it is remembered that 26°C. is, on the absolute

scale, of the way up to the boiling point and a little over half the way
to its critical point.

GELS AND GLASSES

Gels.—X-ray diffraction effects in gels correspond in a general way
to those in liquids, except that in the case of gels the results are com-

plicated by the fact that fibers may be produced by stretching. This

fibering action is shown by the fact that the halo produced by the stretched

gel is no longer uniform in intensity around its circumference. Instead,

the halo tends to concentrate itself in spots or arcs. These arcs have, of

course, the same radius of curvature as the original halo. The intensity

of the arcs is greater than that of the original halo, and the intensity in

the spaces between the arcs is less than that in the original halo. From
the location of the arcs, certain conclusions can be drawn as to the

orientation of the fibers, using the technique of Chap. XVII.

t

A study of the particle-size of the micellse of a gel may be attempted

in terms of the width of its halo. The photographic record of the halo is

photometered (or the readings of an ionization chamber are taken) and

* Hewlett's data for benzene have been confirmed by Skinner. Equation (9)

could have been matched just as well against the principal peak of any of the sub-

stances listed in Table I by merely using a different value of ao.

t Many interesting examples of x-ray diffraction in gels may be found in Applied

X-Rays,” by G. L. Clark (McGraw-Hill Book Company, Inc., 2d ed., 1932). To
repeat them here would be beyond the purpose of this book as stated in the preface.
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expressed by a graph in which intensity is plotted against distance across

the halo. The V width” is measured on this graph as the distance

between the two ordinates (one on each side of the peak) whose height

is half that of the peak. This half-width is then inserted in some equa-

tion22.23, 24, 26 , 26,27, 28,29 ^hich gives the particle-size, provided certain

conditions are satisfied. Since very few investigators have made any

effort to meet all these experimental conditions in the case of a gel, their

choice of an equation would seem to a casual observer to have been often

rather an act of faith. Probably in most cases for gels, most of the

formulas would give results somewhere around the correct order of

magnitude.* X-ray results on the size of micellae should always be

accompanied by a statement of the formula used and of the extent to

which its conditions have been fulfilled. The direct study of gels by
x-rays is, then, confined to (1) the fibering effect, (2) a measurement of

the diameter and half-width of the halo or halos, and (3) such calculations

of the size of micellae as the optimism of the investigator happens to

permit.

In isolated cases the study of the fibering effect in gels and related

materials can be made to yield valuable results. It has been useful in a

study of cotton. Rubber is especially interesting in this connection.

Although it can hardly be called a true gel, since it has not been shown

to be a two-phase system, yet it resembles a true gel in its action toward

x-rays in that it gives distinct halos. Because of the great extensibility

of rubber, these halos lend themselves readily to a study of the fibering

effect. A detailed r6sum6 of one such study will be worth while here

as an example of the indirect uses which can be made of x-ray diffraction

effects.

It has been shown^^ that, when rubber is subjected at room tem-

perature to a standard stretching cycle such as is shown in Table II, the

fibering does not take place instantaneously but that there is a time lag

(see graph A of Fig. 2) between the act of stretching and the completion

of fibering. Obviously the structure of rubber must be such as to account

for this time lag. Of the various structures that have been proposed

from time to time, only two seemed to be suitable: (a) a random distribu-

tion of tangled molecules (or molecular complexes), and (b) long molecular

complexes (so-called “beta'' rubber) coiled like rattlesnakes with

* In the case of solid particles of colloidal size, these various formulas involve one

or more of the following assumptions: uniform particle-size; distribution of particle-

sizes according to some assumed law; some assumed external shape of particles; some
assumed degree of opacity to x-rays; a truly crystalline state of the particles without

strains or flaws; some particular crystal system (usually the cubic system). Appar-

ently most of the published results on solids depending upon the use of some one of the

formulas are open to the suspicion that the assumptions have not been met. Excep-

tion must be made in the few cases where the results have been checked by some
other means.*®
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alpha rubber (shorter complexes) filling in the vacant spaces.

Additional work was therefore done®® on the effect of possible variables

on the time lag in the hope of finding data which would lead to a single

Table II.

—

Stretching Cycles for Experiments on Fiberino of Rubber

Condition of sample

Duration of portion

of cycle, seconds

i.e,f portion of cycle
Standard

cycle

Special

cycle

Stretched f510%^ 5. 3 5.0

Relaxing.

.

Relaxed . . .

.

0.5 0.5

0.5 3.2

Stretching .

.

0 5 0.5
- —

i

Rubber was ’ '4^ -^nized only for the necessary toughness and contained only a

: ii\inim.m amount of inorganic material; composition: pale crepe, 90.0 parts; mineral

rubb^^i, 3.0 »arts; sulphur, 1.5 parts; accelerator, 0.5 part; anti-oxidant, 1.0 part;

zinc oxide, 2.5 parts.

picture. The results found, and their interpretation in terms of pictures

(a) and (6), are as follows:

1. The effect of temperature was found to be small up to 30°C. (see

graphs AjByCjDjE of Fig. 2). At 35°C. the standard cyclic stretching

of Table II produced almost no fibering (see graph F of Fig. 2). An

Shutter
Open

€A
(IB

®C
• 0

F

A «7nci( B ®

Fig. 2.—Time lag of fibering at different temperatures. A, Temperature, 16®C.

Time of relaxation, 0.6 sec. B, Temperature, 15°t3. Time of relaxation, 2.0 sec. C.

Temperature, 25°C. Time of relaxation, 0.6 sec. D. Temperature, 27®C. Time of

relaxation, 0.6 sec. E, Temperature, 30®C. Time of relaxation, 0.6 sec. F. Temper-
ature, 35°C. Time of relaxation, 0.6 sec.

effort was then made to fix the non-fibering state at room temperature by

heating the rubber rapidly to '65°C., stretching it 610 per cent, keeping it

at 55®C. for a few minutes (long times were avoided to prevent chemical

changes), chilling it rapidly to room temperature, and then immediately

subjecting it to the standard stretching cycle of Table II. The specimen

acted at room temperature as though no heat treatment had been
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attempted. This must mean that the physical nature of the rubber had

not been fundamentally altered by heating, but that at 55°C. the heat

vibrations merely prevented that extreme degree of alignment necessary

for an x-ray fiber pattern. This tempts us at once to imagine the

stretched rubber as a collection of stretched elastic strings. Heating

would tend to make the strings vibrate transversely. Because of the

different degrees of loading and tension of these vibrating strings by
the other molecules (or fibers) around them, no two strings would have

the same period of vibration. As soon as the tendency for these strings

to vibrate out of phase with each other becomes greater than the tend-

ency of the cohesive forces to produce substantially perfect alignment of

parallel strings, the fiber pattern should disappear. As soon as the

rubber is cooled to the point where this tendency becomes less than the

sideways forces associated with alignment, the fibering should again

predominate. This must mean in terms of picture (a) that the ends of

the tangled molecules are not loosened from their anchorages by a tem-

perature of 55°C., otherwise the tangles would disappear permanently

with heating. In terms of picture (6) we must assume that heating does

not destroy the elastic properties of the spirals.

2. It was found that if specimens were given the standard stretching

cycle for about four weeks, the time lag disappeared. Specimens were

therefore used for only two weeks each. Some of these samples were kept

in a box, free from light, for a year and were then once more put on the

standard stretching cycle. They acted exactly like fresh samples, except

that they required a somewhat higher percentage of stretch. Similar

unused samples kept in similar fashion for the same length of time

showed no change whatever. It was as though the combination of age

and stretching history had produced some change such as oxidation.

In terms of picture (a), if a considerable number of molecules should'

undergo such a change, it is possible that their shape would be altered in

such a fashion that they could no longer slide over each other so easily and

that they would thus resist the fibering process. If picture (6) is adopted,

we assume that the chemical change must distort the long ‘^beta^^ spirals

so that they are more resistant to stretching.

3. It was found that the rubber was completely relaxed in less than

0.5 sec., so that the tangling process must be very rapid. According to

(a), this would mean that the ends pulled from the tangle in the direction

of the force must snap back into the tangle when the stretching force is

released. This requires a mechanism for producing the force which

causes the return of the stretched molecule (or fiber) to the tangle.

Such mechanism is implied in the picture of the tangle itself. Each
molecule (or fiber) must have other molecules (or fibers) looped about it

in random fashion. Some of these loops will have a direction roughly

perpendicular to the axis of the mblecule (or fiber) under consideration.
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The applied force would straighten out the molecules (or fibers) which
happen to be parallel to the force, but this very process would produce a
tension in the loops which are roughly perpendicular to the molecules

(or fibers) which have been pulled out straight. When the applied force

is released, this sideways pull would snap the lined-up molecules (or

fibers) back into the tangle. Obviously this process could take place

rapidly. In terms of picture (6) the coils must have a random orienta-

tion. The applied force would tend to straighten out those spirals of

^'beta’’ rubber which happen to be correctly oriented. In this picture

the force which resists the stretching lies entirely vithin the molecule

itself, while in (a) the restoring force is furnished largely by the inter-

12 3 4
Seconds

Fig. 3.—Effect of rate of stretch upon the time lag of fibering. Curve A, standard rate of

stretch; curve B, slow rate of stretch.

action of several molecules (or fibers). According to (6), relaxation

would result in the collapse of the long spiral ‘^beta^^ molecules (or

fibers). This could be a rapid process, limited only by the damping

effect of the so-called alpha rubber.

4. No difference could be found in the time lag of fibering whether the

rubber was held stretched for 2 sec. (standard cycle of Table II) or for

5 sec. (special cycle of Table II). This result is equally consistent with

both the (a) and (6) pictures.

5. When the time for the stretching part of the cycle was increased,

it was found that the apparent time lag was greatly decreased as shown

in Fig. 3. This probably means that a considerable part of the fibering

took place continuously during the time of the slow stretching so that,

by the time the stretching portion of the cycle was completed, most of

the fibering had occurred.

If the data are to be explained in terms of picture (a), we must

assume that stretching pulls out molecules (or molecular complexes)



484 CRYSTAL STRUCTURE

from the tangle and aligns them in the direction of stretch. For a slow

rate of stretching,* the lining-up and the untangling process are about

complete at the end of the stretching process. Expressed in terms of

the mechanism given under item 3, the stretching out of the loose ends

of the molecules (or complexes) and the straightening out in the tangle

have both taken place when the maximum stretch is reached. For the

rapid rate of stretching, the untangling process does not occur until after

the maximum stretch. The loose ends are aligned by this time, but the

untangling has not taken place. We may assume that these loose ends

are overstretched and that this excess strain is relieved by the untangling

process after the over-all stretching is completed. According to this

picture, we cannot expect fibering until after the untangling has occurred.

The effect of the rate of stretching may also be explained in terms of

picture (6). In this case, fibering would consist of two processes: first,

the stretching out of the ^^beta^' molecules (or complexes); and, second,

the expulsion of the alpha molecules (or complexes). For a slow rate

of stretching, these two processes could occur simultaneously. As a

result, the fiber pattern would show up strongly just at the end of the

stretching process. The rapid stretching would allow the ^^beta”

rubber to be stretched out first, and this would then be followed by the

expulsion of the alpha rubber. Such a picture is able to explain the

time lag and its change with the rate of stretching. The chief difficulty

is that it does not explain what sort of a process the ^
^ alpha rubber must

go through so that it interferes with the fibering before expulsion and

does not do so after expulsion—it does not provide a place for the “ alpha

rubber to go. The tangle picture is not open to this objection for it

allows the “ alpha and ^‘beta'^ (less and more polymerized) rubber to

act alike.

Apparently, neither picture (a) nor picture (6) alone can explain easily

and directly the whole behavior of rubber toward the time lag of fibering.

If it were not for the high extensibility of rubber, the data would seem to

point to the tangle type of picture, for such a picture does not require

a place where the “alpha'' rubber may go without interfering with the

fibering. On the other hand, it is hard to imagine stretching something

resembling a tangled piece of string before the untangling operation has

commenced. This difficulty may be avoided if we assume rubber to be

a tangle of spiral molecules, much as is shown in Fig. 4a. This would

make it possible to overstretch the untangled ends of a molecule (Fig. 46)

and have the overstretched ends relax as the tangle is pulled out (Fig. 4c).

The fibering is evidently in the direction of the applied force and will

occur only for those fibers whose ends are aligned pretty much in the

direction of that force. We may assume that, when the tangle is

stretched, the tangle is not completely unraveled; the other molecules

will still be looped around those molecules which take part in the fibering.
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These other molecules will also have their spirals stretched out but will

have no opportunity to align themselves accurately so that they can

not contribute to the fiber structure.* They do, however, make possible

the forces necessary to reestablish the tangle after the external forces of

stretching are removed. It is assumed of course that the loose ends

align themselves rapidly, but that straightening out the tangle requires

more time. Such a picture is equivalent to combining picture (a) with

a part of picture (6), but it avoids the complications incident to dis-

tinguishing between “ alpha and ^‘beta^^ rubber and it avoids the poor

Fig. 4.—Idealized structure of rubber for (a) the relaxed state, (6) immediately after

stretching, (c) at the end of the time lag.

mechanics of stretching straight strings by over 500 per cent. There will

be, therefore, both intermolecular and intramolecular forces brought

into play in the stretching and fibering processes. By retaining the

coiled-spring structure this combined picture not only explains the

time-lag data but is consistent with the spiral structure found by Hauser*^

from a detailed consideration of the arcs of the fiber pattern. We might

express our picture of the structure of rubber in more general language by
saying that rubber appears to be an aperiodic network of coiled (or

zigzag) molecular complexes which, by stretching, can be made periodic

in the direction of the stretch.

It will be noted that the foregoing discussion differs from previous

discussions in this book in that the conclusions do not follow directly

from x-ray data. In this case the x-ray data serve to put severe restric-

* If they could so contribute, we should have fibering in three dimensions, i.e., a

crystal.
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tions at every step of an argument which is based primarily on the

mechanical and time-lag properties of rubber, so that by indirect use of

x-ray diffraction data we have arrived at a reasonable, unambiguous

result.

Glasses.—The glasses offer another instance where x-ray diffraction

halos may be used to limit a discussion based largely on other con-

siderations. Glasses really come under the classification of undercooled

liquids. It is not surprising, then, that they show the halos characteristic

of liquids. Only when they devitrify do their diffraction patterns take

on the characteristics which we have learned to associate with crystals.

{h)

Fig. 6 .—(a) Two-dimensional analog of a crystal of A2B9. (b) Two-dimensional analog of a
glass of A2B3. {Zachariasen,)

The presence of the halo, or halos, indicates clearly that for a given glass

there are one or more characteristic ranges of atomic or molecular

spacings. The absence of a true crystal diffraction pattern indicates such

a lack of periodicity of structure that we may assume that no two atoms
are structurally equivalent. At the same time we must remember that

the same type of physical and chemical forces must be present inside

(and between) the molecules in a glass that are present after the glass has

devitrified and has assumed the crystalline state.

Zachariasen has proposed^® a type of structure for the glasses which
meets these conditions. He assumes that (1) the individual molecules

(or ions) composing the glass are identical with those in the corresponding

crystalline material, (2) the individual molecules (or ions) are arranged
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together in a network which is just irregular enough to prevept any
atom from being equivalent to any other atom, and (3) this aperiodic

network is intimately related to the periodic network of the crystalline

state* This may be illustrated in two dimensions for a fictitious sub-

stance A2B3 by means of Fig. 5a and 6. In Fig. 5o, each A is adjacent

to two B^s in such a way that the B — A — B angle is 120°. The net-

work is periodic, i.e., it reproduces itself m terms of a fundamental unit

of structure. Figure 56 shows how the same B — A — B angles can be
built up into an aperiodic network such as Zachariasen postulates for

the corresponding glass. Of course, in ficiual glasses the network would
have to be in three dimensions.

Since mo«' ordinary simple glasses are oxides, we may take up further

details in tetL 'S of oxides alone. The changes in wording for other simple

glasses vvill b( obvious. .tl^ analysis shows that in all crystalline

oxides AmO ^ he oxygens ma> be (bought of as lying at the corners of

po!yhedra with the at,oma of A at the centers of the polyhedra. In

tviiiis o Zachariasen’s third assumption, these same polyhedra should

persist in the vitreous state. The necessary three-dimensional linking

could be effected by the sharing of corners between different polyhedra.

The energy of the network would depend (1) upon the nature of the poly-

hedra of oxygen, and (2) upon the way in which the polyhedra are linked

together. We may use silica as a concrete example. In low quartz the

elbow-shaped molecules of Si02 (Chap. VI) are so arranged as to place

each silicon at the center of what is practically a tetrahedron of oxygens.

The relative orientation of two ^^tetrahedra^' with a common corner will

be the same throughout the entire crystal. Not only is the angle of the

elbow constant for the Si02 molecules, but the angle between adjacent

elbows of Si02 will be identical throughout the crystal. In vitreous silica

the angle of the elbows remains constant, but the elbows themselves will

no longer make identical angles with each other. In fact the angles

between adjacent elbows may vary within rather wide limits. Obviously

the energy of the configuration of molecules in vitreous silica cannot be

much greater than that of crystal quartz. Otherwise for molecules of

such simple shape the rate of devitrification would be appreciable and

it would not be possible to seal two pieces of silica tubing together in

the oxyhydrogen flame without serious crystallization.

Only certain types of oxides can form aperiodic networks of only

slightly higher energy content than the correspofiding crystals. For

instance, the two-dimensional analogue of a fictitious crystal of AO is

shown in Fig. 6. Each oxygen is symmetrically surrounded by three A's,

and each A is symmetrically surrounded by three oxygens. No two-

dimensional glass of AO can be formed therefore which does not have

a much higher energy content and such a rapid devitrification rate that

for practical purposes we may say that the glass cannot exist. Similar
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studies in three dimensions have led Zachariasen to propose the following

four rules for finding whether or not a given oxide can exist in the form

of a stable glass: (1) an oxygen atom must not be linked to more than

two atoms of A; (2) the number of oxygen atoms surrounding atoms of A
must be sihall; (3) the oxygen polyhedra must share corners with each

other, not edges or faces; (4) at least three corners in

each oxygen polyhedron must be shared. Oxides of

the type A2O and AO do not satisfy these requirements

under any conditions. Requirements (1), (3), and (4)

are satisfied (a) by A2O3, if the oxygens form triangles

around each atom of A; (6) by AO 2 and A2O 6 ,
if the

Fig. 6.—Two- oxygens form tetrahedra around each atom of A; (c)

dimensional analog by AOs, A2O7, and AO4, if the oxygens form octahedra

(ZcwfeaW^en.)^ around each atom of A. There remains rule (2) to

be satisfied. This means that we must find a limit for

the number of oxygens surrounding each atom of A. Since there seems

to be no evidence of any vitreous oxide of the type AO3, A2O7, or AO4,

it is assumed that only oxygen triangles and tetrahedra agree with

rule (2). An exhaustive study of the simple oxides shows that, with this

interpretation of rule (2), it can be predicted which simple oxides can

exist in the vitreous state and which can exist only in the crystalline

state.*

These rules are a direct result of a line of reasoning which is limited

and bounded at every step by the necessity of maintaining a definite

interatomic spacing in an aperiodic structure, and this limitation is

imposed by the x-ray diffraction halos of glasses. This indirect use of

x-ray data guides us to a picture of the structure of glasses which is

consistent with their known properties. For instance:

1. The inotropic character of glass follows as a consequence of the absence of

symmetry in the network. The atomic arrangement is statistically the same in all

directions unless external fields of sufficient intensity are present.

2. The lack of a definite melting point follows as a consequence of the different

energy required to detach each atom in an aperiodic network.

3. The lack of a definite, simple, chemical formula for a polyoxidc glass follows as a
consequence of the aperiodic network which offers no opportunity for chemical com-
pounds in the ordinary sense of the word.

4. The transparency of glasses follows from the extended three-dimensional

aperiodic networks just as the transparency of the corresponding crystals follows from
their extended three-dimensional periodic networks.

The hypothesis of an aperiodic network in an undercooled liquid,

such as a glass, is remarkably similar to the hypothesis of the cybotactic

* For polyoxide glasses, Zachariasen proposes the following rules: An oxide glass

may be formed, (1) if the sample contains a high percentage of cations which are sur-

rounded by oxygen triangles or by oxygen tetrahedra, (2) if these triangles or tetra-

hedra share only corners with each other, (3). if some oxygen atoms are linked to only

two such cations and do not form further bonds with any other cations.’’
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state in real liquids and lends further support, to the pictures of the nature
of liquids and of the mechanism of crystal growth given in Chap. XIII.

GASES

We have taken up x-ray diffraction effects in amorphous materials
caused by temporary nuclei in liquids and by the networks which are
assumed to exist in gels. There remains the effect of the structure of

the atoms themselves on the scattering of x-rays. This effect can be
studied without the complication introduced by closely adjacent atoms
by studying the x-ray scattering efffects of the atoms of the inert gases.

Such a study has been made by A. H. Compton®® who has set up equations
for the scattering of a single wave length of x-rays by helium. He has

Fio. 7.—Scattering of monochromatic x-rays by an atom of an inert gas.

applied his equations to the experimental work of C. S. Barrett®^ and
finds that the curve so obtained agrees well with the theoretical curve
calculated by L. Pauling®® from wave mechanics. The following is

adapted from Compton’s published article,®® using the same symbols for

purposes of easy reference. The reader will be interested to compare
portions of this discussion with that given in Chap. IX for the scattering

effect of individual atoms (or ions) in crystals.

Even if we were unwilling to accept the physicist’s picture of electrons

spinning about an atomic nucleus, and if we insisted upon confining

ourselves to the chemist’s static-atom picture, we should still be compelled
to express the following discussion in terms of random positions of the
electrons in their respective orbits,” for there is no a priori reason to

suppose that the atoms of an inert gas have anything but random orienta-

tion with respect to one another. We shall therefore use as a starting
point an atom containing Z electrons whose distances from the nucleus
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are, respectively, ri, ra, ra, . . . ,
r, and whose angular distribution with

reference to the nucleus is absolutely random. In Fig. 7 let 0 be the

nucleus of such an atom, and let represent the position at some instant

of the nth electron in its orbit as it spins about the axis OQ of the atom.

Then the line 6nO, joining the electron with the nucleus, makes an angle

an with the axis OQ, Let an x-ray beam of wave length X pass in the

direction of OX. The portion of the beam which hits the electron Bn

will set it into forced vibration and will cause it to send out scattered

waves. Let us confine ourselves to some one direction in these scattered

waves, say the direction of OP and CrJP' which make an angle
<t>

with

the direction of the incident beam. If, now, the nucleus 0 had been an

electron the scattered wave which it sent out would have had, at some

arbitrary point P on the line OP, an electric vector whose amplitude we
shall call Ae and whose phase angle we shall call 6. Then the electric

vector at P', due to x-rays scattered by the electron Cn, will be

\X

where 2rn cos an sin
^

is the total difference in path between the ray

scattered from Cn and the ray scattered from 0.* Representing

47rrn . <l>

^
cos an sin

2

by Xn, we may write Eq. (10) in the form

^2rn cos an sin (10)Er = Ae COS< 5

En = Ae COS (8 — Xn)

The total electric vector due to all the electrons in the atom is

(11 )

E = ^En = Ae^ COS (5 - Xn) (12)

1 1

We shall choose our starting point for the measurement of time so that

8 = 2Trvt = pt

where p is the phase frequency of the incident wave.

Equation (12) gives for the electric vector at the instant ty

•Since the plane containing e» and Q is perpendicular to OQ at Q, we have
from Huygens^ principle that the phase of the wave scattered from e» to the plane
PP' will be the same as if the electron were at Q. But the distance to the plane

PP' from Q is greater than that from 0 bjTthe distance AOB.
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z

E = CO^ {pt — Xn)

1

z

= A^^ (cos pt cos Xn + sin pt sin Xn) (13)
1

Since the intensity of the scattered wave at this instant is proportional

to the square of its amplitude we may write, using h as the proportionality

constant,

li = hAe^\^ (cos pt cos Xn + sin pt si i Xn) r (14)

V?hen Eq. (14) s averaged over u complete cycle from < = 0 to ^ = 27r/p,

all the terms in * he summation f'isappear except those of the form

cos Xm cos Xn + Sill Xm Sin Xn

Thf averi'jje intensity for the whole cycle is therefore

z

= }^ibAe^%m%n(oos Xnt COS Xn + sin Xm sin Xn) (15)
1 1

as long as we maintain the orientation a.

For a single electron Eq. (15) becomes

le = HhA,^ (16)*

so that Eq. (15) may be written

z z

la =
1 1

We must now average this intensity over all possible angles an. The

probability that any a will lie between a and a + da is, for random

orientation, 3^^ sin ada. We may express Xn [see Eq. (11)] briefly by

Zn COS an, whcrc z = sin Similarly we may express Xm by Zm cos am.

Using these values for Xm and Xn, we have from Eq. (17)

* For unpolarized x-rays,*®

where I =* intensity of the primary beam traversing the electron.

e = charge on the electron.

m — mass of the electron,

c = velocity of light.

R ~ distance OP in Fig. 7.
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z z

{Zm COS am) COS {Zn COS ttn)

1 1

+ sin (2m cos am) sin {Zn cos an)] sin am sin andamdctn .

Z )

+ XM[cos 2 cos an) + sin^ (zn cos an)] sin andan r (18)

Equation (18) must now be integrated over all values of am and an,

giving for electrons arranged at fixed distances ri, r2 , rs, . . . ,
from the

nucleus, arid with random orientation about the nucleus,

1 1

We are now ready to take up for a moment the special case of the

helium atom. We assume, provisionally, that the helium atom has two
electrons outside its nucleus, that they are both at the same distance,

r = a, from the center, i.e., that we have a Bohr type of atom, and that

they both have random orientation. We may write Eq. (19) in the form

z z
sin Zm sinIr

<? = — 1 4_
(20)

For helium Eq. (20) becomes

s - 1

+

(fi^y
(21)

The solid line of Fig. 8 shows a graph of Eq. (21). For purposes of com-

s

Fig. 8.—Relative scattering per electron for an atom of two electrons. Solid line,
both electrons at radius a and random orientation; broken line, electrons at opposite ends
of diaipeter 2a. {Compton.)

parison the scattering by two electrons at opposite ends of a diameter 2a
is shown by the dashed line according to the equation^**

S
sin 2za

2Za (22)
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Going back once more to the general case, the probability that

any one electron will lie between r and r + dr is proportional to dr and to

some function of r which we shall call u{r). This probability may, then,

be expressed by u{r) dr. If this probability is the same for every elec-

tron, then, [see Eq. (19)],

/ z z

di. = IAz + XX
V 1 1

sin krm sin kr,

kh-„rn
u(r„)u(rn)dr„dr,I (23)

where

(24)

8inc^ we have a sumed that u(;rn,) is the same for all electrons, the integral

of Eq. (22) nujy he written;

/. == T,Z + LXXn.^Jj^n{r) (26)

in which a is the maximi.m radius of the atom.
z z

Since X2^^^1 — Zf we may write Eq. (26) in the form:
1 1

I. = LZ + 7.(Z» - Z)^£uir) (26)

The relative scattering per electron is therefore

S . - 1 + (Z - 1){X-„W (27)

liquation (19) gave the intensity of x-rays scattered by the electrons

of an atom on the assumption that the electrons were always at fixed

distances from the nucleus (Bohr type of atom). Equation (27) gives

the corresponding intensity for the case of a continuous radial

distribution. *

Since we have assumed in the derivation of Eq. (27) that the electrons

have a spherically symmetrical distribution about the nucleus, we may
use a Fourier sine or cosine series to express the probability that an

electron will lie between r and r + dr. We may therefore substitute in

Eq. (27) the following :t

* Equation (26) indicates that 7, is always at least as large as ItZ, since the second

term is always positive. Similarly, S in Eq. (27) is always greater than unity. This

is not so, however, for the S of Eq. (22) which represents^* the case of electrons at a

fixed distance 2a from each other.

t This same sort of series was used in Chap. X except that it was at that time

expressed as a cosine series.
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/ \ A • ""r
,

. . 2irr .

u(r) = ^1 sin Ai sin 1-•.CL CL
+ An Sin^ (28)

where a is an assumed maximum radius. This gives

(29)

We now have to evaluate the constants represented by An- This may
be done by the following scheme. In the summation of terms in Eq. (29)

all the integrals except the nth vanish if fc = n7r/a, i.e., by Eq. (24), if

nX = 2(2a) sin
^

(30)

where a is the assumed maximUm radius (radius of the ^Hrue^' atomic

domain). This gives

= l + (31)

SO that

5 = 1 + sin (fcr) dr

By using successive values of n we can determine each of the coefficients

Aif A 2 f
Az, . - An of Eq. (28) and thus find a value for u(r). The

value assumed for a is quite arbitrary. If it is made larger, then

the successive values of k become smaller and the series approaches

the Fourier integral

u{r) = B sin {Trx)dx (33)

in which

4 sm
^

x = - = —r— [see Eq. (30)] (34)
CL A

and

B ^ A^ = 2wXa^^ -- 1

If, instead of finding the most probable position of a single electron, we
wish to find the probable number of electrons between r and r + dvy

we may multiply Eq. (28) by Z, the number of electrons per atom, thus:

U{r) = Zuix) = ZrVA. sin— (36)*
CL

1

* This equation may be compared with the corre ponding equation for crystals as

follows:

Imagine a probability curve in which the average linear density of electrons at a
distance z from the middle of an atomic layer in the crystal is plotted against z. Let
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or, instead, we may multiply Eq. (33) by Z, thus:

U{r) = Z u{r) = ZrJ B sin {rrx)dx (37)

The foregoing derivation started out with the assumption that we
were dealing with monatomic gases. We are now ready to compare

our equations with the results of experiment. Helium and hydrogen

the peak of the probability curve be at a height P. Then, if there are U dr electrons

between r and dr, they will contribute to P,

dP — U dr u{z) (o)

V here u{z) is the probability that each of these electrons is it a height z from the

middle of the atoviic layer. In the discussion of the method of trial and error in

Caap. X it was ^ own that u(z) » l/2r for electrons distributed at random on the

surface of a sphere so that

-2i
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both have two electrons per molecule, but in the case of hydrogen we

may assume that’ they are far enough apart to act independently of

each other, i.e., to give a scattering which is practically just twice the

scattering of an isolated electron. Any difference in the amount of

scattered x-rays between that found

for H2 and that found for He would

be accounted for on the basis of

interference phenomena between the

two electrons of the He atom. For

Ha, then, of Eq. (27), z.e., the

relative scattering per electron, is

unity. For He the value of in

Eq. (27) will be the factor by which

must be multiplied to equal

C. S. Barrett has published®^ data on

the scattering of Ha and He at 20°,

30°, 40°, 60°, and at still larger angles
Fig. 9.-Soiid lino, rdative scatter- to the incident X-ray beam. At

ing by He; circles are Barrett s data. 1.011 1

Broken line, calculated scattering by angles of 60 and above, the scattering
Bohr type of He atoms. {Compton.) and He was identical so that

for these angles is unity. At 40°, Sho is 1.025; at 30° it is 1.08; at 20°

it is 1.26. We must find some way of telling what the results

would be at still smaller angles. This is done®® as follows: At very small

angles from the incident beam we may assume that the phase difference

Fig. 10 .—Solid line, B vs. x curve. Dotted line, vs. x curves. The circles represent
Barrett’s data.

between the beams scattered by the two electrons will be negligibly

small. Equation (27) indicates that, at 0°, Sne = 2. For small values

of scattering angle the phase differences will be small quantities of the first

order of smallness^ but the differences in amplitude, which are proper-
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tional to the cosines of these phase differences,* will depend only upon
quantities of the second order of smallness. The curve must there-

fore, according to theory, leave the coordinate (angle = 0®) in a

direction practically perpendicular to the coordinate for an atom
of finite extent. Adding this information to that of Barrett, we can
draw a pretty accurate curve of vs. angle of scattering. In order

to fit in with the equations more conveniently. Fig. 9 is plotted by Comp-
ton as vs. X [see Eq. (34) for definition of x],'\

Equation (35) enables us to transform Fig. 9 into the B vs. x curve

shown by the solid line of Fig. 10. Values of B irom this curve are

necessary in arriving at values for f/(r) in Eq. (37) An extrapolation

of the solid lin^ of Fig. 10 would make B gradually approach zero for

liiirge values of r. Trial shows ^hat the final value of U{r) is not much
affected by the «(xact shape. ^ extrapolated portion of the curve,

as long as it decreases slowly a*id continuously. The extrapolated por-

tion Ls so (»bvious!y like a portion of an exponential curve that we may
write for t lat portion

B = [x > xi] (38)

where Xi is the value of x at the junction of the solid and the extrapolated

portions of the curve. In order that the two portions may join and be

continuous, we have two conditions to meet, namely.

b = (40)

Having now the values of B for various values of x we can substitute

in Eq. (37) and find C/(r), the probable number of electrons at a radius

r from the center of the atom. This means that we must evaluate the

integral B sin {Trrx)dx in Eq. (37). For convenience of reference let

us call this integral 4>. It can be separated into two parts: one, 4>i,

dealing with the solid part of the curve; and the other, 4>2, dealing with

the extrapolated part of the curve.

* Find the maximum value of in Eq. (13) for small values of Xn- This maximum
is unaffected by Xn but is reduced by terms containing Xn*.

t The dotted line of Fig. O^shows the intensity of scattered rays from helium cal-

culated from Eq. (21). (It is the same curve as the solid line of Fig. 8.) The differ-

ences between the solid and the dotted lines of Fig. 9 are greater than the probable

experimental error. Apparently the only way to reconcile the data with a Bohr

atom would be to assume that the differences were due to (a) lack of complete mono-
chromatism of Barrptt's x-rays and (6) the presence of the Compton effect.
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(41)

(42)

J
f*Xl

^
B sin {Trrx)dx

$2=1 B sin (Trx)dx
Jxi

$1 may be found graphically by plotting B sin (irrx) for various values

of r (see the dotted lines in Fig. 10) and integrating with a planimeter.

$2 may be found by substituting Eq. (38) in Eq. (42) and integrating.

This gives

n a sin (vrxi) + Tt cos (rrxi)
$2 = -oi o—i—

in which, from Fig. 10, Xi = 3, J5i = 2.36 and a = 0.46. Compton^s
final values of $i and $2 and of

t/(r) - ZrC B sin {irrx)dx

are given in Table III.

Table III.—Compton's Calculated Values of U(r) for Various Values of r

r $2
1

= 4*1 -f- ^2 C/(r) = Zr4>

0.126A. 6.76 1.64 7.39 1.86

0.25 8.16 -0.42 7.74 3.87

0.6 3.14 -0.36 2.79 2.79

1.0 0.86 -0.70 0.16 0.32

UCr)

We are now ready to plot U (r) vs. r, thus getting a plot of the probable

electron distribution in the heliufti atom. Such a plot is shown by the

solid line in Fig. 11. This plot is in excellent agreement with the distribu-

tion calculated by Pauling^* from wave
mechanics in spite of the fact that there

are no arbitrary constants by which the

two plots might be fitted^' together.

We are therefore tempted to assume, not

the definite electron orbits of Bohr, but

the ‘‘probable distribution” of orbital

radii of wave mechanics.

SUMMARY

Fig. 11.—Radial electron dis- We have taken up the X-ray diffrac-

ni“ Brotek Uno.** Pauling” ejects in ^orphous materials. We
calculation from wave mechanics, have found confirmation for our ideas of
a -radiuB of Bohr orbits. temporary nuclei (Chap. XII) in the

diffraction halos from liquids, and we have seen some little evidence

that these temporary nuclei become less and less important as
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the temperature is raised above the melting point. We have learned

that, even when a liquid is considerably above its melting point, there is a

most probable spajclng between molecules for which the peak of the

probability curve is rather sharp.

We have discussed the sort of information which may be obtained

by the indirect application of x-ray diffraction data in gels and glasses.

Finally, we have discussed the diffraction effect in gases due to the

most probable distribution of electrons in the atv)ms themselves and have
found that, at least in the simplest cases, we can arrive at some fairly

definite ideas of atomic structure.
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CHAPTER XVII

THE ORIENTATION OF CRYSTALS

In many cases the industrial usefulness of a given specimen of metal

depends not only on the way in which its atoms are arranged in crystals

but also on the dimensions and the orientations of those crystals. Most
crystal dimensions of metallurgical importance can be found with the aid

of the micros 'ope. The order of magnitude of the dimensions of the

smallest cryat *! fragments can sometimes be found from x-ray studies,

using etiuati'iD ? similar to thiae referred to in Chap. *

There remair\s, then, the deteuninaiion of the orientations of individual

crystals atid of the distributicii of orientations in a group of crystals.

ORIENTATION OF SINGLE CRYSTALS

Optical Methods.—When the faces of a single crystal are well formed,

all that is necessary, of course, is to mount the crystal in a goniometer

and to determine the angles between the faces in the usual way. From
these measurements, and from a knowledge of the crystal structure

of the material, the orientation can be calculated directly.

When single crystals are grown from the melt in cylindrical or conical

molds, the crystal faces are all concealed by the shape of the mold. If

such a crystal is carefully machined to a cylindrical shape and etched,

the crystal faces disclose their presence by a change in luster as the crystal

is rotated. This is because what appears to be a smoothly etched surface

is really a series of ultramicroscopic steps caused by preferential etching

along definite crystallographic directions. Such an etched cylindrical

crystal can be mounted in an ordinary goniometer so that when the

cylinder is rotated about its own axis the prolongation of the axis of the

goniometer always lies in the surface of the cylinder. The collimating

telescope and the observation telescope are then set at less than 90®

to each other and both are trained on the same element of surface of the

cylindrical specimen. The crystal is thus illuminated by a pencil of

light of known direction. The crystal is then rotated about its own axis

until the velvet-like luster is seen in the observation telescope. This

means that the crystal is now in such an orientation that the ‘‘steps''

on the etched portion are able to reflect the incident beam into the

telescope. The normal to the reflecting planes must therefore bisect

the angle bet^ween the incident and reflected beams, so that the orientation

of the reflecting steps is known. The reflecting line on the crystal is

marked with a spot of ink and the crystal is rotated until another refleo

601
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tion is found, and so on for a complete rotation of the crystal. The
observation telescope is then moved to catch a sharper angle of reflection

and the foregoing procedure is repeated. All the elements of surface

previously marked should show reflecting planes at the same relative

orientations as before, and there is the possibility of finding new reflecting

planes whose steps are at such an angle that during the first trial the

reflections were blocked out. If necessary, the cylindrical crystal is

then given a new axis of rotation and the above procedure is repeated,

but in many cases the data from the first set-up will be sufficient. The
orientation of the crystal is then determined in terms of the known
crystal structure of the material and the reflection data.

X-ray Methods, a. Monochromatic Method ,—In cases where optical

methods cannot be used, it is necessary to use x-ray methods to determine

the axes of a single crystal. There are in general two types of x-ray

methods; The first uses some known single wave length. The second

uses white'' x-rays. The monochromatic method was developed by
the author® to determine the orientations of single crystals of copper.

It has the advantage that crystals may be used of any thickness or of

any opacity to the x-rays. It has the disadvantage that it gives only the

orientation at the surface. This disadvantage may be turned into an

advantage (at the expense of some little labor) by etching the surface off

layer by layer and determining the orientation of each new surface.

Such a procedure enables the investigator to follow changes in orientation

due to thermal gradients occurring during the growth of the crystal, etc.

The crystal c is mounted on an oscillating table represented by the plane

of the paper in Fig. 1, so that the axis of oscillation lies in some face of

the crystal and coincides with some zone axis of the crystal (found by
trial and error, if necessary). Mounted on the edge of this same oscil-

lating table is a strip of photographic film /, bent into an arc of a circle
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whose center is on the axis of oscillation. Just off the oscillating table

is a stationary strip of photographic film The x-ray beam is made
monochromatic by filtering as in the case of the powder method (Chap. VI).

The crystal is now adjusted on the oscillating table so that at the end
of each oscillation the incident x-ray beam just grazes the face of the

crystal. The photographic record of this undeviated beam thus forms a

reference point a on film/and a reference point b on/', so that the orienta-

tion of the crystal may be expressed in terms of its zero position. The
oscillating table is now made to move back and forth by some suitable

mechanism over an angle such as to permit diffraction from such planes

of the crystal may cross at the axis of oscillation.* The stationary

film/' record.^ 'he upper half of a rotation pattern (see Chap. VII). But
for every line, such as h' or /', there mast be a corresponding line a' on

film/ whose ]io> ition is dotermi* by the angle through which the crystal

was turned it the instant dif/ractiou occurred. This angle will be the

difference boiweea the angles subtended from c by the arcs 65' and aa' of

Fig. 16,

<{)= <l>

I

- <#>2 (1 )

Since the structure of the crystal is already known from previous studies,

the film /' discloses the indices of the diffracting planes passing through

the zone axis, i.e., passing through the axis of oscillation. The film /
discloses the orientation of each of these planes. In the general case the

crystal is then remounted so that some other zone axis coincides with the

axis of oscillation, and a second pair of photographic films is used as in

the foregoing. A study of these two pairs of films is sufficient to deter-

mine the orientation of the single crystal. The details of such a study

are given here briefly for ready reference.

The zero beam will always produce an image on the film /' at the

point 6. Since, however, the film /' records the upper half of a rotation

diagram, we cannot assume that a given diffracted beam will lie in the

plane ebb' of Fig. 1. In the general case it will make an angle x with the

plane ebb'. This is brought out in Fig. 2, which shows, in perspective,

the stationary film/' and a diffracted beam cB'.f

In order to express the orientation of the crystal we must know the

angles 2d, </>i, 02, and B'bb', We must therefore find a way to express

these angles in terms of distances which we can measure on the films /
and/' or on the apparatus itself. This may be done as follows:^® Pass a

plane through bB tangent to the cylindrical stationary film/'. The plane

* Planes cannot be used which make too great an angle with the face of the crystal

since they offer too much absorption to the x-rays.

t The line c6' shows where the diffracted beam would have gone if we had had the

simple conditions of Fig. 1 with all the diffracted beams in the plane of the oscillating

table and with = 2$,
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of the oscillating table, which cuts the filmf in the arc bh', cuts the tan-

gent plane in the straight line bh”. The diffracted beam cB' hits the

tangent plane at B”, and the projection ch' of the diffracted beam on the

plane of the oscillating table hits the tangent plane at h”. The angle

Fig. 2.—The stationary film (/' of Fig. 1) shown in perspective. The piano of the paper
in Fig. 1 is shown here as the plane chh'. The film /' forms a cylindrical surface perpen-
dicular to the plane ebb' with cc' as the axis of the cylindrical surface.

a' = is the measure of the cylindrical angle a = B'hb',

therefore for the stationary film /',

^ B^V BV
tan X =

^ hb' W
cb' cb

tan a = tan B'bb' =
sm 01

We have

(2)

(3)

(4)*

* From Fig. 2, since B'6' and are both perpendicular to the plane of the

oscillating table.

4. / B'V'
tan (o)

tan0i=-^ (6)

tan X =
(c)

cb" -
COS 01

(<0

Substituting (d) in (c):
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Similarly, for the oscillating film / we have

Besides, we have

tan X =

<l>2 =

c5i'

feifci'

cbi

bibi'

cbi cbi

cos 2d = cos X cos 01

(5)

(6)

(7)

We are therefore in a positioii to express the orientation of the single

crystal in terms of quantities which can be measured readily and directly,

provided only that we have succeeded in pairing off the spots on / and /'

correctly. In some cases this can be done directly because of some
peculiarity in ^e appearance of the spots. In other cases we must look

for identical values of tan % from Eqs. (2) and (6). In all cases we must
be sure that the final pairing of spots is consistent with a single orientation

of the known structure for the crystal under examination. If desired,

the orientation of the various planes may then be plotted^® on a stereo-

graphic net (see technique described later on in this chapter), so that the

orientations of the principal planes may be read off at a glance. In most

cases for single crystals, however, it is sufficient to mark the significant

crystallographic directions on the crystal itself.

It should be noted that the monochromatic method offers a very

sensitive test for the perfection of a crystal surface. A relatively small

amount of strain will almost wipe out the spots in the oscillating film /,

without interfering with the clarity of the spots on the stationary film

Even in the case of a rigid material like quartz the distortions on the

surface due to polishing were sufficient, in one specimen examined by the

author, to wipe out the oscillating pattern entirely. It was restored by
etching the polished surface with hydrofluoric acid.

b. White” X-ray Method,
—^This type of x-ray method for deter-

mining the orientation of single crystals follows the general scheme of the

Laue method of crystal analysis (Chap. IV). The ‘‘white" x-rays are

passed through the crystal, and the Laue pattern is obtained. If a large

number of crystals are to be examined, it is probably most convenient to

make a standard set of Laue patterns for known orientations and then

determine the unknown orientation by comparison. Such standard

patterns for body-centered and face-centered cubic crystals have been

tanx

Substituting (&) and (e) in (a);

tan a'

N' cos 01
cb

tan X • cb
• tan Of t Xcos 4> ' CO • tan

tan X _ tan x
cos ^1 tan ipi sin

(«)

(4)
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published by Majima and Togino^^ for a systematic set of orientations,

with 5° intervals up to 45° for the X-axis and similar 5° intervals up to

45° for the F-axis. Interpolation to 1° should not be difficult. If only

a limited number of crystals are to be examined, it is probably easiest

to make successive trial settings of the crystal in order to get finally a zone

axis (preferably a principal axis) parallel to the x-ray beam. The
gnomonic rotation net (Figs. 15 and 16 of Chap. IV) may be used to

reduce the number of settings, and the gnomonic projection itself will

show by its symmetry when a zone axis is exactly parallel to the x-ray

beam.

PREFERRED ORIENTATION OF POLYCRYSTAL MATERIAL

When metals are subjected to mechanical working, such as rolling, the

individual crystals tend to break up into smaller crystals. This breaking

up is accompanied by motions of rotation such that most of the crystal

fragments fall into a system or systems of preferred orientations which

bear definite angular relations to the surface of the specimen. In rolled

metals the crystals may orient themselves with respect to the axis of

the rolls or to the rolling direction or both. Since we must deal with a

large number of crystals of varying orientation, Bragg's law requires the

use of a known single wave length. Since we must determine orientations

with respect to three dimensions, we must use a pinhole-slit system so as

to get a sharp pencil of x-rays. Our problem is, then, twofold: (a) we
must adapt the technique of the powder method (Chap. VI) to the

determination of the angular limits of the preferred orientations and to

the determination of the degree of preferment between these limits, and

(b) we must find a way of expressing the experimental results in usable

form. We shall take up each of these in turn.

DETERMINATION OF PREFERRED ORIENTATION AND DEGREE OF
PREFERMENT

If a specimen of metal is mounted as in Fig. 3, it will diffract x-rays

to the upper portion of the photographic film F, The lower portion of

Fiq. 3.—Diffraction of x-rays from rolled metal.

the film will be shadowed by the specimen and, except in the case of thin
foils, will show no diffraction pattern. If the crystals of the metal are
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small enough in size and have random orientations, the diffraction

pattern will consist of smooth continuous rings whose limits will be set

only by the shadow of the specimen. If the crystals are somewhat
larger, the rings will not be smooth but will be made up of small spots

(each spot representing diffraction from a single crystal) uniformly

distributed over the ring. If, however, the crystals are not randomly

oriented, the rings will not be uniform in intensity from point to point

along their lengths. Each ring will tend to concentrate itself in spots or

arcs. These arcs have, of course, the same radius of curvature that the

original ring would have had. The intensity of th^ arcs is greater than

the intensity which the ring would have had, and (the intensity in the

spaces betweeB the arcs is less than the intensity which the ring would

X

Fig. 4.—Diagram for Bozorth’s calculations of preferred orientation (x-rays transmitted

through specimen).

have had. In favorable cases the intensity between the arcs drops to

practically zero. The higher the degree of preferment of orientation, the

shorter will be the arcs. When the arcs are so short as to be only spots,

the monochromatic pinhole pattern may be interpreted easily by a

geometrical calculation based on the angular relationships of the planes

in the crystal and the spots on the diffraction pattern. An example of

this is the work of Bozorth^^ preferred orientations of crystals of

electrodeposited metals. The specimens of metal which he investigated

were so thin that he passed the x-ray beam through the body of the

specimen as shown in Fig. 4. (The interpretation of the following in

terms of Fig. 3 will be obvious.) The x-ray beam TX cuts the sample

at 0 and hits the photographic film P at O'. OF is the normal to the

surface of the specimen on the side from which the x-ray beam emerges.

ON is the normal to some family of planes which diffracts the beam to

O. The reference line O'/S lies in the plane of P and in the plane O'OF
and is drawn on the side of 00' opposite to OF. Then

cos a = cos sin ^ + sin cos 6 cos d (8)
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The value of 6 is known from the crystal structure and the wave length

of the x-rays, and ^ is measured on the photographic film. jS can best be
found from

tan iS =^ (9)

where 00' is calculated from the measured distances O'O and from the

values of 6 calculated from Bragg’s law, and where O'S is the distance

from O' to the edge of the shadow cast by the specimen.

The crystallographic plane (hkl) which coincides with the specimen
surface is determined with the aid of a chart and a table. The chart is

constructed for the chosen value of

A different chart is required for

each angle of inclination of the foil

to the x-ray beam. For some arbi-

trary value of a a curve is drawn
giving 6 as a function of 6. In this

curve, 8 is plotted in azimuth and 6

is plotted radially so that a line of

constant 0 is a circle of radius 00'

tan 26, (Such a circle represents the

Hull-Debye-Scherrer ring produced
by x-rays diffracted from crystal

planes inclined at an angle 6 to the
incident beam.) The chart is com-
pleted by drawing 8 versus 6 curves
for other values of a. Values of a

are taken 10® apart to facilitate interpolation. Figures 5, 6, and 7 show
such charts for /3 = 25®, /3 = 50®, and = 75®. In using them, they
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should be copied at such a size that 00' is equal to the distance in the

actual experiment from the sample to the photographic film. After the

Table I.—Angles bet^stben Various Planes op Simple Indices in the Cubic
System

(hkl) (hkl) Values of a, the angle between (h k 1) and (hkl)

100 100 0° 0' 90° 0'

1 10 46° 0' 90° 0'

1 1

1

64° 44'

210 26° 34' 63° 26' boO
211 35° 16' 66° 64'

221 48° 11' 70° 32'

310 18° 26' 71° 34' 90° 0'

311 26° 14' 72° 27'

320 33° 41' 66° 19' 90° 0'

32-^ 36° 43' 67° 42' 74° 30'

no 1 li>' 0° 0' 60° 0' 90° 0'

111 36° 16' Qt-« 0'

210 18° 26' 6i'° 46' 71° 34'

21 1 30° 0' 44 73° 13' 90° 0'

19° 28' 46° 0' 70° 22' 90° 0'

3*10 26° 34' 47° 62' 03° 26' 77° 6'

311 31° 29' 64° 46' 90° 0'

320 11° 19' 63° 68' 60° 54' 78° 41'

;

321 19° 6' 40° 64' 55° 28' 67° 48' 79° 6'

1 1

1

1 1

1

0° 0' 70° 32'

210 39° 14' 75° 2'

211 19° 28' 61° 52' 90° 0'

221 15° 41' 64° 44' 78° 64'

310 43° 6' 68° 36'

311 29° 30' 68° 31' 79° 68'

320 61° 17' 71° 19'

321 22° 12' 61° 63' 72° 1' 90° 0'

210 210 0° 0' 36° 62' 63° 8' 66° 26' 78° 28' 90° 0'

211 24° 6' 43° 6' 6° 47' 79° 29' 90° 0'

221 26° 34' 41° 49' 63° 24' 63° 26' 72° 39' 90° 0'

3 10 8° 8' 68° 3' 46° 0' 64° 64' 73° 34'

311 19° 17' 47° 36' 66° 8' 82° 16'

320 7° 7' 29° 46' 41° 56' 60° 15' 68° 9' 76° 38' 82° 63'

321 17° 1' 33° 13' 63° 18' 61° 26' 70° 13' 83° 8' 90° 0'

211 211 0° 0' 33° 33' 48° 11' 60° 0' 70° 32' 80° 24'

221 17° 43' 36° 16' 47° 7' 66° 64' 74° 12' 82° 12'

310 26° 21' 49° 48' 68° 56' 76° 2' 82° 35'

311 19° 8' 42° 24' 60° 30' 76° 46' 90° 0'

320 26° 9' 37° 37' 66° 33' 63° 6' 83° 30'

321 1

f 10° 64' 29° 12' 40° 12' 49° 6' 66° 66'

1 70° 64' 77° 24' 83° 44' 90° 0'

221 R HESEflH 27° 16' 38° 67' 63° 37' 83° 37' 90° 0'

32° 31' 42° 27' 68° 12' 66° 4' 83° 67'
26° 14' 46° 17' 69° 60' 72° 27' 84° 14'

22° 24' 42° 18' 49° 40' 68° 18' 79° 21' 84° 42'

B

1

f 11° 29' 27° 1' 36° 42' 47° 41' 63° 33' 74° 30'

\ 79° 44' 84° 63'

310 0° 0' 26° 61' 36° 62' 63° 8' 72° 33' 84° 16'

^KB 17° 33' 40° 17' 67° 36' 79° 1' 90° 0'

i^B 16° 16' 37° 62' 52° 8' 74° 45' 84° 68'

Bfl f 21° 37' 32° 19' 40° 29' 47° 28' 63° 44' 69° 32'

{ 66° 0' 76° 19'^ 86° 9' 90° 0'

311 311 0° 0' 36° 6' 60° 29' 62° 68' 84° 47'

320 23° 6' 41° 11' 64° 10' 66° 17' 76° 28' 86° 12'

321 14° 46' 36° 19' 49° 62' 61° 6' 71° 12' 80° 44'

320 320 0° 0' 22° 37' 46° 11' 62° 31' 67° 23' 72° 6' 90° 0'

321 f 16° 30' 27° 11' 35° 23' 48° 9' 63° 37' 68° 46' 63° 36'

\ 92° 46' 77° 9' 86° 46'

321 321 f
0°0' 21° 47' 31° 0' 38° 13' 44° 26' 60° 0' 60° 0'

1 64“ 37' 69° 4' 73“ 24' 81° 47' 85° 64'

chart has been enlarged to the proper size, the photographic film is

placed over it and the proper value of a is read off for each “spot” on
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each diffraction ring. A table is now written up, giving the angles

between various planes of simple indices. Table I is such a table, cal-

culated by Bozorth for the cubic system. For the diffraction ring from

planes (h k 1) the planes {h k 1) are found for which the angles given in

the table are equal to the values of a found from the chart. By repeating

this procedure for each of the rings of the diffraction pattern, the plane

{hkl) which coincides with the surface of the specimen is finally found.

The foregoing may be illustrated in terms of one of Bozorth^s experi-

ments with an electrolytic foil of nickel. The foil was mounted with

P = 50°. The values of a found from the chart of Fig. 6 are given in the

second column of Table II. A search through Table I shows that the

values of a for (hkl) = (21 1) are the only ones which give even approxi-

mate agreement with the values found from the chart.* These values of

a for (2 1 1) are listed in the third column of Table II. It is therefore

Table II.

—

Bozorth^s Results for Electrolytic Nickel Foil

Diffracting planes

n(h k 1)
a from Fig. 6

a for (hkl) = (211) from

Table I

(111) 61°, 90° 19° 28', 61° 62', 90°

2(100) 36°, 66° 35° 16', 65° 64'

2(110) 30°, 55°, 73°, 90° 30°, 64° 44', 73° 13', 90°

concluded that the (211) family of planes in the nickel foil was prac-

tically parallel to the surface of the specimen.

Methods such as the foregoing are of difficult application when the

degree of preference is low, or when, instead of a single preferred orienta-

tion, a system of orientations exists in the metal. In such cases it is

often easier to use a cut-and-try method developed by the author.^®*^^t

In outlining this method we shall assume: (1) that two diffraction

patterns were taken, one of which was taken so that a plane perpendicular

to the sheet of metal and including the incident beam also includes the

direction of rolling, i.e., in abbreviated language, “the incident beam is

in the direction of rolling^'; (2) that the second pattern was taken with

the “incident beam perpendicular to the direction of rolling^'; and (3)

that one of these patterns shows continuous rings and that the other

shows arcs. The changes in wording necessary in the following will be
obvious in the case of both patterns showing arcs.

A silver print is made of the pattern which shows the arcs, care being

taken, that the print is a true “positive’' without reversal of the right-

and left-hand sides. All determinations of preferred orientations by this

* Column 3 of Table II shows one plane not shown in column 2. This is due to

the limitations imposed on the diffraction by the angles 0 and $.

t A thorough study of this method will give the reader the necessary mental bias

for studying pole figures.
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method are best made with the aid of positive prints, no work being done
on the original negative. The diffraction rings are numbered con-^

secutively in ink on the positive print, the separate arcs in each ring being

distinguished by subscripts. From a knowledge of (1) the x-ray wave
length used, (2) the specimen-film distance, (3) the diameter of the

diffraction rings, and (4) the crystal structure of the specimen, the Miller

indices are calculated for the atomic planes in the specimen corresponding

Fig. 8.—Zinc lattice model and mounting.

to each diffraction ring. These indices are tabulated along with the

numbers of the rings to which they belong. In this description the planes

will be called by the number of the ring which they produce in order to

avoid a number of long cumbersome phrases.

A large model of the crystal lattice of the metal undergoing examina-
tion is constructed with balls and rods (Fig. 8). The balls are preferably

spaced three to four inches apart, and they must be carefully placed so

that the model has the true proportions of the crystal lattice which it

represents. The model is mounted on an adjustable mounting such as

is shown in Fig. 9, or it is attached to a double set of gimbals. The
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positive print mentioned above is mounted in a vertical position at a

convenient height,*and the model is set up in front of it as shown in Fig. 9.

A string is stretched from a vertical support to the model so that its

direction is perpendicular to the plane of the positive print. This string

represents the incident x-ray beam. It is maintained perpendicular to

the print throughout the whole interpretation process. The position of

the model may be adjusted without causing slack in the string if a stout

rubber band is tied to one end. In some cases it is convenient to replace

the string by a narrow elastic tape.

The fact that the other diffraction pattern has continuous rings shows

that we have random orientation of our model about an axis perpendicular

Fig. 9.—Arrangement of apparatus for the interpretation of a pattern of rolled zinc.

to the string. The fact that the diffraction pattern which we have just

mounted up in front of the model has detached arcs shows that we have

preferred orientations about an axis parallel to the string. The model is

now turned to such a position that the atomic plane corresponding to

ring 1 is at the correct angle to the string to account for diffraction to the

center of some one arc of ring 1. The degree of deviation in the actual

sample from the median orientation as represented by the model may be

found by simple calculation from the length and the radius of the arc

on the diffraction pattern.

We have now fixed the median location of plane 1, but we have not

found how this plane is oriented about an axis perpendicular to itself.

The model is therefore rotated about an imaginary line normal to plane 1

until a second tilt about an axis perpendicular to the string places plane 2

at the correct angle for diffraction to an arc on ring 2. (It must be

remembered that there are no restrictions as to the angle of tilt about
the axis perpendicular to the string because the other diffraction pattern

shows continuous rings.) It must be possible to account for the total
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degree of deviation from the median orientation for the arc in ring 2 in

terms of (1) a random orientation about an axis perpendicular to the

string and (2) the drgree of deviation for the arc used in ring 1. If this

cannot be done, we have four possibilities: (1) there are two preferred

orientations such that certain arcs overlap; (2) two differently oriented

planes of this same family can produce overlapping rings when the degree

of deviation is taken into account; (3) two families of planes happen to

have the same interplanar spacing (this can be found by direct calcu-

lation from the crystal lattice)
; (4) we have tried to correlate the wrong

pair of arcs in rings 1 and 2.

When an orientation of the model i^ found w’hich will account for one

pair of arcs in rugs 1 and 2, the mpdel must be examined to see whether

other members^ of the samo families of piahes can (taking the degree of

deviation into naocount) prod^ j arcs in their respective rings. It is

obvious that, ^ we have the ioitect median orientation of our model,

no arcs will bo possible except those actually found in the diffraction

pattern. Remembering (1) that we may have ani/ angle of tilt about an

axis perpendicular to the string, and (2) that we may tilt the model

about an axis parallel to the string to the extent permitted by the degree

of deviation of the arc in ring 1, we must now investigate rings 3, 4, 5, etc.

In every case we must check back by means of the degree of deviation

to make sure that we have started with the right pair of arcs in rings

1 and 2.

If it turns out that all the rings on the diffraction pattern can thus be

accounted for, and that there are no theoretical arcs not shown on the

diffraction pattern, then we have found in our rolled sheet a single pre-

ferred orientation, with a known degree of deviation, about an axis

parallel with the string, and this preferred orientation must coexist with

a random orientation about an axis perpendicular to the string. If,

on the other hand, it turns out that we can account for all the theoretical

arcs associated with this preferred orientation, but we have some arcs

left over on our diffraction pattern which have not been accounted for,

then we must cross off those already accounted for and repeat the above

technique on the remaining arcs in the hope of finding a second preferred

orientation coexisting with the one already found. In order to determine

completely the preferred orientations of the metal, it is now necessary

to repeat the above procedure with still other pairs of diffraction patterns

taken with known orientations of the specimen. This will be evident

when we take up the subject of pole figures.

We are now ready to illustrate the foregoing method by giving in

detail a study of two diffraction patterns of rolled zinc. The specimen

* It is not to be inferred that all sheet zinc will give, with all kinds of rolling

technique, orientations of the type described here. The orientations obtained will

depend upon many factors which are beyond the scope of this chapter. The results
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had been hot rolled from 0.5 to 0.1 in. (12.5 to 2.5 mm.) and then cold

rolled from 0.1 to 0.006 in. (2.5 to 0.15 mm.) in thickness.

With the x-ray beam grazing the surface of the specimen at an angle

of i0°, two x-ray patterns were taken. In the first case (Fig. 10) the

x-ray beam was perpendicular to the rolling direction, and in the second

case (Fig. 11) the x-ray beam was in the plane formed by the rolling

Fig. 10.—Rolled zinc—x-ray beam per- Fig. 10a.—Pattern of Fig. 10, marked to

pendicular to rolling direction. indicate the arcs.

direction and the normal to the rolling plane, t.e., in abbreviated language,

the x-ray beam was ^4n the direction of rolling. As in the case of the

general description of the method given above, one of the patterns showed

arcs and one showed continuous rings.

The model, pattern, and string were set up, as previously described

(see Fig. 9), and the model mounting was tilted away from the pattern

so that the base of the mounting
made an angle of 10° with the string.

The model was attached to a series of

clamps such that it could be rotated

about the central hexagonal axis of

the model or rotated about two axes

perpendicular to, and parallel with,

the string. Any of these motions

could be made independently of the

rolling direction. others. The base of the mounting
corresponded to the surface of the

specimen. With the pattern (which was taken with the x-ray

beam perpendiculai* to the rolling direction) in place, the model
was oriented so that the basal plane (00*1) made the proper

angle for reflection on an intermediate point of the arc I 2 (see

Fig. 10a). This was done by satisfying two conditions: (1) the string

(always perpendicular to the positive print of the diffraction pattern)

must make an angle (determined by Bragg^s law) of 8.3° with the basal,

t.c., the (00-1) plane, and (2) the string must be in the plane deflned by

described here are from one sample only and are given only as a concrete example of

the application of the method.
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•

the center of the arc I2 and the normal to the (00 1) plane of the model.

This normal was represented by a brass rod mounted in a strip of wood
which was laid on the (00*1) plane of the model. When the correct

position of the (Od *1) plane was found, the model was locked in position

on the hinged mounting (Figs. 8 and 9). Two rubber bands having

hooks at each end were fastened to the model in such a way as to define

the (10*1) plane. Rotation of the model about the hexagonal axis,

i.e., the normal to the (00*1) plane, brought this (10*1) plane into

proper position to ^‘reflect'' in the 2i arc. From this step on, the only

adjustment of the naodel was to rotate it about the rolling direction, i.e.,

about an axis perpendicular to the string, always maintaining the same
relation to tljf rolling direction as was fixed by the .first two steps of the

procedure. This rotation may be of any angle since, from Fig. 11, a

random orientation exists about the rolling direction. The (00-1) (2),

(1 0 • 0), and (00 * 1)(4) refleeti*^ do not show in Fig. 11. It was found

by manipulation of the model that the absence of these two reflections

was consistent with the system of orientations tentatively decided upon
above.

By rotating the model about the rolling direction a few degrees, the

model was brought in position to reflect from the (10*2) plane on one

of the intermediate spots of 3i. In a similar manner two (10*3) planes

could be brought to reflect on arcs 42 and 44. No (1 1 • 0) planes (whose

diffraction rings, if present, would have been coincident with those of

the (10*3) planes) could be found which would reflect, no matter how
much the model was rotated about the rolling direction. An intermediate

spot on the arc 62 could also be accounted for. It was not thought wise

to consider the (11*2) arc, since it was very poorly defined. This process

was twice repeated from the beginning, except that the starts were made
from each of the two extremities of arc I2. In this manner the corre-

sponding extremities of arcs 2i, 3i, 42, 44, and 62 could be accounted for.

It is allowable to assume that every spot in these arcs could be accounted

for by the system of orientations limited by the extremities of these arcs.

If the model is rotated about the rolling direction so that it points

downward instead of upward, or is turned 180° in the rolling plane about

a normal to the rolling plane (these rotations accomplish the same result),

the model is then in a position to account for arcs li, 22, 82, 43, and 61.

This was carried out exactly as described for the other arcs, taking three

spots on each arc. Arcs from the (10*0) plane on Fig. 10 and the

(00*1) (2), (10*0) and (00*1) (4) planes on Fig. 11 do not appear.

This was found to be consistent with the system of orientations defined

by the arcs which do appear.

The variation from one end of each of the arcs li and I2 to the other

end of each is 36°. The position of the model at the mean of these is

such that the hexagonal axis makes an angle of 61° with the rolling
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direction and such that an X-axis (edge of one of the hexagonal bases)

is perpendicular to. the rolling direction. The system of orientations,

therefore, which exists in this specimen of rolled zinc, is such that the

hexagonal axis is at an angle of 61 ± 18° with the rolling direction.

There is no preferred orientation with respect to the rolling plane.

Crystals exist at any position about the rolling direction, so long as their

hexagonal axes have the proper relation to the rolling direction. Similar

studies of other pairs of diffraction patterns taken with known orienta-

tions of the specimen will serve to define the preferred orientation

completely.

For further studies of pairs of diffraction patterns the reader is referred

to an article by Hollabaugh and Davey^® in which all the steps are given

in considerable detail.*

POLE FIGURES t

Now that we have gained a general idea of how preferred orientations

may be determined, we must take up some method of expressing them
graphically. The most convenient method is that of F. Wever^®*^^ in

which the stereographic projection (Chap. IV) is used. It lends itself

well to this purpose, for it enables us to chart within the area of a circle

of finite radius all possible orientations which can occur within a solid

angle subtended by a hemisphere. Such a stereographic representation

of preferred orientations is called a ‘^pole figure (Flachenpolfigur). It

has the advantage of simplifying the work of interpretation of diffraction

patterns in that the patterns do not necessarily have to be studied in

pairs as in the cut-and-try method just described, but the results from

each single film may be recorded on the chart as the investigation pro-

ceeds.! When the metal is thin enough to permit, both ‘‘ reflection

and ^transmission monochromatic pinhole diffraction patterns may
be employed to advantage.

The whole subject of pole figures is easiest explained in terms of a

concrete example. As such an example we shall take a certain specimen

of rolled zinc alloy § which had the crystal structure of pure zinc, i.e.,

hexagonal close-packed. From the metal strip, which was 0.040 in.

(0.1 cm.) thick, a thin section 0.002 to 0.003 in. (0.005 to 0.007 cm.)

* These experiments of Hollabaugh and Davey represent the unusual case in which
the purpose of the experiment is gained without having to determine completely the

preferred orientation in all directions.

t This portion of the chapter was written by M. L. Fuller of the Research Labora-

tory of the New Jersey Zinc Company.

t From this standpoint the use of pole figures may be considered to be not only a

method of expressing orientation data but also a method of interpreting the data.

§ The orientations found in this particular metal strip are not to be interpreted as

being characteristic of all rolled zinc alloys, since the orientation differs with different

rolling treatments.
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Table III.

—

Tabulation of Diffraction Patterns Taken for Pole Figures

Angle between incident x-ray beam and

Type 6i pattern
Rolling

plane

Rolling

direction

Across-rolling

direction

Reflection 8° 90°

Reflection 8° 50°

Reflection 8° 40°

Transmission 90°

Transmission 60° 90°

Transmission 28° 90°

thick was pr< pared by etching. Phis thin section was selected from a

position apjhuximately iiiid|yo.y between the surface and the center of

Fig. 12.—Basal plane (0 0-1) Fig. 13.—Basal plane (00*1)
diffraction arcs. X-ray beam 8° to diffraction arcs. X-ray beam 8° to

rolling plane, 90° to rolling direction. rolling plane, 50° to rolling direction.

the strip. (Obviously, for a complete study of the orientations present,

sections from still other positions in the strip would have had to be

Fig. 14.—Basal plane (00-1) diffrac- Fig. 16.—Basal plane (OO* !) diffraction

tion arcs. X-ray beam 90° to rolling arcs. X-ray beam 50° to rolling plane, 90°

plane. to rolling direction.

prepared.) For the study of this particular thin section, x-ray pinhole

patterns were prepared as listed in Table III, using MoiiL„ rays. Figures

12 to 16 are diagrammatic reproductions of the basal plane (00*1) arcs on
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five of the diffraction patterns. One pattern (x-ray beam 40° to rolling

direction and 8° to the rolling plane) had no basal
^
^reflections^ ^ and hence

is not reproduced.

The stereographic projection is carried out by means of a stereo-

graphic net.^® The net is reproduced in Fig. 17. The principle of the

stereographic projection has already been discussed in detail in Chap. IV.

The net of Fig. 17 gives the stereographically projected great and small

circles for every 2°. If the projection is drawn on tracing-paper while

the net is in place beneath the paper,

\ / the points can be plotted more readily

than when a stereographic ruler is used.

From a completed projection the angular

\ / \ relationship between the points can be

\ / read easily with the aid of the net. Fig-

\ / ure 18 results from plotting the data from

\ / Figs. 12 to 16 with the aid of the net of

projected crystal plane is

FIO. i6.-BLal plani (00 1 )

perpen-

diffraction arcs. X-ray beam 28® dicular tO the principal axis of the

(or ^^across^rourrlg^’^dire^
hexagonal close-packed structure. The

• projection is made on the plane which

includes the normal to the rolling plane and the transverse (or “across

rolling '0 direction, i.e., the rolling direction is normal to the plane of

the diagram.

The cross-hatched areas on Fig. 18 include all the orientations found

in the specimen. The areas which are doubly cross-hatched have a

denser crystal population than the singly cross-hatched areas, as shown
by the intensities of the diffracted beams. To define the orientations

present in the specimen rigorously, the pole figure for an additional

crystal plane would be required. It so happens, however, that in this

case the crystals occupy all possible positions of rotation about the basal

plane normal as an axis. This can be deduced readily from the lengths

of the arcs of the other diffraction rings on the x-ray patterns.

Figure 19 shows the same pole figure as that of Fig. 18 with the method
of plotting indicated. Aside from the pole figure itself, which can be

readily distinguished by reference to Fig. 18, the following code has

been used;

Dashed Lines ,—Traces of imaginary planes through the metal sheet to which the

incident x-ray beam was perpendicular.

Dotted Lines .—^Loci of orientations definitely found to be absent since the corre-

sponding x-ray “reflections^' are not found on the x-ray patterns.

Light Full Lines .—^Loci of orientations definitely indicated to be present by the

x-ray patterns.

Heavy Full Lines.—Same as light full lines except that the crystal population in

these loci are denser than in those indicated by light full lines.
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Points Indicated by Small Circles .—Points plotted from the measurements on the

x-ray patterns. The numbers adjacent to these points correspond to the similarly

numbered points in the x-ray patterns of Figs. 12 to 16.

*

Figure 12 furnishes the points 1 and 2 on the pole figure of Fig. 19.

This pattern was obtained by causing the x-ray beam to be incident on

the specimen at a grazing angle of 8® to the rolling plane and perpendicu-

lar to the rolling direction. Since the grazing angle of incidence for the

Fiq. 17.—Stereographic net.

basal plane (00*1) reflections is 8® (using NloKa x-rays), it is evident

that all basal planes reflecting are approximately parallel to the trans-

verse or across rolling direction. The plotting of the orientation on the

pole figure on the basis of this approximation is allowable when the

precision of measurements on the x-ray pattern is considered. It should

be noted that with a ^'reflection'' pattern the angular range of measurable

orientations is limited by the "shadow" of the specimen on the x-ray
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pattern. The dotted lines are loci of orientations indicated to be

absent by the x-ray pattern of Fig. 12. Densely populated loci of orienta-

tions are indicated by the heavy lines 1-2 and less densely populated

loci by the extension of the lines 1-2 to the limit imposed by the shadow

line on the x-ray pattern.

Figure 13 which is a ‘‘reflection'^ pattern taken with the x-ray beam
at 8° to the rolling plane and 50° to the rolling direction supplies the

points 3. The plotting is similar to that of Fig. 12 except that it is not

on the great circle A-1-2-2-1-A (perpendicular to the plane of projection)

but is on the great circles A-3-3-A which make angles of 50° to the plane

of projection.

Figure 14 is a transmission pattern obtained by making the incident

x-ray beam perpendicular to the rolling plane. This pattern gives rise

A

A
Fig. 18.—Basal plane (00.1) pole

figure from a rolled zinc alloy. AA^
direction normal to rolling plane; BB,
transverse (or across rolling) direction.

Fig. 19.—Basal plane (00-1) pole

figure from rolled zinc alloy, illustrating

projection method.

to the points 4. The two small circles 4-4 are the 8° small circles about

the normal direction as a polar axis and are the loci of all orientations

which, if present, can possibly give basal plane reflections on the pattern

of Fig. 14. As before, the dotted and full lines of the figure indicate

the orientations definitely found to be absent and present, respectively.

Figure 16, which is a transmission pattern exposed with the incident

x-ray beam at 50° to the rolling plane and at 90° to the rolling direction,

gives the orientations on the small circles 5-5. The lines C-C are the

traces of the equatorial planes of the 8° small circles 5-6. The equatorial

planes C-C make angles of 40° to the rolling plane B-B.

Figure 16, which is a transmission pattern obtained with the inci-

dent x-ray beam at 28° to the rolling plane and at 90° to the transverse

direction, furnishes the points 6. Because of the narrowness of the

angular range 6-6, it was considered sufficiently accurate to plot these
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orientations on the great circles 5-6-6-S rather than on small circles as

was done with the two previously discussed transmission patterns.

Absorption of the diffracted x-rays in the specimen, in the exposure of

this pattern, permitted only half of the pattern to be recorded. The
basal plane reflections recorded are those from basal planes at approxi-

mately 36° to the rolling plane and not those from basal planes approxi-

mately 20° to the rolling plane. These considerations show that the

great circles 5-6-6-i? should be the loci of plotting. The planes of these

great circles make angles of 54° to the rolling plane. Orientations corre-

sponding to the extension of the arcs 6-6 were indicated by the x-ray

pattern, but the extremities of these arcs were not accurately measurable

as in the case of the points 6.

It is ass imed that regions tetween the linear loci of orientations

found to be^present are also*oe.cupied by crystal orientations in the metal

specimen. Orientations ait probably present in the specimen corre-

sponding tv. ’all points on the cross-hatched areas of Fig. 18. Experience

.ha« shovvn that the foregoing method of plotting orientation pole figures

is sufficienth' precise for the practical evaluation of orientation anisotropy

in rolled metal. The pole figure furnishes an excellent orientation

diagram for the study of the mechanical deformation of polycrystal

metal and for the study of the relation between crystal orientation and

the directional properties of the worked metal.

SUMMARY

We have discussed both the methods of determining the orientations

of single crystals and the methods of finding preferred orientation in

polycrystal material. In the case of single crystals we took up (a)

an optical method, (6) a monochromatic x-ray method, and (c) a “ white

x-ray method. In the case of polycrystal materials we took up

(a) Bozorth's method (most applicable when the degree of preference

is high), (6) a cut-and-try method (tedious but foolproof) which gives

the proper mental atmosphere for the pole figure method, and (c) the

method of pole figures. In addition to forming the basis of a method

for determining preferred orientations, pole figures form a useful way of

expressing the results of experiments on preferred orientation, no matter

which of the above methods is used. The pole figures have the advan-

tage, too, that they indicate at once whether or not additional data

must be obtained in order to determine a system of preferred orientation

completely.
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CHAPTER XVIII

SOLID SOLUTIONS

CRITERIA FOR THE EXISTENCE OF SOLID SOLUTIONS

The characteristic property of a solution is that the solute and solvent

become so intimately intermingled that the solution appears to be quite

homogeneous even under the highest power microscope. Of course,

no solution is ^ v)mogeneous if we tliink in terms of atomic or molecular

distances, but| f we limit oiirsclves to distances which we can actually

see with the aidv^d or unaidcd|) uman eye, a solution is homogeneous.*

In other worol, a solution must consist of more than one component,

but it mu* 0 all be a single phase. When the solvent is a liquid, it is

easy to l/dl wheth<^r or not more than one phase is present. Usually

w’e have only to look at ‘t and see w^hether it is clear and homogeneous,

or to filter it and see whether we can separate out a second phase. In

case of doubt we can see whether or not the rise in the boiling point,

lowering of the freezing point, etc., are less than would be expected for a

truly molecular dispersion, f

When the solvent is a solid (i.e., when we have a “solid 8olution^0>

all such methods fail except the method of the low’^ering of the melting

point, t and even that must be used with extreme caution. We have,

however, two other possible methods of attack which are based on the

fact that we are dealing with crystalline solids: (a) we may polish and

etch the surface of the specimen and see whether we can find a second

* Strictly speaking, we must limit ourselves to distances much smaller than this

if we are to distinguish between true solutions and colloidal solutions.

t H. K. Ward finds [Jour, Chem. Phys,^ 2, 153 (1934)] that x-ray diffraction rings

may be used to advantage.

t In metallurgical work the melting (or freezing) point is often detected by an

arrest in a heating (or cooling) curve caused by the absorption (or liberation) of the

latent heat of fusion. This is a sensitive method for finding melting (or freezing)

points. The method is extended to the detection of changes in the phases {e.g.,

^‘solution^^ or precipitation^’) of a solid solute when the temperature is raised (or

lowered). When the phase transformation is fast enough so that appreciable amounts

of heat are absorbed (or liberated) per second, the method is sensitive and, when used

in connection with data from the microscope and from x-ray diffraction, leads to

temperature-constitution diagrams which show at once the limits of solid solubility

at equilibrium. When the transformation is sluggish, it must be followed in an

adiabatic calorimeter, otherwise it may be overlooked entirely. The chances for

errors of technique and of interpretation may be appreciated if one follows the litera-

ture of some well-known constitution diagrams (such as Fe-C or Zn-Al) from the earli-

est down to provisional diagran^s such as in *international Critical Tables.”

523
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phase under the microscope; or (6) we may use x-ray methods in the

effort to detect ci:ystals of a second phase. If a second phase is present

in considerable amount and is composed of crystals of appropriate size

and of random orientation, then it is usually easy to show (using the

simple technique of the powder method) two diffraction patterns super-

imposed upon each other—one from each of the solid phases. If,

however, the crystals of a second phase are extremely small or are very

imperfect, they may be represented in the diffraction pattern by only

one, two, or three lines and even these may be broad and indistinct in

outline. If the crystals of a second phase are preferentially oriented

as in the case of Fig. 9 of Chap. XII, then the simple technique of the

powder method may not be sufficient and it may be necessary to oscillate

the specimen.

If no second phase can be found, it may be assumed tentatively that

the components with which we started are in solution. In such a case

the diffraction pattern will resemble that of the solute material except

that the lattice parameters may be somewhat altered.* The higher the

concentration of the solute in the solution the greater is the change

in the lattice parameters. It is assumed that, within the limits of con-

centration set by the solid solubility of the solute in the solvent, this

change in lattice parameter is a continuous function of the concentration

of the solute. It will be noted that, in accordance with the definition of

the word “solution,^^ the basic evidence for the existence of a given

solid solution is entirely negative,' i.e., the evidence is based on the

inability of the experimenter to demonstrate the presence of a second

phase. Such evidence is obviously weak and must always be accepted

with caution. In interpreting the data in the literature on solid solu-

tions we must always ask ourselves whether a slight change in experi-

mental technique, either in the preparation of the specimen or in the

x-ray examination (more favorable wave length, different mounting

of the specimen, time of exposure, etc.) might not have enabled the

experimenter to have demonstrated the existence of a second phase.

We must, besides, always allow for the possibility that a second phase

is present but is not in such a state as to show an appreciable diffraction

pattern, t A change in the lattice parameter of the solute, although it

is always found in solid solutions when the concentration is sufficiently

great, is not basic evidence of solid solution. It is really only a signpost,

* This change in lattice parameter reminds us at once of the well-known fact,

mentioned in most elementary textbooks on physical chemistry, that in liquid solu-

tions the volume of the solution is not, in general, exactly equal to the sum of the

volumes of the solvent and of the solute.

t For instance, it may be present in crystals of colloidal size. In the case of

martensitic steel the FesC crystals have not been definitely demonstrated by x-ray

methods although Lucas ^ has photographed them with the aid of an extremely high-

power microscope.
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actually empirical, but well supported by theory, as will be shown later

in this chapter.

The fact that, in any given instance, the burden of proof rests with
the experimenter who appears to have found a solid solution is well
illustrated by the following: Data may be found in the literature^ which
seem to show several instances of two metals, A and B, with the same type
of crystal structure, which are mutually soluble in all proportions with
an almost straight-line change in lattice parameter from 100 per cent A
to 100 per cent B. That this may no<) be the actual state of affairs is

shown in Fig. 1, which gives the data of Bolgersso.a and Sedstrom* on
the Cu-Pd alloys. If the only compositions in'^'estigated had been those

represented by the points marked in Fig. 1, the Cu-Pd system would
t:pdoubtedly Ijj ve been recorded as being still one more instance of con-

Fig. 1.—Data of Holgersson and Sodstrom on the Cu-Pd system.

tinuous solubility with a face-centered cubic structure whose parameter

changes progressively from that of 100 per cent Cu to that of 100 per

cent Pd. Fortunately, however, Holgersson and Sedstrom included in

their experiments an alloy whose composition was 45.5 atomic per cent

Pd and 54.5 atomic per cent Cu. This showed instead of the face-

centered cubic diffraction pattern a body-centered pattern. This repre-

sented, of course, the existence of a new phase. The intensities of the

lines in the diffraction pattern were what would have been expected for a

compound Cu-Pd with Cu at the corners of the unit-cube and Pd at the

body-center.* This makes us somewhat skeptical of the graphical

representations of the data in the literature for other similar systems of

alloys and makes us feel that careful work would possibly uncover still

other examples of the same sort.

When one metal f is in solid solution in another of different crystal

structure, the one which determines the crystal structure is called the

* Or, of course, Pd at the comers and Cu at the body-center,

t It is easiest to discuss solid solutions of one chemical element in another iri terms

of metals, for the metals are the outstanding examples of crystalline elements which
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“solvent/' For instance, cobalt may be either face-centered cubic or

hexagonal close-packed; a-Fe is body-centered cubic. But since an

alloy of 80 weight per cent cobalt is body-centered cubic, ^ it is assumed

that the iron is the solvent up to 80 per cent cobalt. Zinc (hexagonal

close-packed) dissolves in copper (face-centered cubic) up to about

40 per cent zinc, while copper dissolves in zinc up to about 1.8 per cent

copper.® It is a general rule that, if A has the ability to go into solid

solution in B, then B can go into solid solution in A, but the degree of

solid solubility of A in B is no criterion of the degree of solubility of B
in A. It is also a general rule that, if A and B have different crystal

structures and if A is soluble in B (and therefore B in A), then, when A
and B reach the proportions shown by the solubility limits, either they

form a definite intermetallic compound or they form a eutectic mix-

ture.* Probably instances of intermetallic compounds would be still

more numerous in the x-ray literature if it were not for the difficulty,

inseparable from the limitations of the solid state, of obtaining equi-

librium conditions.

When it has once been established that a two-component system has

only a single phase, so that it may rightfully be classed as a solid solution,

it remains to determine whether the molecules (or atoms or ions) of the

solute lie in between the molecules (or atoms or ions) of the solvent or

whether they replace them in the crystal lattice. This may be done by
comparing the density of the solid solution, determined by ordinary

physical methods, with the density calculated with the aid of the lattice

parameter of the solid solution. If the solution is interstitial, the calcu-

lated density must be found as

jp ^ niMi + ntMi ^ ^ ^

where rii = number of molecules (or atoms or ions) of solvent in the unit

of structure of the pure solvent.

712 = average number of molecules (or atoms or ions) of solute

material in the unit of structure, calculated from the

concentration of the solid solution.

Ml = molecular (or atomic or ionic) weight of the solvent.

M2 = molecular (or atomic or ionic) weight of the solute.

V = volume of the unit of structure of the solid solution.

If the solution is of the substitutional type, the calculated density is

easiest found as

can be obtained in quantity in a reasonable state of purity. The use of still purer

metals will make our knowledge of solid solutions much more definite.

* That is, two different crystalline phases intimately mixed together.
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D =
n X 1.649 X 10-2^

where a and b are the weight-fractions of the solvent and solute, respec-

tively, and n is the number of molecules (or atoms or ions) per unit of

structure.

THEORY OF SOLID SOLUTION

Because of the very nature of the definition of the word “solution,^^

our discussion of methods of detecting solid solutions has implied the

crude picture of a mechanical dispersion of molecules (or atoms or ions)

0^ the solute ! the solvent. Assuming, now, that we have at hand a

number of solt’ solutions, detecte^l in accordance with the above dis-

cussion, we rnufei examine tliofr oriaperties closely to find the clues which

will enable \n t<. build up a nn(»re complete picture of the physical and

chon li cal spates ot the solute and solvent. Such a picture should enable

us to see vhy sonn« solids are soluble in a given second solid and why
Siune others aiv not, and it should predict, at least in a general way, the

characteristic physical and chemical properties of solid solutions. It will

simplify our discussion if we take up first the simple case of liquid solu-

tions and then add the additional complications imposed upon solid

solutions by the crystalline state.

As early as 1904, Jones and Getman*^ found that the depression of

the freezing point of water by cane sugar pointed to the picture of a

hydration of the sugar molecules* in the solution. Callender^ gave the

same explanation for the abnormally high osmotic pressures of solutions

of cane sugar. ^ The subject of solutions was examined from the stand-
*

point of energy transfer in 1910 by Garver® who concluded that there

must be some sort of a chemical bond between a solute and its solvent.

One example out of several of Garver^s lines of reasoning will be given.

Suppose that an aqueous solution is merely a mechanical dispersion of n

gram-molecules of solute in N gram-molecules of the solvent water.

Then in a dilute solution, if the solute and solvent water are both at a

common temperature before solution, the heat-energy contribution

from the solute is small in comparison with that from the solvent water,

and the kinetic energy E of the molecules of the solvent may, with only

negligible error, be considered as being distributed among the molecules

of the solution. This gives an average energy per gram-molecule of

solvent water of E/N = Ei and an average energy per gram-molecule of

E
solution of - = E2 . Since the kinetic energy of the molecules is

directly proportional to the absolute temperature,

* There can be no complications here due to the electrostatic interaction of positive

and negative ions such as we have in the cswe of concentrated solutions of electirolytes.
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If we apply this equation to the case of 1 gram-molecule of cane sugar

dissolved in 1 1. (55.6 gram-molecules) of water at 20°C., we have

55.6 + 1 293

55.6 7^2

This gives T^, = 288°K., i.e., the temperature drop due to the act of

solution should be about 5®C. Actually the heat absorbed is 800 cal.

so that the 1,000 g. of water would have to cool off only 0.8®C. Suppose,

on the other hand, that we regard iST + n as our unknown quantity.

Then we have

N + n _ 293
"5^^ “ m2

This gives N + 1 = 55.8 so that out of our original 55.6 gram-molecules

of water only 54.8 gram-molecules are left. Obviously this can be

accounted for by assuming a chemical combination (hydration) between

the sugar and the water.

The data of the ^^International Critical Tables can be used to give

still other calculations which indicate the existence of chemical action

between the solute and the solvent in a solution. If a solution is merely

a mechanical dispersion of molecules of a solute in a solvent, then the

energy needed to dissolve one mole of solute should be equal to

the heat required to change the solute into a gas whose volume and

temperature are the same as the volume and temperature of the solution.

For a liquid solute this energy input would be (L — W), where L is

the molar latent heat of vaporization of the solute at the temperature

of the solution and at a pressure of 1 atmosphere, and W is the mechanical

work done in compressing this vapor to the volume of the solution. The
quantity (L — W) is, of course, always positive. Values for L can be

found for various organic compounds in Vol. V of the International

Critical Tables.'^ For instance, for glycol at 197°C., L is

800 X 62 = 49,600 kilojoules* per gram-molecule.

At room temperature it should be somewhat larger. If 1 gram-molecule

of glycol at 20°C. is dissolved in 22.4 X 1. of water, W is zero

and the quantity of solution is so large that the solution may be regarded

for our purposes as being practically infinitely dilute. The experimental

facts are that, instead of our having to put in 49,600 kilojoules to cause

the gram-molecule of glycol to dissolve, it dissolves spontaneously in

* One kilojoule = 239.2 g.-cal. 2o<»c. =T).948 B.t.u.eoop.
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the water with the evolution of 7.1 kilojoules of heat. This represents

the spontaneous evolution of enough energy to supply the 49,600 kilo-

joules required on the basis of a mere mechanical dispersion of glycol

molecules in the water and, besides, an additional 7.1 kilojoules.* The
source of this energy must lie in the glycol-water system itself, so that

we are forced to assume that the solvent has lost potential energy to the

extent of almost 50,000 kilojoules per gram-molecule of glycol. The only

way we can imagine such a release of energy from inside the system is

to assume some sort of chemical reaction between the glycol and the

water.

The chemical state of the components in a liqu id solution may be

shown directly by electrolytic methods. Kremann and v. Rehenburg^®

>'^cre able to Oi^ctrolyze molten binary netallic alloys. Of course any
metal that mig/>t be deposit»>d < n the electrodes would tend to melt off

again, so that n:i they coulct was to balance the electrolytic effect

!.gairist the Ivack diffusi(in. In order to overcome this difficulty, they

elect rolyzf d for some time and then suddenly chilled the whole melt,

thus preserving in tlie frozen state the conditions which they had during

electrolysis. That they succeeded is shown by the fact that as the current

density was raised in the experiment the divergence in composition

approached a maximum. An alloy of 39 per cent Zn, 61 per cent Sb,

electrolyzed at 620°C. with a current density of 7.6 amp. per square

millimeter gave a maximum difference in composition between the two

electrode areas of 75 per cent. The Sb migrated to the anode and was
therefore the negative ion. This is consistent with the positions of the

two metals in the periodic table. When an alloy of 58 per cent Bi and

42 per cent Pb was electrolyzed at 240°C. and at a current density of

10 amp. per square millimeter, the Bi tended to concentrate at the anode.

This again is consistent with the periodic table. In a 33 per cent Na
amalgam at 240°C. and at a current density of 7 amp. per square milli-

meter, the Hg migrated to the anode and the effect amounted to 9 per

cent Na. The alloy 70 per cent K and 30 per cent Na is liquid at room

temperature. Kremann and v. Rehenburg electrolyzed it at 100°C.

in a glass capillary 1 mm. in diameter. The electrodes were of copper,

and the current density was varied from 1.4 to 7.17 amp. per square

millimeter in successive experiments. After electrolysis had continued

for 4 hr., the capillary was chilled and cut into short lengths. Analysis

of the contents of each section showed that the concentration of Na was

increased at the anode and that of the K was increased at the cathode.

When the current density was 1.4 amp. per square millimeter, the change

in concentration of the K was about 10 per cent; at 4.45 amp. per square

* The reader will find in Vol. V of the “International Critical Tables” the data

for a multitude of similar calculations, both for aqueous and for non-aqueous solutions.
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millimeter, it was 24.5 per cent; at 7.17 amp. per square millimeter,

it was 32.5 per cent. When even Na and K show evidence of ionization

when in solution in each other, it is hard to keep from making the gen-

eralization that the components of all liquid solutions are in some sort of

chemical combination with each other. Of course this does not mean
that the law of definite proportions can always be demonstrated, espe-

cially in the sense in which it is explained to students in elementary

chemistry.

*

It does mean that we must assume the forces acting between

solvent and solute to be chemical in their nature and the energies involved

to be truly chemical energies. We may even go so far as to assume that,

instead of a tendency to produce a mechanical dispersion of molecules

(or atoms or ions) of A in B, we have a tendency to produce a mechanical

dispersion of molecules of the compound in B. In other words,

when A is dissolved in B, we may assume that we have a weak chemical

reaction corresponding to

xk + 2/B <—^ A3i/

The mass action law demands the presence of a little A along with the

compound A^B^, and these two together are to be considered as forming

the real solute which is dispersed in B.ft
If we once accept this picture in the case of liquid solutions, it is

evident that we must carry it over to the case of solid solutions. § That
chemical combination of this sort exists in solid solutions is shown directly

by the experiments of Hanawalt^^ who studied the palladium-hydrogen

* In the first place, the concentration of solute in the crystals of solvent is not

given by the over-all proportions of solute and solvent. This may be explained by the

work of Phillips and Brick^^ who were led to assume that the solubility in the crystal

depends upon the grain size, i.e.j upon the area available at the grain boundaries.

In some cases we may assume besides that the mass-action constant is such as to

require a considerable excess of one component. In other cases we may be compelled

to speak of secondary valence effects. In any case, in order that the law of definite

proportions may be applied, we must consider it in terms of isolated molecules (or

atoms or ions) of solute, not in terms of the total masses of solute and solvent. This

may be illustrated by a so-called **aqueous” solution of CO 2,
which undoubtedly

contains HaCOa dissolved in the water. The HzCOa can be decomposed merely by
pumping off CO 2 from above the solution, and the law of definite proportions must
be applied to each individual molecule of CO 2 which combines with the water.

t In the following, the word solute” will be reserved for the material which was
originally added to the solvent, f.e., when A is added to B to make a solid solution of

A plus hxBy in B, A will be called the solute.

X This point of view receives strong experimental support from the studies of

G. W. Stewart [Jour, Chem. PhysicSj 2, 147 (1934)] on x-ray diffraction effects in

solutions of LiCl in normal alcohols. He finds definite evidence that a portion of

the solvent is bound to the ions of the solute.

§ The arguments against this type of picture can be found in nearly any textbook

on metallography. Most of them are founded on data or depend upon certain view-

points which seem to the author to be o'^en to question.
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system. * He found that his experiments on the characteristic absorption

of x-rays, together with his experiments on the lattice parameters of

these solid solutions, could be interpreted easily by assuming that he

had, not a solid solution of hydrogen, but a solid solution of PdH in

palladium. That is, some of the points on the palladium lattice were
occupied by molecules^' of PdH. When half the points were so

occupied, he had the well-known compound Pd 2H. This interpretation

is consistent with the data of Coehn^^ who found that, when he passed

an electric current through a palladium wire in which hydrogen was
dissolved, the diffusion of hydrogen was greater in the direction of the

current than in the direction of flow of electrons. Evidently at least

a portion of tlie hydrogen was present as H+ in the tiolid solution.

Hanawalt s conclusions are also consistent with Ham’s interpretation^'^

of the mechuj'ism of ditfudion of hydrogen through thin metal sheets.

Using vell-eslrblished prindp es of ihe kinetic theory of gases. Ham has

worked ovev the data of Boreiius^*"' on the flow of hydrogen through thin

sho 'ts o' platinum or nickel togelher with additional data of his own on

the flow of hydrogen through welded sheets one face of which was
platinum and the other face nickel. He found that, if he expressed the

rate of flow of hydrogen through the sheet in terms of the pressure po

of molecular hydrogen at the inlet face of the sheet, then po entered

into his equations in the form of po^^. Ham accounted for the necessity

of using the square root of the intake pressure by assuming that po^
was proportional to the pressure of hydrogen at some plane, parallel

to the face of the metal sheet, situated inside the metal near the inlet

face. This led him to use the mass-action law for a reaction of the first

order. The mass-action law gives us three, and only three, alternatives,

namely,

() H 2
<—^2H

( ) H2~ H2+ + €-

(c) Ha ^—> 2H+ + 2€~

where €~ represents an electron.

* The length of the edge of the unit face-centered cube of palladium (99.66 per cent

pure) is 3.885A. Hanawalt found that, when he dissolved hydrogen in pure palladium,

the edge of the unit-cube became 4.017A. or larger, but the x-ray diffraction pattern

was still that of a face-centered cube. No lattice parameters were found between

3 .885A. and 4.OI7A. if impurities were absent, but parameters of 4.017A. or greater

could be found depending upon the concentration of hydrogen. Solutions with a

lattice parameter greater than 4.017A. shrank continuously on aging with loss of

hydrogen until the value of 4.017 was reached no matter whether the solid solution

was kept at 20®, 60®, 70®, or 90®C. When the palladium was impure (containing Cu,

Fe, Si), it was possible to get solid solutions of hydrogen over the whole range, giving

continuous variations in the values of the edge of the unit-cube from 3.885A. to beyond

4.OI7A.
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The first of these must be discarded because it involves no ionization

of hydrogen and is therefore inconsistent with the fact, already recorded

in the literature,^® that the metal picks up an electrostatic charge in

the presence of hydrogen. Alternative (b) must be discarded since it

does not lead to the correct exponent of po, when pressure is used as

an index of concentration. This leaves us with only alternative (c),

namely,

Ha <—> 2H+ + 2c-

which obviously accounts for the exponent of po* and accounts qualita-

tively for the electrostatic charge on the metal. Obviously, the ioniza-

tion of the hydrogen implies the formation of an ionic compound with the

solvent metal.

As still further confirmation of the picture of chemical reaction

between the solvent and the solute of a solid solution it is interesting

to note that Mehl and Mair^^ have used the degree of compressibility

of metallic solid solutions as a criterion of chemical combination between

the solute and the solvent metal. They compared the experimentally

measured compressibilities of solid solutions of metals with calculated

values based on the compressibilities of the solvent and solute. They
found that the discrepancies between the experimental and calculated

values were greater the more the solvent and solute differed in chemical

type, and that in every case where numerical data were available the

experimental values of compressibility were smaller than the calculated

values. They interpreted this to mean that the solute and solvent were

in each case compressed together by chemical forces so that externally

applied compressive forces had less effect than if the solid solutions had

been mere mechanical dispersions of atoms, t

* When pressure is used as an index of concentration in the mass-action-law equa-

tion, it is evident that the term 26“ disappears since electrons exert no pressure.

t Experiments by Phelps and Davey^® on solid solutions of aluminum (99.971 per

cent) in pure silver (made by reduction of Baker’s Analyzed C. P. AgNOa) showed

that the densities of the solid solutions were less than could be calculated on the basis

of merely substituting atoms of A1 for atoms of Ag in the crystal lattice. This was
interpreted to mean that, instead of a mechanical dispersion of A1 atoms in the Ag
lattice, there was present a dispersion of ‘‘molecules” of AgsAl or even of submicro-

scopic (so small, indeed, that they could not show diffraction patterns under the con-

ditions of the experiments) crystals of the intermetallic compound AgaAl whose low

density would account for the low over-all densities of the solid solutions. Barrett'®

was, however, unable to confirm these results in spite of long and careful annealing

on certain of his specimens. This may mean that either Barrett or Phelps and
Davey had some unrecognized error in their experiments, or it may mean that Barrett

did not succeed in growing submicroscopic aggregates of AgaAl. At the time this

is written, there is no way, short of time-consuming repetition of the whole set of

experiments, of deciding between these two alternatives. The result is that we cannot,

with certainty, use the published data on discrepancies in density as an aid to the

study of solid solutions.
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If we accept the picture of chemical combination between solvent

and solute, we have at once a qualitative explanation of the well-known
fact that the electrical conductivity of metallic solid solutions is con-

siderably less than that of the pure solvent metal. If the solute is in

chemical combination with the solvent, an appreciable fraction of the

valence electrons (which carry the electric current) are tied up to the

negative ions of the solid solution. In other words, except at high

temperatures, the compound of solute and solvent acts like a non-

conductor of electricity. The valence electrons of the uncombined
solvent c^in no longer travel directly along the p:)tential gradient; they

must travel around the molecules (or even submicroscopic crystals) of

the chemica' compound. The effect is as though the cross-section of

the conduct »r were decreased and its length increased. Such a result

would hardl^v have b 'en ]gre'Ucte<l on the basis of a mere mechanical

dispersion of , olute in solvfe .

Our niMure gives us a reasonable explanation of the experimental

fart th 1, in general, the lattice parameter of a solid solution is either

larger ur smallei than that of the pure solid solvent. This can be illus-

trated in terms of metallic solid solutions which have already been men-

tioned. If a molecule’’ of compound merely replaces an atom of the

solvent metal and is larger than the atom which it replaces, then of

course the lattice parameter will be increased. This was the case in

Hanawalt’s experiments in which a molecule of PdH replaced an atom

of Pd in the crystal lattice. The effect needs only to be mechanical

—

merely a matter of pushing atoms of solvent metal a little farther away

from each other in the neighborhood of the molecule” of the compound.

If, instead, the solute and solvent tend to form an ionic intermetallic

compound,* the electrostatic forces between adjacent ions will tend

to pull them closer together. If the combined volume of the compressed

ions is less than that of the atoms of solvent metal whose places they

occupy, then the effective lattice parameter is decreased. This is

illustrated by the case of solid solutions of palladium in copper (see

Fig. 1) or of aluminum in silver. The two-dimensional analogy is

shown in Fig. 2. The chains of solvent metal, held together by cohesive

forces, would transmit the pull from the ions to the rest of the crystal.

The effect would be comparable to the pull of a rope tied around a

bundle. Just as the bundle is put under compression, so the crystal

of solvent metal is put under compression. Similarly, if the combined

volume of the compressed ions is greater than that of the atoms of

solvent metal whose places they occupy, then the lattice parameter

is increased. This is illustrated by the case of solid solutions of copper in

* That is, in the same sense that NaCl is ionic (see Chap. XIX). In many cases

the ionic nature of intermetallic compounds is much more complicated. This is.

brought out in the discussion of Hume-Rothery^s mle in Chap. XIX.



534 CRYSTAL STRUCTURE

palladium (see Fig. 1). The situation is now much as in the case of

the Pd-H system, and the necessary changes in wording of the foregoing

and the changes in Fig. 2 will be obvious. Irrespective of whether

the lattice parameter is increased or decreased, the regions near the ions

would be distorted and so would produce little or no x-ray diffraction

pattern. This is consistent with the experimental fact that the diffrac-

tion pattern of the solvent metal becomes weaker as the percentage

of solute is increased. The portion of the crystal of solvent metal

midway between “molecules’’ of intermetallic compound would show

Fiq. 2.—Two-dimensional analogy of a solid solution of A in B (i.c., of AxBy in B) in the

completely disaggregated state.

either a smaller lattice parameter due to the compression or a larger

parameter due to the expansion, again agreeing with the results of

experiment.

Our picture of solid solution offers a simple mechanism for the experi-

mental facts of the “precipitation” of an intermetallic compound* from

solid solution.^® This will be illustrated by the case of AgsAl. (FeaC or

any similar compound might have been used equally well). According

to our picture we should expect the aluminum in solid solution in silver

to be in the form of A1 and we should expect every A1 to be accom-

panied by three Ag+ to give AgaAl. We may assume that, if the A1

migrates in the crystal, it can hand back a valence electron to one Ag+
and pick up one from a neutral Ag in its path. In this way, although

we should always have the A1 as part of AgaAl, it is not necessary to

picture migrations for anything except the A1 . If, during migration,

two or more A1 happen to fall into the correct spatial rglationship

for the lattice of AgsAl, they will tend to stay there. If, now, a third and

* A short discussion of interiftetallic compounds is given in Chap. XIX.
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a fourth A1 happen to fall into the correct positions with respect to

the first two, they will have a still greater tendency to remain, so that

tiny aggregates of AgsAl can be built up. In general these aggregates

will be too small to give an x-ray diffraction pattern. Since the presence

of these tiny particles of AgsAl cannot be demonstrated either by x-rays

or by the microscope, we must classify the alloy as a solid solution; the

existence of the second phase is here a matter of theory, not of demonstra-

ble fact. The final size of the aggregates will be the result of two opposing
tendencies: (1) a tendency toward disaggregation, which should be a

function of the temperature, and (2) a tendency toward aggregation

which should be a function of the concentration of A1 . Therefore at

a gi\^n temperature and a given concentration of A1
,
a definite pro-

portion of the A1 will necessarily be in ionic dispersion in the silver,

and the rest ot the A1 will be in the tiny aggregates of AgsAl. As
the concentration ^ A1— is increased, more and more of the silver will

be in the form of Ag:Al and will not contribute to the diffraction pattern

of the compressed silver. More and more time should therefore be

req^iiired to obtain diffraction patterns of the solid solution as the per-

centage of aluminum is increased. This is in agreement with the experi-

mental facts. As the concentration of A1— is still further increased, the

tendency toward aggregation should become so large that the aggregates

of AgsAl should begin to show diffraction patterns of their own. The
existence of the second phase is now no longer a matter of theory but is a

demonstrable fact. The alloy is manifestly no longer homogeneous and

therefore the alloy as a whole is no longer to be called a solid solution.

As the diffraction patterns of silver continue to decrease in intensity due

to the high percentage of AgsAl, the patterns of AgsAl should increase

in intensity. Here again the predictions of the theory are in accord with

the facts of experiment. The two-dimensional analogy for these aggre-

gates of AgsAl is shown in Fig. 3. It is not to be assumed that the crystals

of the new phase, AgsAl, will be perfect. In the first place, we learned

in Chap. XII that the precipitate will tend to form first along the grain

boundaries of the silver and in the H-crevices so that they will have the

best possible chance of picking up such impurities as may happen to be

present. In the second place there is the probability that, as ions of

A1— cluster together with their fellows and with Ag+> some neutral

atoms of silver will remain mechanically enclosed in the AgaAl crystal.

Of course, this imperfection of the crystals of the precipitate adds still

more to the difficulties of the crystal analyst in demonstrating by x-ray

methods the existence of a second phase in a suspected ''solid solution.

So far we have discussed the chemical conditions which must be

satisfied in order that we may have a solid solution. There remains to

be discussed what physical conditions (e.g., size and shape of atomic

and ionic domains) must also be satisfied. These physical conditions
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can be visualized most clearly in the case of mix-crystals and will there-

fore be treated under that heading.

Mix-crystals.—We have seen both in the case of liquid solutions and

in the case of solid solutions that there is a good reason for assuming the

forces involved to be chemical in their nature. So far, the solid solutions

which we have studied have had chemical elements as solute and solvent.

It will be of interest to see how our picture will apply to the special case

of solid solution in which both solute and solvent are ionic compounds.

Standard classroom examples of such solid solutions are the system

AgCl-NaCl or the system HgBr2-Hgl2. It will be noticed that in both

Fig. 3.
—

^Two-dimensional analogy of a solid solution of A in B (i.c., of AxBy in B) in a
partially aggregated state.

of these examples we are dealing with two ionic salts which have a com-

mon ion. Although the common ion is not a requirement, most of the

best known solid solutions of one ionic salt in another contain a common
ion. Solutions of this type were called by German investigators Misch-

kristalle.'^ The word was mistranslated as ‘‘mixed crystals'' and the

error has persisted in the literature. A better translation would have

been “crystals composed of mixtures," or briefly “mix-crystals." When
two salts have a common ion knd both have the same crystal structure,

it is not possible (except on the basis of proportions) to distinguish

between the solute and the solvent. In such cases the chemical nature

of the solid solution is easily recognized. For instance, in the system
AgCl-NaCI it makes no chemical difference to a Cl“ ion whether it is

symmetrically surrounded by six Ag+, or by six Na+ or by nAg+ and

(6 — n)Na+, Obviously the chemical conditions for solution are already

satisfied. The act of solution involves, therefore, only the heat required

to equal the mechanical work of diffusing the ions of one salt among the
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ions of the other. This heat corresponds to the heat required by a gas
expanding against a small external force.* The heat of solid solution

for a mix-crystal should therefore be either negligibly small or positive, f

That this is so is shown in Table I.

Granting that we have the proper chemical prerequisites for solid

solution, there remains the geometrical prerequisite as to whether the

sizes and shapes of the ionic domains are such as to permit the mix-

Table I.

—

Heats op Solution for Various Mix-crystals

System
Heat of solu-

tion, calories
|

1

1

References [quoted by
G. Bruni, Chem. Rev.,

1, 345 (1925)1

KG10,-KMn04
I

0 a

FePOrC'iSO. 0 or -f a

KOI lit.a 2,100
1

h

KBr-NnBr 1,400
i

h

Kl-Nal 1,250 h

KCl-RbCl + c

KCn-KBr 220 d

KBr-KI 390 d

KC\-K1 661 d

NaN03-N8N02 400 e

NaNOn-KNOa 0 /, 9

“ SoMMERFKLD, Zeit phys. Chem., 36, 754 (1901).

Kuknakow and Zemozu/.ny, Zeit. anorg. Chem., 62, 186 (1907).

« Zemczuzny and Rambacmi, Zeit. anorg. Chem., 63, 403 (1910).

Bruni and Aambori, Atti ist. Veneto, 71, 61 (1911).

• Bruni and Meneohini, Gazz. chim. ital., 40, 1 (1910).

/ Zawidski and Soiiazzer, Kosmos, 36, 498 (1910).

^ Amaoori, Atti ist. Veneto^ 72, 461 (1912;.

crj^stal to form. It seems reasonable to suppose that two ionic com-

pounds would dissolve most easily in solid solution in each other if their

ionic domains were of the same size and shape. It is easy to insure the

same shape of ionic domains, for we have only to pick ionic compounds

which have the same type of crystal structure, for instance, NaCl and

AgCl. We cannot hope to find the same size of domains for the ions of

two different chemical elements, but we can choose ions whose domains

cover a definite range of sizes. In this way we can hope to find out how

closely the sizes of the two ionic domains must approximate each other

in order that mix-crystals may form. This was done by Havighurst,

Mack, and Blake. Since they worked with salts with a common ion,

* The heat of vaporization hardly enters into the calculation in the case of mix-

crystals. For instance, each Ag^ ion in AgCl is symmetrically surrounded by six

Cl” ions; when AgCl is in solid solution in NaCl, each Ag+ ion is still surrounded by

six Cl” ions.

t Positive according to the rational convention of signs. Negative according to

the egocentric convention.
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they were able to use the difference between the lattice parameters as

measures of the difference in radii of the domains of the other ions.

They found that, if two such salts had lattice parameters ai and and

if they had a similar crystal structure, then mix-crystals could be formed,

if

(i\ —
+ ^2)

< 0.05

In other words, given two ionic compounds with a common ion, the two
non-common ions are sufficiently similar for the salts to form mix-

crystals if, 20.21 (1) ^^0 shapes of the domains of the non-common ions are

identical, and (2) the difference between the radii of the domains of the

non-common ions is not more than 5 per cent of the average of the

lattice parameters of the two salts.

Much the same sort of rule must apply to solid solutions of the sub-

stitutional type of one metal in another except that probably we should

use the ionic domain of the solute metal and the atomic domain of the

solvent metal. Unfortunately we know almost nothing about the sizes

of the negative ionic domains of metals.

It was stated at the beginning of this section that, although a common
ion is customary in mix-crystals, it is not necessary. It is the degree of

similarity in size and shape of the ionic domains that decides whether

or not a mix-crystal can be formed. ¥ot instance^^ BaS04 and KMn04
form well-defined mix-crystals together. Similarly NaBr or NaCl
(but not RbBr which has too large a lattice parameter) may be seeded

with freshly cleaved RbS.‘^^

Mix-crystals are sufficiently simple in structure so that it is possible

to study quantitatively the change in the lattice parameter of the solvent

caused by the presence of the solute. For such cases, Havighurst,

Mack, And Blake^® propose the general equation for cubic crystals:

= ai” + (a2^ — a{^)x

where a = edge of the unit cube of the solid solution.

ai = edge of the unit cube of the solvent.

a2 = edge of the unit cube of the solute.

X = mole fraction of the solute.

When n = 8 or 3, this becomes the special case of Grimm and Herzfeld's

formula.^^ When n = 3 or 1, it becomes the special case of Vegard^s

formula.^® Havighurst, Mack, and Blake find that their data favor

n = 3. If this is correct, it makes an easy interpretation of their equa-

tion in terms of the volumes of the unit-cubes of solution, solvent and
solute.

It is to be assumed that the ions of the same sign in a mix-crystal

are arranged together in an absolutely random fashion. If, for example,

we could examine a mix-ciystal of AgCl-NaCl and if we could plot the
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frequency with which two, three, four, etc., Ag+ ions (or Na+ ions)

occupy adjacent positive points in the lattice, we would obtain a proba-

bility curve. If we found the frequency of clustering to be much in

excess of this, we should assume at once, either that'^the molten salts had
been incompletely mixed together before being frozen, or that at the

temperature of the solid they were insoluble in each other. In such a

case, we should be able to demonstrate the presence of AgCl and NaCl
by their characteristic diffraction patterns. On the other hand, there is

no evidence that Ag'^* and Na+ tend to become uniformly distributed

in the crystal. Such a condition would ?ive regular, periodic spacings

of Ag+— Ag"^ and of Na"^— Na*^. These periodic spacings should,

in turn, give rise to faint new lines in the diffraction pattern of the solid

solution. Such lines have never been found for a mix-crystal. They
have, been found in the case of: (a) 0.26Si + 0.75Fe,*^® corresponding to

a possible chemitai oompound FeaSi; (b) 0.5Pd + 0.5Cu, which we
have already recognized as the chemical compound PdCu; (c)

0.25Au + 0.75Cu,*® which we shall learn in Chap. XIX to consider as a

chemical compound. In general, a tendency toward a truly uniform

distribution of a solute in a solvent is evidence of definite chemical com-

bination. It cannot occur in mix-crystals where the chemical prereq-

uisites for solid solution have already been met by the very nature of

the solvent and solute.

Mechanism of Diffusion in Solid Solutions.—There are two ways in

which we may picture the diffusion of a solid solute through a solid

solvent. The first of these has already been hinted at in Chaps. XII
and XIII. In terms of the kinetic theory we picture each of the mole-

cules (or atoms or ions) to be in random motion within a limited region.

It is a result of the randomness of these motions that a given group of

adjacent molecules (or atoms or ions) will at one instant be clustered

close together and at some other instant will be separated by relatively

large distances. If, now, in a group containing several molecules (or

atoms or ions) of the solvent and one molecule (or atom or ion) of solute,

the molecules of solvent should happen to move apart from each other,

and if at the same instant the molecule of solute should happen to be

moving in the direction of the opening, and if it should happen at the

next instant that the molecules of solvent should come close to each

other again immediately behind the molecule of solute—if all this suc-

cession of chance occurrences should take place—then the molecule of

solute would have diffused by one step. Jeffries has calculated*^ the

number of vibrations necessary, on the average, for an atom ^ion) of

copper to travel one atomic diameter in nickel. Copper diffuses into

* The author was informed by John S. Marsh that the **superlattice” lines may
be found over a wide range of concentrations down to 12.6 atomic per cent Si. In this

connection see Fig. 5b of Chap. VI.
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nickel at the rate of 0.025 cm. in 140 hr. at 1000°C., or about two atomic

diameters per second. The rate of thermal vibration of the atoms is

somewhat in excess of 10^^ times per second. It is evident, then, that,

if the copper could travel in a straight line in the nickel, it would have to

make one step for every 500,000,000,000 vibrations. Even if the actual

zigzag path of the copper ion were such that only one step out of 500

could be effective in the forward diffusion of the copper, we would still

have the stupendous figure of 1,000,000,000 vibrations for a step of a

single atomic diameter. The number of vibrations per step for carbon

in iron is about 3^oo that for copper in nickel. It is evident, then,

that the process of diffusion is a relatively sluggish process. The only

ways in which diffusion can be hastened, according to this picture, are

(a) by increasing the number of vibrations per second, i.e., by raising the

temperature, or possibly (6) by expanding the crystal lattice through the

action of some second solute. Both of these conclusions seem to be in

accord with ordinary metallurgical experience.

This simple picture of the mechanism of diffusion cannot be more
than an approximation to reality, for it does not lead to the experimental

fact^® that diffusion is more sluggish in metals of low symmetry than in

metals of high symmetry. A theory of diffusion put forward by Lang-

muir^® overcomes this difficulty. Langmuir assumes that a whole row of

atoms can move lengthwise in a crystal over a distance of at least one

atomic diameter. Since every atom must, by the very nature of crystal

structure, lie simultaneously in a large number of such rows, we have a

possible picture of the diffusion process. If one row containing an atom
(ion) of solute happened to move by one atomic diameter, and if, while

it was at rest in this new position, another row containing the same
atom moved in some other direction, then the atom would have suffered

a net change in position of one step in a diagonal direction. The chance

of diffusion of the atom would then depend upon (1) the chance that the

first row will move as much as an atomic diameter, (2) the chance that

the first row will stand still at such a place that the atoms once more fit

into the crystal structure, (3) the chance that the second, intersecting,

row will move as much as an atomic diameter at the time the first row

is standing still. Rosenhain has described the successive movements

of ^‘upwards of one row, horizontally of another, horizontally of another

again, and downwards of the fourth'' as a “sort of puss-in-the-comer

game with very limited rules." It is easy to guess that the degree of

probability of diffusion is no greater on this theory than on the one first

described. It has the advantage that the motion of a whole row will be

easier the more closely packed it is (i.e., the more important the zone

axis is), or, what amounts to the same thing, the greater the spacing

between the centers of atoms of adjacent rows. This requires diffusion

to take place most readil}^ along the directions of the most important
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zone axes. Since the number of zone axes of a given form is greater in

crystals of high symmetry, it follows that the rate of diffusion should be
greater the higher the symmetry of the solvent material.

SUMMARY

We have discussed the criteria for the existence of solid solutions and
have found that the burden of proof of solid solution rests upon the experi-

menter. We have discussed the evidence for the chemical nature of the

forces which are responsible for the act of solution and have arrived at a

picture of solid solution which seems to ‘Correlate the available experi-

mental data. This picture differs from that which will be found in the

literature and in most textbooks on metallography. We have found that

mix-fiystals form a special case under our picture of solid solution, and

we huVe used tho data fiH^m mix-crystals to discover some clues as to the

geometrical condit cti Which must be satisfied before we can have a solid

soUition. Finally, we have discussed the mechanism of diffusion by which

molecules (or atoms or ions) can come to equilibrium in a solid solution.
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CHAPTER XIX

CHEMICAL INFORMATION TO BE GAINED FROM
CRYSTAL-STRUCTURE STUDIES

In previous chapters we have frequently had occasion to mention
specific items of chemical information which had a direct bearing on the

subject of crystal structure. We shall now look at the other side of the

picture and shall attempt to collect some of the chemical information

which. may be gained from a study of ciystals. It is hoped that the

topics to be discussed and the illustrations used may enable the student

to read the chemical |1 ^ 3rature more easily and may help him make intelli-

gent chemical applications of crystal-structure technique.

TYPES OF CHEMICAL COMBINATION

di Molecular Compounds.—The basis of chemistry lies in the distinc-

tion between elements and compounds and in the law that compounds

contain definite proportions of their component elements. In the early

days of chemistry this gave rise to the simple picture that compounds
were made up of units, called molecules,^' and that each molecule was

made up of atoms of the component elements. At the time this simple

picture was first suggested, it was not regarded as being anything more

than a speculation with only a shadowy foundation in experimental

fact. It was taken more and more seriously as more data became avail-

able until finally it became universally accepted as a working hypothesis.

It was recognized, however, that the evidence for the picture was indirect

and that exceptions had to be made at least in the case of aqueous solu-

tions of electrolytes. The methods of crystal analysis offered for the first

time a very direct type of evidence in connection with this problem. It

is now possible, if we once grant the atomic nature of the elements, to find

whether or not the atoms in a compound are grouped together in definite

proportions in physical entities which may therefore be called molecules.

It turns out that not all compounds have their atoms so grouped

as to show the existence of molecules, but apparently all non-electrolytes

are molecular in structure. Such compounds are said to be molecular,^'

“non-polar,^^ or ^‘homopolar’^ compounds. Of the crystalline inorganic

compounds which are molecular, the best known are Fe208, AUOs,
Cr203, Si02,

and Snl4.* Crystal analysis of the first three of these

Others are Ga208, Ti208 ,
and V2O8 with the same structure as Fe208.

Ice is undoubtedly molecular since the ion-product constant of water is so small;

but the x-ray diffraction effects from hydrogen are so small that the crystal-structure

data hardly constitute direct evidence of molecular grouping.

543
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indicates that three oxygens lie at the corners of an equilateral triangle

with one of the two metal atoms immediately above and the other

immediately below the center of the triangle. The whole crystal is

made up of a succession of groups of this sort, so that the three oxygens

are somewhat closer to the two metals atoms of their own group than

they are to the metal atoms of adjacent groups. In other words, the

three oxygens belong'^ to the two metal atoms in the manner suggested

by the chemical formula. If we adopt the picture that the atoms in

molecules of this sort are held together by sharing their valence electrons,

then it follows that these materials should have no free electrons with

which to conduct electricity in the way that metals do and because of

the size of the molecules they should not be able to conduct by the actual

transport of material in the way that electrolytes do. It is interesting

to note in this connection that AI2O3 is a good insulator even at tempera-

tures near its melting point and that it shows no tendency to electrolyze.

The structure of quartz has already been discussed in Chap. VI.

The molecule is shaped like a bent arm with the silicon at the elbow

and an oxygen at the hand and at the shoulder. At room temperature

the two oxygens are slightly closer to their own silicon than to the other

silicons in the neighborhood, so that at ordinary temperatures quartz

may be said to be made up of real molecules. The difference in distance

is small enough, however, so that at elevated temperatures the heat

motion will cause a large number of oxygens at any given instant to be

closer to the silicons of some other molecule than they are to their own
silicons. At such temperatures the word^^‘ molecule” ceases to have any

meaning for quartz beyond an indication of the stoichiometrical pro-

portions of oxygen and silicon. Quartz changes, then, from a molecular

compound to an ionic compound (see section h) when the temperature

is raised sufficiently. This gives a rational explanation for the fact

that quartz is a good insulator at room temperature and a relatively good

conductor near its melting point.

The structure of Snl4 is not one of simple groupings of Snl4 as one

might expect. Instead, this compound seems to crystallize with a

face-centered cubic distribution of the complex molecule (Snl4)2.

The inorganic radicals such as SO3
,
SO4

,
NO3”, CO3

,
etc.,

are real crystallographic entities so that they are regarded as having a

“molecular” type of structure. In the case of the CO3 ion the shape

and dimensions are quite accurately known both from crystal-structure

measurements (Chap. IX) and from optical calculations (Chap. XIV).
The oxygens are ,symmetrically placed about the central carbon atom
and are closer to it than to the adjacent Ca and C atoms. The same
sort of statement applies to the NOs” ion, and presumably applies to

the other inorganic radicals like SO3 ,
SO4

,
etc. It is as though the

central atoms “ shared ”Hheir valence electrons with the oxygens except
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that the shared electrons seem to be closer to the oxygens than to the
central atom, giving somewhat the effect of an ionic cluster. This
picture is consistent with the intensity measurements of x-ray diffraction

(Chaps. \ and IX), with the optical calculations of Chap. XIV, and
with the data on radicals in organic chemistry (see reference 58 of Chap.
XIII).

Except for the salts of simple acids (e.gf., sodium acetate), all crystal-

line organic compounds which have been investigated so far by crystal-

structure methods show the presence of real molecules. The sizes

and shapes of the molecular domj^ins of the fatty acids^*^’®’^*® agree fairly

well with those predicted by the water-spreading methods of Langmuir^
and Adam^ except that the effective lengths of the molecules are about

10 pir cent smaller, 'rhis will be discussed more fully later on in this

chapter.

b. Ionic Compoir ifi.'—The crystal structure of NaCl has already

bedri discussed in Chaps. I, V, VI, and IX. If a model of the NaCl
structure is built, it is seen at once that each sodium is symmetrically

surrounded by six chlorines all equally spaced from it, and each chlorine

is sihiiiarly surrounded by six equally spaced sodiums. There is nothing

in the crystal structure of NaCl to indicate that a given sodium is tied

up more tightly to one chlorine than to any other of the six which sur-

round it. In other words, there is no evidence whatever in the crystal-

structure data in favor of the existence of a molecule of sodium chloride.

This does not mean that sodium chloride is not a definite chemical

compound. In a sodium chloride crystal of infinite extent there must

be as many sodiums as chlorines so that, on a statistical basis, the law of

definite proportions is obeyed. Even though the law cannot be applied

in its original sense to the individual sodiums and to the individual

chlorines, sodium chloride is entitled to be classed as a compound by
reason of its statistical obedience to the law.

The crystal certainly contains no molecules'^ except in the stoi-

chiometric sense. It is therefore not a molecular compound. All

the well-known electrolytic evidence from aqueous solutions of NaCl
and from molten (and even from solid) NaCl points to the ionic state

of the sodium and of the chlorine of which it is composed. It is there-

fore only natural for compounds of this type to be called ionic," polar,"

or ^‘heteropolar" compounds. It is interesting to note in this connection

that Hengstenberg has found® direct evidence from x-ray studies that

solid KCl is composed of ions not atoms. He distorted a KCl crystal

by placing a strong electrostatic field (20 kv. on a crystal 0.36 mm. thick,

and 18 kv. on a crystal 0.20 mm. thick) across the two opposite (100)

faces while the crystal was diffracting MoK^ rays. He found that the

intensity of the tenth-order diffracted beam from the (0 1 0) planes was
altered by 2 and 6 per cent, respectively, for the two samples which he
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used. This change in intensity agrees with the distortion calculated

on the. basis of a uniform fall of potential across a crystal composed
of ions rather than of atoms.

Ionic compounds are not confined to crystals of the NaCl-KCl
type. For instance, in CsCl each Cs+ is symmetrically surrounded

by eight Cl” and each Cl” is symmetrically surrounded by eight Cs"*".

All the arguments used to show that NaCl is ionic in its nature apply

also to CsCl. From what has already been stated, it is evident that we
may lay down the generalization that a crystalline compound is ionic

if every positive ion in the crystal is symmetrically surrounded by nega-

tive ions and if every negative ion is symmetrically surrounded by posi-

tive ions. In applying this generalization, the sign of an ion may be

determined by the relative position of the element in the periodic table

without attempting actual experiments in electrolysis. For instance

it would be hard to electrolyze CaO even in the laboratory, but it has the

same crystal structure as NaCl and the periodic table leaves no doubt

as to which element is the positive ion and which is the negative ion.

On this basis we can class nearly all inorganic oxides and sulphides as

ionic compounds, for instance CU2O, CuO, Ag20
,
ZnO, CdO, ZnS, CdS,

etc. The crystal structures of inorganic salts such as the alkali and
alkali-earth halides, the sulphates, nitrates, and carbonates, show that

they, too, can be listed as being ionic compounds. All intermetallic

compounds whose crystal structures have been investigated so far have

turned out to be ionic compounds, thus falling in with the picture given

in Chap. XVIII. Even the 0.25 Au-0.75 Cu alloy investigated by Bain^

turns out to fulfill the criterion for an ionic compound. He found that;

after he had heated the so-called ‘‘solid'' solution for a long time close

to the melting point, the Au and Cu had migrated so that the Au was

at the corners of the face-centered cube and the Cu at the centers of the

faces. This caused each Au to be symmetrically surrounded by twelve

Cu at a distance* of a/V^ and caused each Cu to be symmetrically

surrounded by four Au at a distance of a/\/2.

c. Geometrical Compounds.—Intermetallic compounds seem to obey

the law of definite proportions more because of the requirements of the

solid geometry of crystal lattices than because of any positive valences

which they may show in the formation of oxides, salts, etc., or because

of any negative valences which may be predicted by atomic-structure

theories. Out of a total of about 150 intermetallic compounds listed

by Tammann^® only 35 are consistent with the saline valences of the

component metals. Not only do we find compounds in the literature

such as CuPd, AgsAl, and Ni2Mg, but we even find NaZni2 ,
NaCds,

KZni2 ,
FeZnr, Cui2Zn, CuZni2,

and CuaiSns. The geometrical nature

of some of these compounds suggests that possibly the valence electrons

The edge of the unit-cUhe is represented by a as usual.
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of the component elements may occupy definite positions in the crystal

lattice. In previous chapters we have already seen evidence which is

consistent with this picture. The picture is rendered still more probable

by Hume-Rothery’s rule^^ that, for binary intermetallic compounds
of the same type of crystal structure, the ratio

Number of valence electrons per unit of structure

Number of atoms per unit of structure

is constant.* This rule may be illustrated by the following examples.

The intermetallic compounds which represent the jS-phases of the Cu-Zn,

Cu-Al, and Cu-Sn systems of alloys all have the type of crystal structure

illustrated in Fig. 1. Their chemical formulas are CuZn, CuaAl, and

CusSn, thus giving Hume-Rothery ratios of

l + 2_3 3+3_6. 5 + 4_9
1 + 1 2 3 + 1 4 5 + 1 6

respectively. The 7-phases of the same three systems show the com-

pounds Cu36A1i6(= CU9AI4), Cu2oZn32(= CusZns), and Cu 3iSn 8,t all of

which have the same crystal structure. Their Hume-Rothery ratios

are:

9 + 12 21 5 + 16 _ 21^ 31 + 32 _ 63 _ 21

9 + 4 13 5 + 8 13 ' 31 + 8 39 13

* We have already seen in Chap. XV that there is some justification for thinking

of crystals of the metallic elements as having definite space-group positions for the

valence electrons. A Hume-Rothery type of compound may be pictured similarly as

having two metallic elements symmetrically placed on some of the points of a structure

with the valence electrons from both metals occupying the remaining points.

t CuaiSng is only 0.8 weight per cent Sn off from Cu 4Sn; and this phase is often

given that formula. Actually a bronze of composition 4Cu + Sn is not homogeneous.

It is homogeneous at about 1 weight per cent higher in Sn content.
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In 1933, there were 35 binary intermetallic alloys known in which

up to three intermediate phases were met with which were structurally

similar to the i3-, 7-, and e-phases of the Cu-Zn system. The character-

istic values for the Hume-Rothery ratio are:

(a) ^ for phases with the body-centered cubic lattice of /3-brass or with the cubic

lattice assigned in the literature to /3-manganese, with 20 atoms in the unit-cube.

Such phases will all be called /3-phases.

Q>) ^H 3 for phases with the cubic lattice of 7-brass with 62 atoms in the unit-cube.

Such phases will all be called 7-phases.

(c) % for phases with the hexagonal close-packed lattice of c-brass. Such phases

will all be called €-phases.

Hume-Rothery^s ratio may be written

mx + ny ^ ^
X + y

where x is the number of atoms of the first component in the chemical

formula of the binary intermetallic compound, y is the number of atoms

of the second component, m is the number of valence electrons per atom
of the first component, and n is the number of valence electrons per

atom of the second component.

This equation may be solved for the ratio

X _ k — n

y m — k

^ —mm Yl

Since - is positive, — must also be positive. This requires either

that m > k > n or that n > k > m. The following conclusions may
be drawn from these inequalities

(1) /3-, 7-, and c-structures are nob to be expected in binary intermetallic alloys

if both components have the same number of valence electrons.

(2) A j3-, 7-, or €-structure is to be expected in binary intermetallic alloys if the one

component has less and the other component more than 23^ 3 ,
or valence elec-

trons, respectively.

• (3) Since the characteristic values of concentrations of valence electrons lie between

the same two consecutive integers, it follows that in alloys in which one of the three

structures referred to is met with, both other structures should be expected too. This

accounts for the frequent coexistence of ^-, y-, and c-structures.

(4) Since the lower and upper limits for the values of concentration of valence

electrons are one and two, it follows that a /3-, 7-, or c-structure is to be expected in

binary intermetallic alloys if the one component has not more than one valence elec-

tron and the other component has not less than two valence electrons.

Figure la shows CuZn clearly fulfills the criteria for an ionic

compound: each Cu is symmetrically surrounded by eight Zn, and each
Zn is symmetrically surrounded by eight Cu. In the case of CusAl,
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matters are a little more complicated.* Each A1 is symmetrically sur-

rounded by six Cu at a distance a/2 and by eight Cu at a distance

a\/3
T “ = 0.433a; each Cu at the edge-centers of the unit-cube is sym-

metrically surrounded by six A1 at a distance a/2 and by eight Cu at a
a\/3

distance -
;
each Cu on a body-diagonal of the unit-cube is surrounded

by four A1 and by four Cu, all at a distance of In spite of the

complicated structure it is evident from Fig. 1 that the structures of

CuZn and CusAl are closely related and that CusAl is definitely ionic.

Apparently no one has yet succeeded in getting the Cu and Sn of CusSn
to diffuse uniformly enough to their equilibrium positions to give a good
strain-free cryst-ni. The x-ray data, therefore, are as yet unable to

demonstrate any Ifi ig except that the crystal is apparently body-

cebtered cubic.

d. Secondary-valence (Wernerian) Compounds.—We now have to

deal with a type of chemical combination which is quite inconsistent

with our ordinary freshman- chemistry ideas of valence, f As a typical

example we may take potassium chloroplatinate (K2PtCl 6). When
dissolved in water, this substance shows the presence of K"^ ions and of

PtClo— ions as though we might write the reaction, according to the

old Arrhenius theory.

KaPtCle 2K+ + PtClo—

The PtCle— ion is very stable, since the concentration of Cl” or of

Pt-f-+++ in the solution is vanishingly small. This means that the PtCle

—

must appear as a group in the crystal in such a manner that throughout

its whole history each Pt ‘‘atom” is attached to precisely the same six

Cl “atoms.” The departure from the ordinary principles of valence is

evident when it is realized that this compound is the end member of the

following series of seven compounds, all of which are well known:

( 1 ) [Pt(NH8)6]Cl4, Hexammine-plat6 chloride

(2 ) [Pt(NH8)5 Cl] CU, Chloro-pentammine-plat6 chloride

(3) [Pt(NH3)4 CUjCU, Dichloro-tetrammine-plat6 chloride

(4) [PtCNHsia CUjCl, Trichloro-triammine-plat6 chloride

(6) Pt(NH8)2 CU, Tetrachloro-diammine platinum

* AgaAl is said to have a structure similar to that of jS-manganese, but in view of

the doubt attached'* to the published structure for
/
3-manganese, it is best not to

speculate too much. Until more work is done, it is probably best to picture AgsAl in

terms of CuaAl.

t That these compounds are rarely mentioned in freshman texts is not due to their

unimportance or to any infrequency of occurrence but rather to the necessity of con-

fining elementary courses to the simplest possible and most systematic sort of subject

matter.
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(6) K[Pt(NH 3) CU], Potassium pentachloro-ammine plateate

(7) K 2[Pt Cle], Potassium hexachloro plateate

. The fifth member of this series does not ionize. All the rest of these

compounds ionize in such a way that the group within the brackets

appears as one ion. It is evident that the second, third, and fourth

members of this series must crystallize in such a way that the complex

radical remains intact, otherwise a mixture of two or more of the series

would result when one of them is redissolved. Similarly the complex

ion of the sixth member of the series must remain intact in the crystal,

otherwise it would yield a mixture of the fifth and seventh on solution.

It is a natural extrapolation to assume that the two end members of the

series are equally stab.le.

The known valences of Pt raid Cl can hardly explain the tenacity

with which the (NH3) groups are held in the ions. Werner^^'^®*^®’^®

advanced the hypothesis that these ions are composed of a central atom
(in this case platinum), surrounded by a shell of the other atoms or radi-

cals or molecules which compose the ion. This picture is called the

“Wernerian,'^ or “coordination,^' or “secondary-valence" theory.

Werner assigns to each possible central atom one or more “coordination

numbers" which represent the number of chemical entities which it can

attach to itself. For instance, the coordination number for platinum is

six. Those groups in coordination positions which are electrically

neutral {e.g., NHa), and the acid groups or atoms in excess of the primary

valence of the central atom, are supposed to be held to the central atom
by secondary-valence bonds, while the acid groups within the primary

valence of the central atom (together with the groups outside which are

necessary to secure the electrical neutrality of the “molecule" as a

whole) are supposed to be held by ordinary primary-valence forces.

Thus, for the first member of the series listed above, all six (NH3) are sup-

posed to be held by secondary-valence forces and the four primary

valences of Pt are satisfied by the four Cl“ ions outside the complex ion.

For the second member, five (NH3) are pictured as being held by secondary-
valence forces; the Cl" in the complex ion completes the number of six

in the shell surrounding the Pt, and accounts for one of the primary

valences of the Pt, leaving three primary valences for the three Cl" ions

outside the complex ion. When we get to the fifth member of the series,

the two (NH3) are pictured as being held by secondary-valence forces,

and the four Cl" not only complete the requirement of six chemical

entities in the shell around the Pt but they also account for the four

primary valences of the Pt so that the molecule is neutral, and therefore

complete, without additional Cl" ions.’*' The sixth member of the series

* This member of the series is evidently, then, a “molecular” compound. It is

listed under “secondary-valence” compounds because of the (NHs) groups. The
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has only one (NH3) to be held by secondary-valence forces. The four

primary valences of the Pt are accounted for by four Cl"“ in the complex
ion, and the required number of six satellites for the Pt is obtained by
attaching a fifth Cl“ by means of secondary-valence forces. This fifth

Cl”" gives the complex ion a net negative charge of one unit, thus enabling

it to hold one K+ ion outside the com-

plex ion. The seventh member of

the series has all six of the coordination

positions filled by Cl“, thus giving the

complex ion a net negative charge

of two, thus enabling it to hold

two K+ outside the ion. Werner

assumed that, in case the negative

groups are in ,e\c^s bf the primary

valences of the #ratral atom, the

priinary-valence forces are distributed

uniformly over the entire number,

lea\ ing the group negative as a

whole. Thus in K[Pt(NH 3)Cl5] it is

supposed that the five chlorines are

all equivalent. In the case of

K2[PtCl 6] it is assumed by the Wernerian theory that all six chlorines

are symmetrically arranged about the Pt so that they are all equivalent.

The crystal structure of K2[PtC] 6] and of similar compounds^^-^^

offers a truly remarkable confirmation of Werner's theory. This is

illustrated in Fig. 2. There are four ‘‘molecules" per unit-cube. The
space-group is 0\ and the atomic coordinates are:

K (at Wyckoff's 8e)

Fig. 2.—The K2[PtCl8] structure.

The black-centered circles represent the

K"** ions and the white-centered circles

represent the Pt of the [PtCln] ions.

The whole complex ion is shown only in

the case of the Pt at the extreme right

where the six chlorines are shown as small
solid circles.

Pt (at Wyckoff’s 46)

000; HMO; MOM; OMM
Cl (at Wyckoff’s 24o)

«00; OmO; OOw

mOO; OwO; OOtt

and three sets of similar points clustered around

MMO; MOM; oMM
The parameter u is 0.24. so that the six Cl are distant 0.24a from the

other members of the series are evidently ‘‘ionic” compounds. They are classed as

secondary-valence compounds because of the nature of their complex ions.
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nearest Pt and 0.36a from the nearest K. The complex ion [PtCle] is

therefore a real crystallographic entity as predicted by Werner’s theory.

It will be noted, too, that the predictions of the theory are fulfilled in

that the chlorines are symmetrically placed about the platinum. There

is therefore a rational geometrical explanation for the fact that the coor-

dination number of platinum is 6. It is to be expected on this basis that

the coordination numbers for other atoms at the centers of other complex

ions will be limited to numbers with crystallographic significance, i.6.,

2, 3, 4, 6, 8, 12,* etc. Wyckoff^^ over 60 secondary-valence com-

pounds, any one of which would have served instead of K2[PtCl6] as an

example of the correctness of Werner’s theory. In some the complex

ion is positive, in others negative; for instance, [Cr(NH3)B(H20)](C104)3

and K2[Pt(SCN)6]. In still other cases, both ions are complex; for

instance, [Co(NH3)4(H20)2][Co(CK)6] or [Ni(H20)6][SiF6]. A familiar

example of a compound built on the coordination number 2 is CsCUI,
which crystal analysis shows^^ to be really Cs[ICl2].t An interesting

sidelight on the atomic nature of chlorine in this compound is furnished

by the structure and dimensions of the unit-crystal. The unit-crystal

is rhombohedral with Cs-Cl-I-Cl-Cs, all strung along the long body-

diagonal. The distance from the center of one Cs to the center of the I

nearest to it in the chain is fi.l02A. If we assume that the cesium and
the iodine are in the ionic state, we may use the ionic packing-radii of

Chap. XIII to give Cs+ + I” = 3.947A. This leaves 2.166A. for the

packing-diameter of each chlorine along the long body-diagonal of CSCI2I.

Reference to Chap. XIII shows that this is much too small for the

packing-diameter of a chlorine ion, which is 3.178A., so that presumably

the chlorine is in the form of a neutral atom. Unfortunately there are

no crystal-structure measurements on solid CI2 which might give us an

atomic packing-diameter to compare with the diameter 2.166A. We

* Other numbers like 7 can sometimes be made to look like true coordination

numbers by reason of some chemical quirk which adds one to a crystallographically

significant number. For instance, ammonium fluozirconate is ordinarily given the

formula (NH4)8ZrF7. Crystal analysis shows that it has a structure^® in which half

of the negative ions are F” and half are [ZrFe] ,
so that its chemical formula should

be written (NH4)3[ZrF6]F, or even NH4F-(NH4)2[ZrF6].

t It does not require much imagination to extend the idea of coordination numbers
beyond the point where it is of much practical use. For instance the coordination

number 3 has been assigned by some to the carbon in the CO3 radical. Similarly,

4 has been assigned to the sulphur in the SO 4 radical. The Werner theory, applied

to these radicals, predicts the fact, found experimentally from crystal analysis, of a

symmetrical grouping of oxygens about a central atom and emphasizes the fact,

established experimentally by crystal analysis, that all the oxygens in NaNOs, or

CaCOs, etc., are identical in their properties and that all the oxygens in Na2S04 are

identical in their properties, f.e., that the alkali ions are ^‘bonded” to the negative

radical as a whole and are not attached to particular individual oxygens. A more
legitimate use of the coordinatlbn number 4 is found in compounds like K2[PtCl4].
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can, however, make the atomic state of the chlorine look plausible by the
following ratios:

Packing-diameter of Cl in CsCUI^* _ 2.156

Packing-diameter of Cl~ ion (Chap. XIII) ~ 3.178
~

Packing-diameter of atomic I in _ 2.70 _ .

Packing-diameter ofI" ion (Chap. XIII) “ SM ~

The results of crystal analysis have so completely confirmed the
theory of Werner that the principle of coordination numbers is now taken

as a basic principle in the explanation of complex ions and is even used

as a short-cut by crystal analysts in thf solution of complex structures.

In this connection the reader is referred to a summary by Bragg^® of

the work of himself and his students on complex silicates and to an article

by Pauling^^ on the prijociples which determine the structure of complex

ionic crystals ^

Mixed Ionic Compounds.—We took up in Chap. IX the structure

pf tricalcinm aluminate (SCaO-AUOs). Examination of the structure^*

shows no crystallographic evidence of a formula like Ca3(Al03)2. There

is no indicatkn of those groups which might have been expected to be

present, such as CaO, AIO3, AI2O3, AUOe, etc. The ionic nature of the

compound is evident from the following symmetry considerations.

Every 0 at Wyckoff^s 12/ is midway between two A1 at 3a and 36,

and every 0 at 6d is equidistant from four Ca at 8c. Similarly, every A1

at 3a is equidistant from four O at 12/; every A1 at 36 is equidistant from

four O at 12/; every Ca at la is equidistant from twenty-four 0 at 12/;

every Ca at 8c is (within the error of experiment) equidistant from

six O at 12/. Every A1 at 36 is equidistant from two Ca at la and is

also equidistant from eight Ca at 8c. Similarly, every Ca at la is

equidistant from six A1 at 36, and every Ca at 8c is (within the error of

experiment) equidistant from three A1 at 3a and from three A1 at 36.

Tricalcium aluminate certainly has no grouping which would justify

its name. It is evidently not a molecular compound, nor does it fall

under the simple classification of an ionic compound as discussed in

section 6. Its structure is distinctly different from that of crystals con-

taining complex ions, for, instead of having a complex ion to act as

a crystallographic entity, each Ca, Al, and 0 acts as a crystallographic

unit. Apparently then tricalcium aluminate must be regarded as the

representative of a fifth class of chemical combination. Since it looks

more like a symmetrical mixture of ions than anything else, it has been

called a mixed ionic compound. So far, tricalcium aluminate is the

only compound of this sort.*

* The structure of LilOs is reported*® to show the oxygens midway between the

Li and the I, thus making it look like a mixed ionic compound. This must certainly

be in error because the chemical evidence demands a real lO**" ion.
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VARIATE ATOM EQUIPOINTS

In oiir discussion of the theory of space-groups (Chaps. VIII and IX)

we assumed that crystallographically equivalent points must also be

chemically equivalent. Evidently such an assumption represents only

an ideal state of affairs. In our discussion of topaz (Chap. XI) we found

that F could be replaced by OH in certain parts of the crystal, and in

our study of solid solutions it appeared that in mix-crystals one ion of

the solute could take the place of any ion of solvent of the same sign.

We must therefore recognize definitely that the ideal condition does not

always exist and that, at least for certain equivalent groups of compounds,

it is not necessary to have chemically identical atoms (or ions) at crystal-

lographically equivalent points. Several examples of this departure

from the ideal condition have been listed by Barth.®®

The spinels^®’®^ have the general formula X2YO4 and the crystallo-

graphic unit of structure has eight molecules. It has ordinarily been

assumed that not only do the thirty-two 0 atoms lie on crystallographi-

cally equivalent points, but that the sixteen X atoms and the eight Y
atoms, respectively, are also situated on equivalent points. This

assumption seems to be consistent with the data on the intensity of

diffracted x-ray beams in the case of some of the spinels, for instance,

Al2Zn04, Al2Mg04, Al2Ni04, AI2C0O4, Al2Fe04, Al2Mn04. For all these

the space-group is Oj, and the atomic coordinates are:

X (at Wyckoff’s 16c)

%%%) %%%) %%%] %%%] %%%
HHVs) VsVsVs; %%%\ %%%\ %%%

Y (at Wyckoff’s 8/)

000; 03^H; )iK0; ^o>^;

O (at Wyckoff^s 326)

uuu] uuu) uuu; uuu

and three sets of eight similar points about

^Mo, >^0M, o>^>i

The value of u is close to

These coordinates place the 0 at the corners of tetrahedra which have

Y at the center. In terms of the Werner theory, the coordination

number of Y is four so that the 0 grouping is independent of the valence^,

of F. This leads to typical complex ions when a radical such as (CN)'



CHEMICAL APPLICATIONS 565

is substituted for 0, for instance in K2[Zn(CN)4].* There are, however,
still other spinels for which such a picture is inconsistent with the x-ray
intensity data. For instance, in the case of Fe2Mg04, the calculated

intensities agree with the experimental data only if we assume that eight

of the Fe atoms are structurally equivalent at Wyckoff^s 8/ and that the

other eight Fe plus the eight Mg occupy crystallographically equivalent

points at Wyckoff's 16c. This would change the formula to (MgFe)Fe04.
Other examples are (MgGa)Ga04, (Mgrn)In04, (TiMg)Mg04, (TiFe)-

Fe04, and (SnZn)Zn04 It should be emphasized that the two kinds

of atoms at Wyckoff^s 16c have no ordedy arrangement with respect

to each other; these atoms distribute then)selves on the lattice positions

of 16c quite at random just as in the case of similarly charged ions in a

mix-crystal.

Posenjak snJ Barth r^port*^ variate atom equipoints for the cubic

modification of lilF O2O4 (lithium ferrite). The diffraction pattern

shdws that the unit-cube contains one molecule^' of Li2Fe204. The
oxygens occupy the lour equivalent points 46, while the iron and lithium

must ooctipy the four equivalent points 4c. The large difference in

the scattering power of iron and lithium makes it possible to arrive at

the definite conclusion that the same set of equivalent positions is

occupied by the two chemically different elements. The distribution of

iron and lithium in this set of equipoints is not regular, i.c., there are not

always two of each cation present in the unit-cube. The distribution

is one of chance and must comply with the requirement that an equal

number of each of the cations is always present within a relatively

small space. As in the case of the (MgFe)Fe04 spinel, the conception

of the unit-cell loses its traditional chemical significance and becomes

strictly a geometrical conception. The unit-cube of lithium ferrite has

a meaning only as an idealized ‘‘average'^ assemblage of ions in space.

The unit-cube of lithium ferrite, considered in this way, resembles the

well-known NaCl structure (46 for Cl“ and 4c for Na'*'), in which O
replaces Cl~ and a hit-and-miss mixture of Li+ and Fe'^"’'+ replaces the

Na“^. If only the Li+ and Fe+++ ions had occupied definite positions

symmetrically located with respect to each other and to the positions

of the oxygens, the compound would have been mixed-ionic.

By applying this picture of variate atom equipoints, Barth has been

able®® to find the structures of sodalite Na8Al6Sie024Cl2, noselite NasAU-

Si6024'S04, and hauyne (Na, Ca)4-8Al6Si6024’ (804)1-2 in which the six

A1 and six Si occupy variate equipoints. The solution of these structures

shows that there can be no “ extra '' ions, without fixed positions, wandering

around in the structure as has been claimed by Jaegdr.®^ Other com-

* There is no justification in the crystal structure of spinels for the way in which

their chemical formulas are usually written (for instance, MgAla04) norfor the chemi-

cal names usually applied to them (for instance, magnesium aluminate).
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pounds showing variate atom equipoints are gehlenite,®® Ca2Al(AlSi)07;

ammonium-oxy-fluoro-molybdate,3® (NH4)3Mo03F3; potassium cyanate,®^

KCNOfand** Co(NH3)5(H20)(S04)I.

CONTRIBUTIONS OF CRYSTAL STRUCTURE TO ORGANIC CHEMISTRY

Ever since the first structural formula was written, it has been the

creed of organic chemists that the properties of the materials with which
they work must be attributed to the shapes and sizes of their component
atoms and to the arrangement of those atoms in space. Structural

formulas represent hypothetical configurations of atoms which are con-

sistent with the results of chemical and physical experiments. Because

these structural formulas show an atomic configuration in only two

dimensions, they have been universally recognized as being only workable

fictions, which, however well they may represent the chemical properties

of substances, have no necessary exact re-

lation to the true positions of the atoms in

the molecules. In a few cases attempts

have been made to include the third dimen-

sion. Outstanding examples of this are to

be found in the three-dimensional formulas

assigned to methane and ethane on the

basis of a tetrahedral carbon atom, and in

Fig. 3.—Tetrahedral shape of the stereo formulas of the three kinds of
the carbon atom.

tartaric acid. The x-ray study of crystals

is gradually giving us quite an extensive set of three-dimensional formulas

which are backed by such a strong array of experimental evidence that

we feel justified in accepting them as close approximations to reality.

We have already seen in Chap. XIII that we must picture the atomic

domain of carbon as being tetrahedral in shape. This is in complete

agreement with all the chemical evidence, and we may consider the

organic chemist’s picture of a tetrahedral carbon atom to be on a sure

foundation. There is no clue, however, as to whether the four valence

electrons of the carbon atom are ‘^attached” at the vertices of the

tetrahedron or at the centers of the faces (see Fig. 3). The reason for

this lies in the fact that the angles subtended at the center by the vertices

of the tetrahedron are the same as the angles subtended by the face-

centers, 109® 28'. It is only a matter of words, therefore, whether we
say that the four valence electrons have mean positions at the centers

of the faces of the tetrahedron or whether we say that their mean positions

lie at the vertices of a second tetrahedron inscribed in the first so that

the four vertices df the second tetrahedron coincide with the face-centers

of the first. The essential thing is that carbon atoms pack in crystals

practically as though they were tetrahedra, t.c., they have four points

109® 28' apart which cannot be distinguished from each other. The dis-
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tance of closest approach of carbon atoms in diamond is 1.642 X 10~® cm.
In graphite it is 1.50 X 10~® cm. In order to make certain figures

in this section appear more stereoscopic, the carbon atoms will be repre-

sented by circles whose radii correspond to 0.75 X 10“* cm. The
interpretation of these circles in terms of tetrahedra will in all cases be

sufficiently obvious.

The Paraffin Series.^^—The ordinary structural formulas for the

paraffins, and for the acids and esters derived from them, show the carbon

atoms as lying along a straight line. Such a picture is not consistent

with the x-ray data. We have already seen in Chap, XVI that the

liquid paraffins tend to show three-dimensional molecules, and this

is CQnfirmed by work with the corresponding solids. ^ Two of these

dimensions arc, within experimental error, identical for all the saturated

Fia. 4.- -Lengths of molecules of saturated

fatty acids. {Muller.)

Fig. 6.—Lengths of molecules of

esters of palmitic and stearic acids.

{Shearer.)

paraffins so far tested. The third dimension varies rather systematically

with the number of carbon atoms in the molecule. This is interpreted

to mean that all the saturated fatty acids and their esters have practically

the same cross-section but that the length of the chain depends upon

the number of carbon atoms in it. The cross-section is greater than

would be expected on the basis of a straight chain of carbon atoms each

1.5 X 10~* cm. in “diameter.^’ It is hard to imagine that the hydrogen

atoms (the smallest in the whole list of elements) could account for this

discrepancy in cross-section. The discrepancy in the cross-section makes

it seem necessary to assume that the carbon chain is in zigzags. This

assumption is strengthened by the fact that the chains are considerably

shorter than the distances calculated by multiplying the ‘‘diameter^'

of carbon by the number of carbons in a chain. The lengths found

experimentally by Miiller^ for the chains of various acids are given in

Fig. 4.* The data indicate that the molecules are paired end to end.

* Langmuir* measured the lengths of the molecules of palmitic and stearic acids in

terms of their spreading on water. His values are higher than those of MUller by
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Data by Shearer^ for the lengths of the molecules of various esters of

palmiti.c and stearic acids are given in Fig. 5. The data show that the

increase in the length of the alcohol averages 1.226 X 10~® cm. for

each CH 2 group. This is to be contrasted with an average increase of

1.02 X 10“® cm. per CH 2 group for the fatty acids of Fig. 4.

Muller and Shearer^ have considered three possibilities in connection

with the lengths of the chains, namely, (1) a zigzag or spiral structure,

(2) a chain sloped at an angle to the

planes for which measurements were

made, (3) a slope of one angle for the

acid end of an ester and a slope of a

larger angle for the alcoholic end.

There is considerable to be said in

favor of the last tw’o types of explana-

tion and considerably more in favor of

the first. It will be of interest to follow

the lead of Muller and Shearer® and of

Langmuir® and take up the zigzag

spiral point of view in detail with the

aid of Fig. 6. In Fig. 6a all the carbon

atoms lie in the same plane. The
arrangement is identical with that chain

of atoms in diamond in the (110) plane

which runs parallel to the (100) plane.

Since the atomic domains are tetrahedral in shape, the angle 1 2 3 is

taken as 109° 28'. The distance 1 2 or 2 3 is equal to the '‘diameter”

of carbon, i.e., 1.50 X 10“® cm. The vertical length along the chain

which is contributed by each carbon atom is half the distance 13. It is

Fia. 6.—Theoretically possible car-

bon chains, a corresponds to the
saturated alcohols, h seems to have
no counterpart in ali)>hatic compounds,
c corresponds to the free saturated fatty
acids. (Muller and Shearer.)

1.50 X lO"”® sin
109° 18'

2
1.22 X 10-8 cm.

This agrees with the experimental value for the average increase per

carbon atom for the alcohols as measured in the esters of saturated acids.

It is therefore assumed that the carbons in the chains of saturated alcohols

have the configuration of Fig. 6a. It should be noted that the model
requires all the carbons to produce the same increment in length. This
agrees with Fig. 5 which gives on a single straight line data for both
odd- and even-nxmibered alcohols.

Figure 66 represents a spiral of tetrahedral carbon atoms. It is

evident that it does not represent the experimental facts, since the incre-

x-ray methods. Adam's values’' for myristic and behenic acids are also higher.

This is perhaps as close an agreement as might be expected because of the experimental
conditions inherent in the water-spreading method.
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ment in length per atom is 1.12 X 10~® cm., which is about halfway be-
tween the experimental values for the alcohols and for the saturated fatty

acids. Although this configuration is theoretically possible for carbon
atoms, for some reason it does not appear in either diamond or graphite.

Figure 6c shows a third possible configuration which actually occurs

in diamond. Atoms 1, 2, and 3 are related to each other as in Fig. 6tf.

Atoms 4, 5, and 6 are also like the corresponding atoms in Fig. 6a, but
atom 4 is joined on to a different tetrahedral face of 3 in c than in a.

Each pair of atoms contributes 2.0 X 10“^ cm. to the length of the chain.

The average increment in length per atom, 1.0 X 10~** cm., is, within the

experimental error, identical with the av erage increment per atom for

the saturated fatty acids of Fig. 4. Of each pair of atoms in Fig. 6c, one

contributes 1.5 X 10~ * cm. and the other contributes 0.5 X 10~® cm.

This Again agrees with th^ experimental facts, for, if the lengths of the

odd-numbered acic Jl ad b^"\?n plotted in Fig. 4, their graph would have

bed^ parallel to the graph of the even-numbered acids but would have

been a little above it. The difference between the acids containing an

odd and an even number of carbon atoms is interesting. It is well

known that sixuilar differences are found in their melting points. Also,

the even-numbered acids are common in nature, but the odds are very

rare. It would therefore appear that there is a stronger tendency to add

two carbon atoms to the acid chain rather than only one.

The x-ra> investigations of the paraffin series, in so far as structural

formulas are concerned, maj^jje illustrated in terms of an ester like propyl

butyrate. The ordinary structural formula is

H H H O H H H
I I I 11 IIIH—C—C—C—C—O—C—C—C—

H

III III
H H H H H H

If the interpretation of Muller and Shearer is correct, the carbons should

be written

C—C 0 C
/

c
\ / \ / \
c c c

Each end carbon has three H atoms attached at angles of 109® 28' from

the line joining the end carbon to the next neighboring carbon. The
hydrogen atoms of the CH 2 groups would be one above and one below

the plane of the paper at angles determined by the tetrahedral carbon

atoms. The additional oxygen atom of the carboxyl group would like-

wise not lie in the plane of the paper. There is of course the possibility

that the molecule may have a bend in it at the linkage oxygen.

It has already been mentioned that the x-ray data for saturated fatty

acids show the molecules to occur in pairs as though the two carboxyl
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groups were in contact. Similar results are found for the unsaturated

fatty acids. In other words the natural state of the aliphatic acids,

when free from water, is one of association with n = 2. In this

connection it is interesting to remember that the molecular weight

of acetic acid, measured in terms of the depression of the freezing point

of benzene, is twice the formula weight.

Muller and Shearer have investigated the two isomers, erucic acid

and brassidic acid. Each of these contains twenty-two carbon atoms.

There is one double bond, similarly placed, in each acid. The x-ray

results are consistent, with the structural formulas of Fig. 7. Since the

Portion of the carbon
chain of erucic acid

C-C C-C
\ / \ / \ /
C-C C=C C-C

Portion of the carbon
chain of brassidic acid

C C C C C\/\/\/'\/\/\
C C C C C

CH,[CHj}7n"Wc/
H/ \[CH2]nC02H

Ordinarily called erucic acid, act^ly brassidic acid

CHsICHJtv /[CH^uCOsH
)>C=C<

fT/ NTW
Ordinarily called brassidic acid, actually erucic acid

Fig. 7.—Structural formulas for erucic and brassidic acids.

material ordinarily known to organic chemists as brassidic acid has a

chain 12 X 10“® cm. longer than the chain of the substance which they

call erucic acid, it is evident that the structure corresponding to Fig. 6a

is the brassidic acid. As is brought out in Fig. 7, this requires the ordi-

nary structural formulas for these two acids to be interchanged. It

would seem that if Muller and Shearer^s zigzag interpretation is correct,

there is a possibility for isomers of the simple chain compounds which
cannot be predicted on the basis of their ordinary structural formulas.

The data show that natural saturated alcohols correspond to Fig. 6a

and that natural saturated acids correspond to Fig. 6c. It should there-

fore be possible by the oxidation of natural alcohols to make acids corre-

sponding to Fig. 6a and similarly by reduction of natural acids to make
alcohols corresponding to Fig. 6c.

The chains of the saturated hydrocarbons are apparently^® like those

of the alcohols except that they are stretched in the ratio of 1.3: 1.2.
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I. OH—C—COOH

COOH—C—OH
and

COOH—C—OH

OH—C—COOH

II. OH—C—COOH

and

COOH

COOH—C—OH

COOH -OH

III. H—C—OH
/\

co6h\
\

OR-C—

H

COOH

and

OH—C—

H

COOH

H—C—OH
cJoH

IV. H—C—OH
/"

COOH

COOH
\/

H—C—OH

and

OH—C—

H

COOH

COOH

OH—C—

H

V. COOH—C—

H

/
OH

H—C—COOH
0^

and

H—C—COOH
/

OH

COOH—C—

H

/
OH

VI. COOH—C—

H

/
OH

COOH—'

and

H—C—COOH
/

OH

COOH
Fig. 8.—Possible molecular structures of dextro- and Isevotartaric acids permitted by

their chemical properties.
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The reason for this stretching is not clear,

with thQ purity of the specimens used.

Since

textbook

so-called

Carbon of Carboxyl
Group-#

Carbon of Secondary
Alcohol Group -O
Oxygen - O
Hydrogen-*

It may possibly have to do

almost every elementary

in organic chemistry gives

^“stereo formulas’’ for

dextro- and tovotartaric acids, it will be

interesting to see what the real stereo

formulas are. The possible relation-

ships between the atoms permitted by

the chemical properties of tartaric

acid are shown in Fig. 8. Astbury’s

analysis^^ of the crystal structure shows

the atomic configliralions of Fig. 9.

The second arrangement in Fig. 8 is the

two-dimensional counterpart of Fig. 9.

It is assumed that the spiral arrange-

ment of carbon atoms is a character-

istic of the tartaric acid molecule but

that the spiral arrangement of the OH
groups is imposed by the crystal. In

solution, then, the OH radicals would be

free to set themselves at other angles to
Fig. 9.—Astbury’s solution of the

crystal structure of dextro- and ia?vo- the carbon atoms, and these new angles
tartarin acids.

rigorously constant,

at least in very dilute solutions. All this is consistent with the data on the

optical activity of tartaric acid. Those who are interested in the optical

activity of organic crystals will find Astbury’s article^^ worth close study.

The Benzene Series.—The structure of the benzene ring has been a

matter of discussion among organic chemists for

some time. It will therefore be of interest to

review briefly the x-ray data on the subject.

W. H. Bragg has pointed out^^ that both diamond

and graphite are made up of rings each of which

contains six carbon atoms. A single ring might

be assumed to represent the structure of benzene;

two with a common side might represent the basic

structure of naphthalene; etc. We therefore have

the possibility of two competing models of the

benzene ring, one patterned after the structure of

diamond and one patterned after the structure of

graphite. The six-sided rings in diamond are

illustrated in Fig. 10. Atoms A, B, C, B,

E, F alone could represent a benzene ring,

while A, Bf Cf Z), E, F, 0, H, /, J could represent a naphthalene

Fig. 10.—Ring structure

of diamond.
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ring. It is seen that the rings resemble hexagons except that they
are puckered to give three atoms on one level and three on a

parallel but higher level. If, on the other hand, we pattern our model of

the benzene ring after the hexagons in graphite, the two planes of three

carbons each so nearly coincide that we have practically a plane figure.

X-ray patterns have been taken of benzene^®* and of a large

number of benzene derivatives such as hexachlorbenzene, hexabrom-
benzene, p-nitrobenzene, m-dinitrobenzene, hexamethyl benzene, etc.

The interpretation of these patterns has proved difficult, and satisfactory

atomic positions have been found only hr hexamethyl benzene. Ben-

zene itself crystallizes with its molecules on space-group V]^, with four

molecules per unit orthorhombic prism. The positions of the individual

atoms have not been determined from the diffraction patterns. Table

VIII of Appendix III shows that the molecules in V}^ must possess a

center of symmett/. This offers no basis for deciding which type of

ring .benzene has, for it is consistent with both the diamond and the

graphite ring. The choice between the two models must therefore be

made in terms of the structure of hexamethyl benzene [C6(CH8)6].

Hexamethyl benzene crystalMzes^® on a triclinic lattice (space-group

CJ), with a = 44^ 27', 0 = 116° 43', y = 119° 34'; a = 9.01, h = 8.92,

c = 5.34A. The atomic coordinates for carbon are

xyz] xyz

where x, 2/, and z have the following values

X y z

i O.I89 O.lOs 0

In benzene ring< O.O81 O.I89 0

(-O.lOs 0.08 1 0

(
0.378 0.218 0

In methyl group< O.I62 0.378 0

(-0.216 O.I62 0

These coordinates give a six-sided figure of the same shape and size as

the hexagon in graphite. The C-C distance in the ring is 1.42 X 10“* cm.

and is, within experimental error, the same for all the carbons in the ring.

The distance between the center of a carbon in the ring and the center

of a carbon in the CH3 radical is 1.54 X 10~® cm. This may be taken to

indicate that the valences differ from those inside the ring itself. The

C~C distances in the ring of saturated cyclohexane are said to be**

1.54 X 10“® cm., thus showing the effect of having saturated the ring.

Naphthalene and anthracene were first reported^®*®® to )iave the diamond

type of hexagonal rings such as are shown in Fig. 10, but later measure-

ments®^*®* seem to show definitely that the rings are of the flat graphite
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type. It would seem, then, to be pretty well established that the actual

structure of the benzene ring does not differ appreciably from the two-

dimensional hexagon of the organic chemist. Only when the carbon

valences become completely saturated, do we find^^ the puckered ring

analogous to the saturated aliphatic alcohol chains.

Rubber, Cellulose, Etc.—We have already seen in Chap. XVI how
the data of x-ray diffraction can be used to point out the probable nature

of the fibers in rubber. Still other experiments combining the technique

of the powder method (Chap. VI) with the technique for the study of

orientation (Chap. XVII), and sometimes aided by the indirect methods

of Chap. XVI, have contributed largely to our knowledge of cellulose

and its compounds. Similar methods have been used, too, in studying

the polymerization of oils and of synthetic plastics. To cover the subject

adequately would require much more space than is available here and
would require a duplication of material published in satisfactory form

elsewhere. If the present book has succeeded in the aims set forth in the

preface, the student who is especially interested in the study of cellulose

should now be prepared to read without difficulty Meyer and Mark's

‘^Der Aufbau der Hochpolymeren organischen Naturstoffe"^® and the

x-ray section of Hess's Chemie der Cellulose."^^ Some of the important

final conclusions as of the year 1932 are given in Clark's ‘^Applied

X-rays."®® Astbury's ^^Fundamentals of F bre Structure" (Oxford

University Press, 1933) gives a remarkably clear elementary account of

the structures of the common textile fibers.

MOLECULAR SYMMETRIES

It is evident that we could learn a great deal about an organic com-
pound if we could compare directly the organic chemist's structural

formula for that compound with the symmetry of the molecule as found

by crystal-analysis methods. We are able to do this with the aid of

Tables I to XXXII of Appendix III. We have already had a little

foretaste of this in the case of benzene, where the information was of

possibly a negative sort. There are plenty of examples where the infor-

mation is positive.

In Tables I to XXXII of Appendix III the fifth column lists the

number n of completely asymmetric molecules required for a given space-

group. The seventh column lists the degree of symmetry p (2-fold,

3-fold, etc.), which a molecule may have and still be compatible with

that space-group. If the molecules of a compound have a p-fold sym-
metry, then the unit-crystal no longer requires n molecules but n/p
instead to fit into the space-group. The last column of these tables

lists the centers, planes, and axes of symmetry which such molecules

will have. In other words, the second, third, fourth, and fifth columns
of these tables show the ways in which Nature builds up symmetrical



CHEMICAL APPLICATIONS 566

crystals from completely asymmetric material; the fifth, seventh, and
eighth columns show how crystals with precisely the same symmetry
characteristics can be built up out of a smaller number of more sym-
metrical building blocks. It must be understood that p refers to the

molecular symmetry as it is found in the crystal.* This symmetry may
or may not be the same in the non-crystalline state. An example of

this has already been mentioned in the discussion of the tartaric acids.

The following comments^^ on molecular symmetries as listed in

Appendix III will make the tables more easily understood and more
readily useful.

1. Monoclinic System.—This system is particularly important from

the standpoint of molecular symmetry since so many organic substances

are inonoclinic. Organic molecules are often completely asymmetric

or have only 2-5old symmetry. Obviously, the lower the symmetry of

the molecule, theimot 3 likely it is to crystallize in a system of low, rather

than in one of high, order of symmetry. Since the monoclinic tables

(Tables III, IV, V) of Appendix III are based on the convention that the

axis of symmetry of the crystal is the 6-axis (T-axis), it follows that the

plane of syrnraetry is (010). Therefore, in column eight of these tables

wherever we find the symbol 2-A we may interpret it to mean ^^a 2-fold

axis of symmetry perpendicular to the (010) planes.^' Similarly the

symbol P may be read ^^a plane of symmetry parallel to the (010)

planes.'^

2. Orthorhombic System.—In the C2V class (Table VII) the Z-axis

is taken parallel to the 2-fold axis of symmetry, and there are therefore

either planes of symmetry or glide-planes of symmetry parallel to the

(100) and (010) planes but not to the (001). Wherever we find the

symbol “2-A,” we may interpret it to mean ^'a 2-fold axis of symmetry

perpendicular to the (001) plane.^' Similarly the symbol 2P's inter-

secting in 2-A may be read two planes of symmetry parallel to the (1 00)

and (010) planes, intersecting in a 2-fold axis perpendicular to the

(001) plane.” In the V and Vh classes (Tables VI and VIII), all three

axes are interchangeable. Where the tables give (for instance, F® in

Table VI) s = for (100) and (010) and the symbol 2-A ± (001),

* A sharp distinction must be made between molecular and ionic compounds.

For instance, we cannot Apply the values for p to the case of an alkali halide like NaCl,

for we have no true molecules of NaCl which we can localize and treat as separate

entities built together with suitable relative orientations. If we assume that the

structure of NaCl (space-group OJ) possesses 48-fold symmetry we cannot argue from

the fact that there are four molecules per unit-cube that each stoichiometric mole-

cule*^ has = 48-fold symmetry, nor can we say that each stoichiometric “mole-

cule ** has, in the crystal, the full symmetry of class O plus a center of symmetry at the

point of intersection of the axes, i.e.j full symmetry of class 0^". The symmetry of

space-group OJ belongs to the whole crystal of the ionic compound NaCl but not to its

stoichiometric “molecules,**
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we may interpret it to mean also “if s = for (100) (001), then

the possible molecular symmetry is given by a 2-fold axis perpendicular

to (0 1 0) ;
or “ if s = for (0 1 0) and (001), then the possible molecular

symmetry is given by a 2-fold axis perpendicular to (100)/^

In every molecular compound in the orthorhombic system which

has been completely investigated, the unit-crystal appears to contain

the minimum number of molecules. If we arbitrarily assume that this

is always the case, then we may, to a limited extent, determine the molecu-

lar symmetry. Astbury and Yardley give the following illustration:

Assume an orthorhombic crystal, of unknown class, for which s is for

all planes where (A + A: + Z) is odd.

(i) In terms of our hypothesis, it follows that if density int'asurements show that

the unit-crystal contains sixteen molecules, th<} space-group must be and the mole-

cules must be asymmetric.

(w) If the unit-crystal contains eight molecules, the following arrangements are all

possible:

() Space-group 2-fold molecular symmetry—a plane of symriietry parallel

to (100), (010), or (001) in the crystal, or a center of symme)try. X-ray

measurements cannot decide absolutely between these two elements of

symmetry, nor can they decide, in the case of the plane of symmetry, to

which of the three axial planes this plane in the molecule is parallel.

() Space-group molecule asymmetric.

(c) Space-group F®; molecule asymmetric.

[d) Space-group C\l] molecule asymmetric.

(m) If the unit-(Tystal contains four molecules, the following arrangements are all

possible

:

() Space-group FJ®; 4-fold molecular symmetry—^two planes of symmetry
parallel to any two axial planes of the crystal, and with these two symmetry
planes intersecting in a 2-fold axis which is perpendicular to the third axial

plane of the crystal.

() Space-group F®; 2-fold molecular symmetry—a 2-fold axis perpendicular to

any one of the three axial planes of the crystal.

(c) Space-group F®; molecular symmetry as in (6).

(d) Space-group C\l\ 2-fold molecular symmetry—a plane of symmetry parallel

to (100) or (0 1 0) in the crystal.

{iv) If the unit-crystal contains only two molecules, the following arrangements

are all possible:

() Space-group FJ®; 8-fold molecular symmetry—three planes of symmetry
parallel to (100), (010), and (001) of the crystal, intersecting in three

2-fold axes.

() Sp^ce-group F®; 4-fold molecular symmetry—three mutually perpendicular

2-fold axes.

(c) Space-group CjJ; 4-fold molecular symmetry—two planes of symmetry
parallel to (100) and (010) of the crystal and with these two symmetry
planes intersecting in a 2-fold axis.

(v) There cannot be only one molecule per unit-crystal in this case as the funda-
mental lattice is To'".

As Astbury and Yardley point out, the example cited may be extreme,

but it illustrates the inherent limitations of the method. The choice of
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molecular symmetry can, of course, be narrowed down further, or even
made absolute, if by some means (such as by a study of the exterior

symmetries of the crystal, etch figures, or some directional physical

property of the crystal) we can manage to eliminate certain of the space-

groups from consideration.

3. Tetragonal System.—It was shown in Chaps. II, III, and IV and
again in Table II of Chap. VTII that the tetragonal lattice Ft may be
regarded as being either a simple tetragonal lattice Ft (a) (corresponding

to the simple orthorhombic lattice Fo), or as an end-centered tetragonal

lattice F<(6) (i.e., with the square faces centered, corresponding to the

end-centered or side-centered orthorhombic lattice F^'. Similarly it

was shown that F/ may be regarded at will as being a face-centered

tetragonal lattice F/(a) (corresponding to Fo"), or a body-centered

tetragonal lattice (forre .spending to Fo'")* For each of these two

lattices the varioiisf rtysta* forms may be described according to either

alternative, so that both are given in the tetragonal tabulations of

Appendix III except for the space-groups derived from D%d{= Vd)- In

the D2d{— Vd) class the axial planes are always taken as bisecting the

angles between the symmetry planes of the crystal, so that only one of

the alternatives is possible with Tt and only one with F/. To avoid

confusion the example of Astbury and Yardley is followed in Appendix

III, and the orthorhombic lattice with which the actual tetragonal lattice

may be compared is inserted in parentheses in the space-lattice column.

In order to facilitate reference to Astbury and Yardley"^^ Fj(a) and F/(6)

are listed in Appendix III as the ‘‘first alternatives" of F^ and F/,

respectively. Vt{b) and F/(a) are listed as the “second alternatives."

In classes S, C 4,and C4Athe possible molecular symmetry is the same for

both alternatives (1) and (2) in each space-group. In classes Cav, Da, and

Dah, the possible molecular symmetry, as stated in the table, applies only

to (1). In order to apply it to (2), {100} must be changed throughout

into {110} and {110} into {100). Another point to be watched care-

fully is that in the tetragonal system the form {100} includes both the

(100) and (010) planes. Similarly the {Okl} includes both the (OfcZ)

and the (hOl) planes. In other words the {100} and {010} are indis-

tinguishable from each other. For example C4t,(l) reads, “s is for

{Okl] if {k + 1) is odd; possible molecular symmetry 2-A X {001},

P
II {110} or 2 P's

II {110} intersecting in 2-A." This means that not

only is s = for all planes in the \0kl} zone if (fc + Z) is odd, but also

for all planes in the {hOl} zone for which (h + Z) is odd; also, corre-

sponding to any molecule having in itself a plane of symmetry parallel

to (1 1 0), there is a second molecule whose plane of symmetry is parallel

to (1 10). If in this group the molecule has two planes of symmetry
intersecting in a 2-fold axis, those planes will be parallel to (1 1 0) and

(110), respectively.



566 CRYSTAL STRUCTURE

we may interpret it to mean also ‘‘if s = 3^ for (100) and (001), then

the possible molecular symmetry is given by a 2-fold axis perpendicular

to (0 10)^'; or “ if s = for (0 1 0) and (001), then the possible molecular

symmetry is given by a 2-fold axis perpendicular to (100)/^

In every molecular compound in the orthorhombic system which
has been completely investigated, the unit-crystal appears to contain

the minimum number of molecules. If we arbitrarily assume that this

is always the case, then we may, to a limited extent, determine the molecu-
lar symmetry. Astbury and Yardley give the following illustration:

Assume an orthorhombic crystal, of unknown class, for which s is j ^ for

all planes where (h + k + 1) is odd.

(i) In terms of our hypothesis, it follows that if density int asurements show that
the unit-crystal contains sixteen molecules, the space-group must be V\^ and the mole-
cules must be asymmetric.

(it) If the unit-crystal contains eight molecules, the following arrangements are all

possible:

(a) Space-group 2-fold molecular symmetry—a plane of symmetry parallel

to (100), (010), or (001) in the crystal, or a center of symmetry. X-ray
measurements cannot decide absolutely between these two elements of

symmetry, nor can they decide, in the case of the plane of symmetry, to

which of the three axial planes this plane in the molecule is parallel.

(b) Space-group F ;
molecule asymmetric.

(c) Space-group F®; molecule asymmetric.
(d) Space-group CH; molecule asymmetric.

(Hi) If the unit-crystal contains four molecules, the following arrangements are all

possible:

(a) Space-group 4-fold molecular symmetry—two planes of symmetry
parallel to any two axial planes of the crystal, and with these two symmetry
planes intersecting in a 2-fold axis which is perpendicular to the third axial
plane of the crystal.

(b) Space-group F®; 2-fold molecular symmetry—a 2-fold axis perpendicular to
any one of the three axial planes of the crystal.

(c) Space-group F®; molecular symmetry as in (h).

(d) Space-group CJJ; 2-fold molecular symmetry—a plane of symmetry parallel
to (100) or (0 1 0) in the crystal.

(iv) If the unit-crystal contains only two molecules, the following arrangements
are all possible:

() Space-group FJ®; 8-fold molecular symmetry—three planes of symmetry
parallel to (100), (010), and (001) of the crystal, intersecting in three
2-fold axes.

() Space-group F®; 4-fold molecular symmetry—three mutually perpendicular
2-fold axes.

(c) Space-group 4-fold molecular symmetry—^two planes of symmetry
parallel to (100) and (010) of the crystal and with these two symmetry
planes intersecting in a 2-fold axis.

(v) There cannot be only one molecule per unit-crystal in this case as the funda-
mental lattice is r®'".

As Astbury and Yardley point out, the example cited may be extreme,
but it illustrates the inherent limitations of the method. The choice of
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molecular symmetry can, of course, be narrowed down further, or even
made absolute, if by some means (such as by a study of the exterior

symmetries of the crystal, etch figures, or some directional physical

property of the crystal) we can manage to eliminate certain of the space-

groups from consideration.

3. Tetragonal System,—It was shown in Chaps. II, III, and IV and
again in Table II of Chap. VIII that the tetragonal lattice Tt may be
regarded as being either a simple tetragonal lattice ri(a) (corresponding

to the simple orthorhombic lattice To), or as an end-centered tetragonal

lattice Tt(b) {i.e,, with the square faces centered, corresponding to the

end-centered or side-centered orthorhbinbic lattice To\ Similarly it

was shown that T/ may be regarded at will as being a face-centered

tetragonal lattice r,'(a^ (corresponding to To"), or a body-centered

tetragonal lattice (corresponding to r„"'). For each of these two
lattices the various :T/ysta) forms may be described according to either

alternative, so that both are given in the tetragonal tabulations of

Appendix III except for the space-groups derived from D2d(= Vd). In

the D2d( = Vd) class the axial planes are always taken as bisecting the

angles between the symmetry planes of the crystal, so that only one of

the alternatives is possible with and only one with F/. To avoid

confusion the example of Astbury and Yardley is followed in Appendix

III, and the orthorhombic lattice with which the actual tetragonal lattice

may be compared is inserted in parentheses in the space-lattice column.

In order to facilitate reference to Astbury and Yardley^^ r«(a) and r/(6)

are listed in Appendix III as the ‘‘first alternatives^^ of Tt and F/,

respectively. Tt{b) and F/(a) are listed as the “second alternatives."

In classes >S, C 4,and C4Athe possible molecular symmetry is the same for

both alternatives (1) and (2) in each space-group. In classes Cav^ Da, and

Dihi the possible molecular symmetry, as stated in the table, applies only

to (1). In order to apply it to (2), {100} must be changed throughout

into {110} and {110} into {100). Another point to be watched care-

fully is that in the tetragonal system the form {100} includes both the

(100) and (010) planes. Similarly the {Okl} includes both the (Okl)

and the (hOl) planes. In other words the {100} and {010} are indis-

tinguishable from each other. For example C4t;( 1) reads, “s is 3^ for

{Okl} if {k + 1) is odd; possible molecular symmetry 2-A ± {001},

P
II {110} or 2 P's

II {110} intersecting in 2-A." This means that not

only is 5 = 3^ for all planes in the {Okl} zone \i {k + 1) \s odd, but also

for all planes in the {AOZ} zone for which Qi + 1) is odd; also, corre-

sponding to any molecule having in itself a plane of symmetry parallel

to (1 1 0), there is a second molecule whose plane of symmetry is parallel

to (1 10). If in this group the molecule has two planes of symmetry

intersecting in a 2-fold axis, those planes will be parallel to (1 1 0) and

(1 1 0), respectively.
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Under the eighth column of the tables (headed ^'possible molecular

symmetry will be found occasional references to a 4-fold alternating

axis. This is not a type of symmetry that is likely to occur often, but

it should be kept in mind because of its probable existence in compounds

such as C[(C • dXYZ) 2(C • ZXYZ) 2] and (CHC • dXYZ) 2(CHC • ZXYZ) 2 .

Another still more complicated type of symmetry, referred to in the

Dzd and Dih classes, is the full Du symmetry. This consists of two per-

pendicular planes of symmetry intersecting in a 4-fold alternating axis.

This means that there will be also two 2-fold axes of symmetry per-

pendicular to the 4-fold alternating axis and bisecting the angles between

the planes. In the D2d class the planes must always be parallel to the

{110} by convention. In the D^h they may be parallel to the {110} or

the {100}.

4. Cubic System.—In the cubic system the form {A A: 0} includes all

the three axial zones, just as the form {100} includes all three axial

planes. This must be remembered in using Tables XVI to XX of

Appendix III. Where we read, as in n, “s = for {hkO}, if {h + k)

is odd; possible molecular symmetry 2-

A

± {100}, etc.,^^ we must

ren\ember that s will equal for the whole {hkO} form, i.e., (120),

(0 1 2), (201), (0 1 0), (001), etc.; that is, s will be 3 2 plane in an

axial zone if the sum of the indices is odd. Also if the molecule itself

has a 2-fold axis, then for each molecule whose axis is perpendicular to

the (100), for instance, there will be two other molecules whose axes are

perpendicular to (010) and (001) respectively. In the space-group 7^,

5 is listed as for the planes {hkQ) if h is odd. This includes of course

(AfcO) if h is odd, (OfcZ) if k is odd, and (/lOZ) if I is odd.

In the case in which the possible molecular symmetry is stated to

be ^^2 P^s
II
{100} and {110} intersecting in 2-A ± {110},” any one

molecule might have, for example, two planes parallel to (100) and
(Oil) intersecting in a 2-fold axis perpendicular to (011), in which case

there would be two other molecules the direction of whose symmetry
elements could be found by rotation through 27r/3 and 47r/3, respectively,

about a 3-fold axis perpendicular to {111}; but no molecule can exist

whose two planes are parallel to (100) and (lOT), say, since these two
planes would intersect in a 2-fold axis which would be perpendicular

to {100} instead of {110}.

Illustrations of the Symmetries of Molecules and Atoms.—It is

easy to imagine the value of the foregoing to an organic chemist. Many
examples of molecular symmetries may be found in the summary of the

crystal structures of organic compounds in Wyckoff^s ‘‘Structure of

Crystals,”22 so that they need not be repeated here. It may be of inter-

est, however, to see what we can bring out about the symmetries of

inorganic molecules and of the atoms of the elements.
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AI2O3* crystallizes on space-group D\^ with two molecules per unit-

rhombohedron. This requires a value of six for p of Table XXV of

Appendix III. The molecular symmetry requires either “three 2-fold

axes of S3'mmetry intersecting in a 3-fold axis of symmetry which is

perpendicular to {1 1 1}/’ or “one 3-fold axis of symmetry perpendicular

to {111}, plus a center of symmetry.’' The first of these two alternatives

fits our description of an AI2O3 molecule very well. We have described

the molecule as an equilateral triangle of oxygens with one A1 immedi-

ately above and one immediately below the center of the triangle. The
line joining the two A1 atoms is evidently a 3-fold axis of symmetry which

is perpendicular to the plane of the three oxygens. In the plane of the

three oxygens a line joining the center of any given oxygen with the center

of the triangle is evidently a 2-fold axis of symmetry. Three of these are

possible. This ccmplett^s the requirements for the first alternative.

The second altei-pajB ' e, which demands a center of symmetry, would

require the A1 to be surrounded by six oxygens, three above and three

below, with the equilateral triangles of each set at exactly equal distances

from the A1 and »*otated 180° with respect to each other. This require-

ment cannot be met, for the lattice parameters of AI2O3 show that the two

sets of triangles do not lie at exactly the same distances from the Al.

If they had been so spaced, AI2O3 would have been an ionic compound
and we should have been at a loss to explain its insulating value at high

temperatures.

“Low” quartz crystallizes on space-group D\ or D® depending on

whether it is “left-handed” or “right-handed” quartz. It has three

molecules per unit-crystal. The value of p of Table XXII of Appendix

III is therefore 2. The molecular symmetry requires a 2-fold axis

perpendicular to {1120}. We have already found occasion to describe

the low temperature form of quartz as an elbow lying in the basal plane

of the hexagonal crystal. Reference to Figs. 21 and 22 of Chap. VI shows

that a line bisecting the angle of the elbow is, in every case, perpendicular

to some member of the {1120} form. This bisector is a 2-fold axis of

symmetry for the Si02 molecule. The symmetry requirements are still

met if, as suggested in Chap. VI, the molecule is rotated slightly about

this 2-fold axis so as to place one oxygen in a (1 1 2 0) plane slightly above

that of the silicon and the other oxygen in a plane correspondingly lower

than that of the silicon.

CBr4, CI4, SnL, ZrCh, and GeL, all crystallize on space-group Tj

with eight molecules per unit-cube. This makes p of Table XVIII of

Appendix III equal to 3. The molecule must have one 3-fold axis of

symmetry perpendicular to each of the four members of the {111)

form. This requirement leads at once to a tetrahedral distribution of the

four halogens with the metal atom at the center. Si and Pb are the only

* Similar statements can be made for Fe208, Cr203, Ga20», TitOs^ and V20i.
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other members of this chemical family in the periodic table. They

seem to have no solid inorganic compounds of the form RX4, but

they form the solid compounds Si(C 6H 5)4 and Pb(C6H6)4. These

belong to space-group 7d(= ^.nd show a tetrahedral distribution

of CgHb groups about the central atom of Si or Pb.* All this is

just what we should have expected from the fact that these elements all

lie in the carbon column of the periodic table, and we are strengthened

in our assumption of Chap. XIII that C, Si, etc., have tetrahedral

atomic domains. It remains to get direct evidence from the crystals

of the elements themselves. This is legitimate not only on the basis of

a static-atom picture with definite positions in the lattice for the valence

electrons, but also on the basis of any other picture which permits the

valence electrons to have a “most probable” or “mean” position.

Diamond t crystallizes on Wyckoff^s cubic 8(/), with eight atoms

per unit-cube. Only the cubic space-groups 0^
, n, and Ol permit

Wyckoff^s 8(/). Tables XVI to XX of Appendix III show that if

space-groups 0^ or Tl are to have eight atoms of carbon per unit-cube,

then the atoms themselves must have the full symmetry of T. Similarly,

if space-group 0\ is to have eight atoms of carbon per unit-cube, then the

atoms themselves must have the full symmetry of It turns out that

in the special case of eight atoms per unit-cube, these two symmetries

become identical. This may be visualized easily by using Table

XXXVII of Appendix III and Wyckoff^s coordinates. Table XXXVII
of Appendix III shows that, up to a limit of 32 points (t.c., eight atoms

with four valence electrons each) per unit-cube, 0^, and Ol all permit

:

Two' sets of 8 points, each with definitely fixed coordinates, [Wyckoff^s 8(/) and

8(^)]. Evidently there are not enough points to take care of 32 valence electrons.

Two sets of 16 points, each with definitely fixed coordinates, [Wyckoff’s 16(6) and
16(c)]. This would indicate two groups of valence electrons of 16 electrons each.

The two groups are identical except that 16(c) is displaced from 16(6) by a translation

of HHH.
One set of 32 points [Wyckoff^s 32(6)] with one undetermined parameter.

Either of the last two of these alternatives is, then, theoretically

possible no matter which of the three space-groups we happen to pick.

Wyckoff's 32(6) may be interpreted as putting the four valence electrons

of each ca'rbon atom at the corners of a tetrahedron, with adjacent

tetrahedra placed corner to corner in such a way that adjacent corners lie

on a line joining the centers of the two tetrahedra. This is completely

consistent with the static atom picture of atomic structure advocated by

* Nothing is shown about the symmetry of the CeHs group.

t Precisely similar statements can be made for Si, Ge, and gray Sn. Somewhat
similar, but more complicated, statements can be made for Pb. We might picture

the atomic domain of Pb as being practically a sphere with four valence electrons

tetrahedrally arranged.



CHEMICAL APPLICATIONS 571

G. N. Lewis and M. Huggins. If, instead, we put half the valence

electrons on WyckoflF's 16(6) and half on 16(c) we have a peculiar arrange-

ment of tetrahedra. The valence electrons situated on 16(6) form tetra-

hedra whose centers correspond to the positions of the atoms in diamond.
These tetrahedra have only a single electron at the places where the

tetrahedra meet. The valence electrons situated on 16(c) form similar

tetrahedra which are displaced from the first set by an amount
If this second set of tetrahedra had contained, in addition, the nuclei

and K electrons of carbon, they would have changed each diamond
cube into eight body-centered cubes. In the absence of these nuclei

and K electrons it is highly improbable from electrostatic considerations

that the second set of tetrahedra would be exactly equal in size to the

first. But WyckoflF's 16(6) and 16(c) require exact equality of size of

the two sets of tetrahedra so that, even apart from any possible x-ray

evidence, the strUi'to e is untenable. We are therefore compelled by
the theory of space-groups to place the ^‘most probable,'^ or ^'mean^'

positions of the valence electrons of the carbon atoms in diamond on

Wychoff’s 82(6). The shape'' of the carbon atom is therefore tetra-

hedral, agreeing with the shape of the atomic domain as found in Chap.

XlII and with the crystal structure of the compounds of carbon and its

close relatives in the periodic table.*

When we add all this evidence to the mass of evidence offered by
organic chemistry, we feel safe in saying that, even though atoms are too

small to be seen with the most powerful microscope, the tetrahedral

shape of the carbon atom is one of the most firmly established facts known
to science.

SUMMARY

We have taken up the various types of chemical combination as

shown by crystal-structure data and have found evidence for five types

:

(a) molecular, (6) ionic, (c) geometrical, (d) secondary valence, (e)

mixed-ionic. All compounds and radicals belonging to types (c), (d), or

(e) may be regarded as special cases of (a) or (6). Types (c) and (e) seem

to differ only in that the negative ions are electrons in (c) whereas they

are 0““ ions in (c).

We have discussed, under the title of Variate Atom Equipoints, the

departures which certain complex crystals may make from the ordinary

simple law that crystallographically equivalent points must always con-

tain chemically equivalent atoms (or ions).

We have discussed the contributions of crystal analysis to both organic

and inorganic chemistry and have made considerable use of Tables I to

XXXII of Appendix III in a discussion of molecular symmetries.

* This agreement lends considerable plausibility to the assumption, made here

and in previous chapters, that the valence electrons of an element occupy definite

mean positions in the crystal structure.
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APPENDIX I*

X-RAY TUBES, TRANSFORMERS, AND ACCESSORIES

A. X-RAY TUBES FOR CRYSTAL ANALYSISf

Coolidge Tube.—The Coolidge tube consists of a highly evacuated

glass bulb, into the opposite ends of which are sealed a tungsten-filament

cathode and a metal anticathode or target. Figure 1 shows a diagram

of the molybdenum^targei tube used in the General Electric x-ray

diffraction apparatuii

In the operation of the tube the filament is heated by a low-voltage

electric current and thus becomes a source of thermal electrons. A
high voltage is impressed across the two electrodes of the tube, and the

electrons emitted by the filament are driven at a high velocity against

the target. The resulting bombardment of the target material by high-

speed electrons causes the target to emit x-rays. The electron stream is

confined to the face of the target as closely as possible by means of the

focusing effect of a concave molybdenum cup surrounding the filament.

Control of the space current in the x-ray tube for a given voltage is

entirely by regulation of the filament-heating current. Great care is

taken in the construction of the tube to remove as much residual gas as

possible from the glass and metal parts of the tube. A tube which

becomes gassy is erratic in operation and ultimately will draw an excessive

current and be uncontrollable.

The Coolidge tube may be operated on alternating current if the target

is kept cool enough to prevent the emission of thermal electrons from it.

This is accomplished by direct water-cooling or by conduction of the

heat generated at the target through the copper anode arm to an external

set of radiating fins. The former method of cooling requires that either

the anode end of the tube be at ground potential or the cooling system

be insulated. Operation with water-cooling and self-rectification is the

usual method for x-ray diffraction units.

* By M. L. Fuller, investigator in spectroscopy and crystal structure, Research

Division, New Jersey Zinc Company, Palmerton, Pa.

t It is perhaps only fair to warn the reader against the purchase of certain Euro-

pean made tubes. Some of the best known continental European firms have sold

defective tubes to their American customers and then have refused either to replace

the tubes or to refund the purchase price except under extraordinary pressure. It is

much safer to buy tubes from reputable American manufacturers.—W.P.D.
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Fiq. 1.—Diagram of Cool-
idge>type tube used in General
Electric apparatus. {Courtesy of

An excellent account of the details of

design and construction of Coolidge tubes

is given by Terrill and Ulrey.^

Gas-discharge Tube.—A gas-discharge

tube is usually constructed entirely of metal,

with the exception of a glass or porcelain

insulator which insulates the high-potential

cathode from the metal parts of the tube

which are usually at ground potential. The
cathode consists of a concave aluminum mirror

which focuses the electron stream on the target.

The x-rays leave the tube through openings

covered with thin aluminum foil. The gas-

discharge tube is operated under a. partial

vacuum of air of the order of 0.01 mm. of

mercury, which vacuum is controlled during

the operation of the tube by a vacuum pump-
ing system. Positive ions present in the gas

are driven against the aluminum cathode by
means of the impressed high voltage and
liberate from it negative electrons which are

then driven against the target giving rise to

x-rays.

Most workers prefer to construct their

own gas-discharge tubes, and descriptions of

such tubes may be found in the literature.

The principal feature of an x-ray tube with

aluminum-foil windows, which permits it to

be used where the glass Coolidge tube cannot

be used, is in the production of long-wave-

length x-rays such as those produced from
copper and iron targets. This long-wave-

length radiation is efficiently transmitted by
thin aluminum-foil windows (0.01 mm. thick)

but is highly absorbed by the walls of an

ordinary glass x-ray tube. Thin windows of

pyrex glass or of Corning 707 BM glass may
be used instead of aluminum foil if desired.

Metal x-ray tubes are constructed so that

the metallic body of the tube is at the same
potential as the target. This permits the

target to be mounted very close to the alumi-

num-foil windows. The result is that the
*'^***^ Corporo-

gp^c^jj^en and photographic film may be



gas-discharge tube.
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brought very close to the target, making much shorter exposure times

than those required with ordinary glass Coolidge-type tubes. Rugged
metal construction and effective water-cooling enable metal gas-dis-

charge tubes to operate at high currents which further aids in reducing

exposure time. A copper-target tube will produce x-ray patterns in

much less exposure time than molybdenum-target tubes.

^

Offsetting these apparent advantages in exposure time of gas-discharge

tubes over Coolidge-type tubes is the difficulty of maintaining satis-

factory operation without the attention of an operator. With a Coolidge-

type tube, up to 12 exposures may be made in a 24-hr. period without the

attention of an operator, whereas the average production of patterns of

similar type will be considerably less per day with a gas-type tube with

three windows. This estimate assumes operation of the tube only

during the normal working day and considers the time spent in repairing

and adjusting the apparatus, etc.

The essential advantages of the metal gas-discharge tube over the

glass Coolidge type of tube are:

1. Ability to produce long-wave-longth x-rays with which x-ray diffraction effects

from crystals of large interplaiiar spacing may be studied (particularly organic com-

pounds) without contaminating the target with tungsten from the filament.

2. Ease with which targets of various materials and special construction may be

inserted and removed.

3. Short exposure time in special cases where the diffraction apparatus requires

the attention of the operator or where the specimen undergoing examination alters

during the course of a longer exposure.

4. General adaptability for experimental purposes of metal construction.

Figure 2 shows a diagram of the essential features of a Hadding-

Siegbahn-type tube. The details of assembly and operation of this tube

will be discussed in a later section of this Appendix.

Filament-cathode Metal Tubes.—The filament-cathode metal tube

is similar in construction to the metal gas-discharge tube. The former

differs from the latter in that a heated tungsten-filament cathode is used

instead of a cold aluminum cathode. The tube must be operated at a

vacuum high enough to prevent the production of electrons by positive-

ion bombardment. The tube then operates like a Coolidge tube. In

the filament-cathode metal tube no air-leak device is needed to maintain

the proper amount of rarefied air in the tube as in the gas-discharge tube.

This simplification of operation is offset by the difficulty of maintaining

the necessary high vacuum in a metal tube and the frequent replacement

of tungsten filaments. This type of tube has the same advantages due

to metal construction which were set forth for the gas-discharge tube.

It is more frequently used in spectroscopic investigations than in crystal-

diffraction studies. Figure 3 is a sectional view of a filament-cathode

tube designed by Siegbahn.
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B. X-RAY POWER UNITS

Transformers.—High-voltage transformers for x-ray power units

should be purchased from reputable American manufacturers in order

to make sure that they will stand up under American climates and
American conditions. It is false economy to purchase an inferior trans-

former or one that does not have an adequate current voltage rating. It

is well to have a transformer of higher capacity than appears to be needed

when setting up an x-ray power unit. In experimental work of this

kind unforeseen demands for higher voltage or higher current are usually

met eventually.

Transformers for gas-discharge tubes should have primary windings

of higher resistance than is usual in transformers. This added resistance

may be in the winding itself or may be supplied by an external series

resistance. With such a resistance in the circuit, excessive withdrawal

of current in gas-discharge tubes due to sudden release of gas from the

tube walls is immediately counteracted by a drop in voltage. The result
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of these effects is a more steady operation of the tube without danger of

overloading the transformer.

The minimum excitation potentials of the K radiation of the com-
monly used target materials, molybdenum, copper, and iron, are 20.0,

8.86, and 7.10 kv., respectively. For a given set of conditions only that

portion of the voltage wave which is above the minimum excitation

voltage of the radiation desired will be effective in producing that radia-

tion. The intensity of x-rays produced in an x-ray tube is approximately

proportional to the square of the applied voltage and linearly propor-

tional to the current. For the foregoing reasons the higher the voltage

wave used, the greater will be the intensity of the x-rays produced. On
the other hand the use of too high a voltage will result in the production

of a strong continuous radiation having a pronounced peak near the

short-wave-length limit. The short waves in the continuous spectrum

will become objectionable through fogging of the photographic film by
diffuse scattered radiation and sometimes by the production of a diffrac-

tion halo corresponding to the peak in the continuous radiation referred

to above. Filtering will not remove these short wave lengths sufficiently

if the voltage is too high. The production of continuous radiation is

much greater with the high-atomic-weight targets than with the low-

atomic-weight targets.

The optimum voltage for the operation of molybdenum-target tubes

is about 40 kv. peak and for copper- and iron-target tubes about 50 kv.

peak. In the production of a strong continuous radiation for the Laue
method a tungsten target operating at 60 to 65 kv. peak is most com-

monly used.

Rectifying and Non-rectifying X-ray Tubes.—Coolidge tubes, in

which provision is made for keeping the anticathode cool, operate self-

rectifying. The self-rectifying x-ray tube allows current to pass only

• when the heated filament is the negative electrode. Coolidge tubes not

provided with anticathode-cooling, and gas-discharge tubes, must be

provided with direct current. Filament-cathode metal tubes, such as

the Siegbahn tubes previously described, will operate self-rectifying if a

sufficiently good vacuum is maintained. The reason that this type will

not always operate self-rectifying is that it is difficult to obtain in a metal

x-ray tube a vacuum high enough to prevent the tube acting partially

as a gas-discharge tube. It is only with the greatest of care in manu-
facture that a glass. Coolidge tube is sufficiently outgassed to prevent the

flow of an inverse current. Rectification of the alternating-current

output of the transformer is accomplished by one of two types of rectifiers.

The one type is the high-voltage vacuum-tube rectifier. The other type

is the rotating-switch or mechanical rectifier.

Vacuum-tube Rectification.—The high-voltage vacuum-tube rectifier

consists of a highly evacuated glass bulb into opposite ends of which
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are sealed two electrodes. The one electrode is a tungsten filament and
the other a metal plate. In operation the filament is heated by a low-
voltage current and thus the tube acts as a valve permitting current to

pass only when the filament is the negative electrode. These tubes a^re

constructed so as to withstand the no-load high voltage of the inverse

wave. Sufficient filament-heating current is supplied to transmit the

high-voltage current in the ‘HisefuF' direction with very little drop in

voltage across the vacuum tube. The filament current is varied and
hence the current-carrying capacity of the tube is varied by varying the

voltage applied to the filament. This is accomplished by either an
autotransformer or a series resistance or both.

There are various ways of connecting vacuum-tube rectifiers in x-ray-

tube circuits. The three methods most generally used for x-ray-diffrac-

tion work wili be^described. Only circuits which permit the anode of

Fig. 4(o) Single-tube half-wave circuit, {h) Two-tube full-wave circuit, (c) Four-tube
full-wave circuit.

the X-ray tube to be grounded are shown since this is the usual method
for crystal-analysis x-ray apparatus. The simplest scheme is shown in

Fig. 4a. In the wiring diagrams shown, the arrowhead represents

the filament of the rectifier tube. One rectifier tube is used, but only

half-wave rectification can be obtained. The full voltage of the trans-

former is applied across the x-ray tube. The rectifier must be able to

withstand the full no-load voltage of the transformer. Using two vacuum
tubes, full-wave rectification can be obtained according to the diagram of

Fig. 46. Only half of the full voltage of the transformer, however, is

applied across the x-ray tube. The rectifier tubes must be able to stand

the full transformer voltage or twice that of the x-ray tube. If the

anode is to be grounded, full-wave rectification and full transformer

voltage across the x-ray tube can only be obtained by using four rectifier

tubes connected as shown in Fig. 4c. The rectifiers must be able to

stand the full no-load voltage of the transformer. Full-wave,* full-

voltage rectification with two tubes, using condensers in the circuit, can

be accomplished. Such an arrangement, however, does not permit the

grounding of the anode of the x-ray tube.

The three methods described will furnish the x-ray tube with a

unidirectional current, but the voltage will fluctuate from zero to the
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peak value of the wave. The current flowing at voltages below the

critical excitation potential of the x-rays used will be useless in the pro-

duction of x-rays but will have a heating effect which is undesirable.

A, constant-potential direct current can be obtained with kenotron

rectification if (1) the voltage supplied to the transformer has a fre-

quency of 500 cycles or more and (2) condensers of sufficient capacity

are connected in the circuit to smooth out the ripples in the fluctuating

voltage. At present no method of crystal analysis requires a constant

voltage. A very excellent description of methods used to obtain con-

stant-potential direct current is given

by Terrill and Ulrey.^

Rotating-switch Rectification.

—

The rotating-switch rectifier auto-

matically connects the one or the

other terminal of the transformer to

the x-ray tube so that the x-ray tube

receives a unidirectional current.

The rectifier consists of four mov-
ing contacts mounted 90® from each

other on the shaft of a synchronous

motor and four stationary contacts

mounted about Ke in. outside the

path of revolution of the moving
contacts and 90® apart from each

other. The moving contacts are

mounted either on four arms or on a
Fiq. 5. Diagram of rotating-switch rec- bakelite disk. The power supply to

tifier circuit. . ,

^
the synchronous motor is the same

as that to the primary of the transformer. An indicating device must
be used to show whether the synchronous motor is connected correctly

(or incorrectly) to the line, in order to make sure that the x-ray tube

will receive voltage of the right polarity. A wiring diagram for this type

of rectifier is shown in Fig, 5. Full-wave rectification is obtained. The
contacts are made in an arc of such length that only the upper portion

of the voltage wave is utilized. Thus the low-voltage portion of the wave,

which is not effective in producing x-rays but does produce heating of

the apparatus, is not used. The resultant current is a pulsating uni-

directional current. Actually, however, it is not possible to cut out the

undesirable portion of the wave form sharply, since there is always much
sparking over before and after a moving contact meets a stationary

contact.

The mechanical rectifier is ruggfed and dependable and requires very

little attention. Its operation is accompanied by a great deal of noise.

No make of rotating-switch rectifier is noiseless since in all types there is

UJ
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necessarily sparking between the moving and stationary contacts with
the resultant noise, but the noise can be reduced by enclosing the rectifier

unit in a sound-deadening cabinet.

The advantages of vacuum-tube rectification are:

1. Silent operation.

2. No bearings to be oiled.

3. Easily adapted to constant-pDtential outfits.

The disadvantages of vacuum-tube rectification are:

1. Uncertain life of vacuum tubc^ involving replacements; hence, an upkeep cost.

2. Unless condensers are used, both the l(*w non-useful voltage and the high useful

voltage are supplied to the x-ray tube.

3. Adjustment of filament current required from time to time.

The ad\'ai^tages of rotary-switch rectification are:

1 Practically no i.pkeej) cost.

2 Very little to get out of order, and adjustment very infrequent.

3. Utilization of high-voltage portion of wave only.

The disadvantages of rotary-switch rectification are:

1. Noisy operation.

2. Not adaptable to constant-potential circuits since the rotary switch cannot be

operated at the high frequency (600 cycles) required for constant-potential direct-

current condenser circuits.

Control Units.—Where it is desirable to vary the voltage applied to

the Coolidge type of x-ray tube an autotransformer is desirable. The
primary of the autotransformer is connected to the power source, and
the secondary of the autotransformer is connected to the primary of the

high-potential transformer. With gas-discharge tubes, a series resistance

is desirable in connection with voltage control for reasons already

given.

In Coolidge-tube circuits the amount of current passing through the

tube is varied by varying the heating current of the filament. A series

resistance in the filament circuit is used for this purpose. Such current

control is also used in the metal tubes having hot filaments.

The tube current in gas-discharge-tube circuits depends on the gas

pressure in the tube. In the operating range of pressures an increase of

pressure is accompanied by an increase of current and vice versa. The
regulation of the gas pressure or degree of vacuum will be discussed in a

later section.

Stabilizers.—Filament-tube circuits usually include a current-

stabilizer relay. When, due to the formation of gas within the tube or

for other reasons, the tube draws a heavier current, the stabilizer auto-

matically decreases the filament-heating current. The reduction of the

filament-heating current then lowers the x-ray-tube current at which
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point the normal filament is again supplied, etc. The resultant of this

cycle of operations is a very steady current through the x-ray tube.

One well-known type of stabilizer accomplishes this control of the fila-

ment current by means of a current relay which automatically opens and

closes short-circuiting contacts across a resistance in series with the

filament.

Stabilization of gas-discharge-tube currents is obtained by automatic

vacuum-regulating devices to be described later under section C.

C. OPERATION OF UNITS

Coolidge Tubes.—^The operation of Coolidge tubes may be gathered

from what has already been said. Space current in the x-ray tube is

readily controlled by regulation of the filament-heating current, stable

operation is assured by the use of a reliable stabilizer, and flexibility of

voltage requirements is obtained with one of the usual control units.

Ultimately a Coolidge-type tube which has been sealed off from the

pump will fail by becoming gassy or by the puncturing of the glass walls

of the tube. In order to avoid excessive current withdrawals, caused

by a gassy condition, every control unit should be provided with a suitable

circuit-breaker for opening the circuit when the primary current of the

transformer becomes excessive. It is often possible to renew a gassy

tube by the following procedure: Reduce the filament current to such a

point that the tube will draw a small current steadily. Slowly increase

the filament current until the tube draws its normal current steadily.

This series of increases of filament current may have to be extended over

a period of 10 to 50 hr. before steady operation is attained. In several

cases this treatment was applied two or three times to the same tubes,

thus increasing the lives of the tubes several-fold. Tube puncturing

seems to happen almost accidentally, and it is usually impossible to assign

a definite cause for a given tube failure by puncturing. The best that

can be done to prevent it is to keep the tube clean and free from dust

and to support the tube in such a way that no sharp*points are near it.

Little trouble will be had with filaments burning out if the filament current

does not exceed that specified as a safe limit by the manufacturer.

Tube life is very variable and may be as short as two or three hundred

hours or as long as several thousand hours.* The usual failure of

Coolidge tubes is by gassing. The gas is liberated from the glass walls

of the tube by the bombardment of stray electrons or by slow leaks either

through pinholes in the glass or (more probably) by diffusion of gases

through some of the metal parts. The number of stray electrons is

very much increased as the tube current or voltage is increased. An
important advance has been made recently, by W. P. Davey, in th% design

* The minimum life should be about 1,000 hr.—W.P.D.
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of tubes for the General Electric x-ray diffraction apparatus. By mount-
ing the cathode and target much closer together than had hitherto been
the practice, the number of electrons which leave the cathode and are

not absorbed by the target is very much reduced. In the laboratory

of the New Jersey Zinc Company a tube of this type ran for 15,000 hr. of

practically continuous operation before it failed. Not once during its

life did it show a gassy condition. Similar long lives have been reported

for this type of tube elsewhere. The average life of 14 tubes of the former

previously used in this laboratory, was 450 hr. Only two of the

14 tubes ran more than 1,000 hr.

Gas-discharge Tubes and Accessories.—The operation of gas-

discharge tubes is often quite difficult. These difficulties may be over-

ct ae by proper at tention to the technique of setting up the apparatus and

b^ the use oi the proper a.uxiliary devices to maintain steady operation

automatically. .fortunately, very little has been published in English

cjonceming gas-discharge-tube technique. The discussion which follows

applies particularly to the Hadding-Siegbahn type of gas-discharge tube

but af»plie8 ia general to any gas-discharge tube.

The noi/iial operating ^^acuum for this type of tube is of the order of

0.01 mm. of mercury. Small leaks in soldered and sealing-wax joints,

filtration of air through the aluminum-foil windows, and the liberation

of gas from the interior walls of the tube make it necessary to maintain

the optimum vacuum with a vacuum pump. The pump must be a

high-speed pump consisting of some form of mercury-vapor pump with a

backing pump. A pump may be able to produce the necessary vacuum
when no discharge is passing through the tube, but as soon as the high

voltage is applied the liberation of gas within the tube is often more than

the pumps can handle. In order to make this preliminary outgassing a?

short as possible, a pumping system of large capacity should be used.

The ordinary Cenco Hyvac oil pump with a mercury-vapor pump is

sufficient under most conditions. In order to have a greater margin of

capacity the larger Cenco Megavac pump with a mercury-vapor pump is.

recommended, however. The Cenco Hypervac pump, which has recently

been placed on the market, has sufficient pumping capacity to be used

without a mercury-vapor pump. A high-capacity pumping system is a

most valuable asset to a gas-discharge-tube set-up.

The usual high-vacuum technique in the connection of the pump to

the x-ray tube should be followed. Essential features to be remembered

are: (1) Large-diameter connecting tubing. (2) Absence of sharp or

frequent bends in the line between x-ray tube and mercury-vapor pump.

(Make this line as short and direct as possible.) (3) In making sealing-

wax joints the following procedure is recommended: Heat the parts to be

joined and while they are hot coat them with sealing wax by rubbing a

rod of wax over them until the parts are covered with a thin layer of
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wax. Keeping the joint warm, apply softened sealing wax until a thick

enough layer of wax is built up around the joint to make a strong and

rigid joint. Ordinary red sealing wax may be made less likely to crack

and less likely to pull away from the glass by the addition of about

5 per cent of dibutyl phthalate. For the glass-to-metal joint, which

connects the x-ray tube to the pumping line, the German manufactured

picein wax is recommended. This wax adheres to metal better than

sealing wax does. (4) In the pumping line a rubber tubing or flexible

metal tube connection should be inserted to permit adjustment of the

position of the x-ray tube without disturbing the vacuum pumping

apparatus. Heavy-walled rubber tubing especially designed for vacuum
connections has been found to be entirely satisfactory. When stretched

over glass tubing for a length of about 1 in. and fastened with two wire

constrictions, a sufficiently vacuum-tight joint may be made.

After the preliminary outgassing operation the vacuum pumps will

produce too high a vacuum in the x-ray tube. The pressure in the tube

will then be too low for satisfactory operation. In order to restore the

pressure to the optimum, it is necessary to introduce a controllable air

leak. In the Hadding tube two tubulatures are provided. To one is

connected the vacuum pumping system and to the other the air leak.

The setting up of a satisfactory air leak is likely to be the most

troublesome part of the whole assembly. Most air-leak valves have the

difficulty that they are hard to adjust, small adjustments in the valves

making large differences in the flow of air. In general a valve will be

easier to adjust if the backing pressure on the valve is less than atmos-

pheric (10 to 150 mm. of mercury). This is accomplished in one of two

ways. The inlet to the valve is connected to the line between the backing

pump and the mercury pump or to a large bottle (about 2 1.) of air at

reduced, pressure. The choice of either method will depend on the

backing pressure required.

G. L. Clark^ describes a ground-glass needle valve which he has used

in his laboratory. G. W. C. Kaye^ in his book, “High Vacua,'’ gives a

diagram and description of a metal needle valve. Several European

manufacturers supply needle valves for this purpose. Dodge and

Dunbar^ describe a valve which they used in pressure work which may be

adapted as an air-leak valve. It consists of a piston fitting into a

cylinder. Resistance to flow depends on the area of contact between

the piston and cylinder. Adjustment is obtained by moving the piston

within the cylinder. Using the Dodge and Dunbar valve, it has been

found most satisfactory to have the valve at one setting in general and
to regulate the flow of air by varying the backing pressure on the valve.

A 2-1. bottle of air at about 30 mm. of mercury pressure used as a backing

pressure will not leak sufficiently into the x-ray tube to require restoration

of the 30-mm. pressure more,than once or twice a day. The pressure in
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the bottle is brought back to 30 mm. by allowing air to enter through a
stopcock with a capillary opening.

No air-leak device, however stable its own operation may be, will

maintain a uniform pressure within the x-ray tube. The liberation of

gas within the x-ray tube is erratic and causes pressure variations which
the vacuum pumping system is unable to smooth out. A rise in pressure

is accompanied by an increase in current which entails a corresponding

drop in voltage when the primary circuit of the transformer has a proper

resistance. A decrease in pressure produces the opposite effect on the

current and voltage.* The regulation of the pressure within the x-ray

tube and hence the regulation of the Voltage across the tube is accom-
plished by a voltage vacuum regulator. Several voltage regulators for

gas-# ischarge x-ray tubrvs have been described. They regulate the

vactium by a form of automatic valve in the vacuum pumping line.

Thf‘^a«ljustmtnt is vv\yre is controlled by the variations in voltage

acr‘>te=J the x-ray tubt\ Bozorth,® of the Bell Telephone Laboratories,

has described such a regulator. Haworth, of the same laboratory, has

described a more compact and less cumbersome regulator which is being

used in the Bed Telephone Laboratories instead of the Eozorth regulator.

White,^ and Wyckoff and Lagsdin® have also published descriptions of

voltage regulators.

Figure 6 shows a diagram of the Haworth voltage regulator. This

diagram is reproduced through the courtesy of F. E. Haworth, of the

Bell Telephone Laboratories, Inc., who has supplied us with his original

drawing. The regulator is connected in the vacuum pumping line

between the x-ray tube and the pumps as indicated on the diagram. Not
shown in the diagram is a solenoid which fits around the lower tube of the

regulator and actuates the laminated iron armature within the lower tube.

The aluminum cylinder floats in* the mercury, and suspended from the

aluminum cylinder is the iron armature. The solenoid may be connected

through a variable resistance across the primary of the high-potential

transformer. In control units having a voltmeter intended to give an

indication of the high-potential voltage of the transformer, the solenoid

may be connected across its terminals. The latter connection gives more

sensitive regulation. When the voltage across the x-ray tube becomes

too high, meaning too low a pressure in the x-ray tube, the action of the

solenoid on the armature causes the beveled glass-tube elbow to be

immersed partially or entirely in the mercury thus reducing the pumping

speed and permitting the pressure in the x-ray tube to rise. A decrease

in voltage causes the regulator to increase the pumping speed. The nor-

mal position of the glass tube will be such that it is partially immersed

The variations in pressure to which reference is made are those within the range

of operating pressures. Obviously an increase in pressure may be of siich an amount
that no current will pass.
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in the mercury to such a level that a pumping speed sufficient to maintain
the optimum pressure in the x-ray tube is obtained. Adjustment of the

regulator for the desired conditions is made by regulating the resistance

in series with the solenoid or by changing the level of the solenoid.

Other details of the Haworth regulator, useful in the actual construc-

tion and use of this type of regulator, are as follows:

Solenoid .—One and onc-half pounds of No. 30 double silk-covered wire wound
on a brass spo9l for a length of 3 in. The turns should be insulated from the brass

spool with sheet mica.

Armature^—Silicon-steel strips 6- bj I^-in., I uilt up to make an armature 6- by
J^- by J^-in. The strips should be insulated from one another with thin mica. #Do
not use lacquer or varnish insulation between t he strips since this type of insulation

is a ' nstant source of vaport in the vacuum syjtem.

h wi Pieces.—I^on dia’:8 fastened to the upper and lowmr ends of the regulator with

pic.ein wax arc betror thxn f ised-glass seals since dissassembly of the regulator is

made rosier, adjusting t, of the regulator for the particular x-ray unit will probably

reqaitt hanging of a suitable lead weight to the bottom of the armature.

By-patih .—Tn the preliminary outgassing period when starting operation of the

x-ra> tubo, the regulator does not permit sufficient pumping speed to reduce the

time requin d for outgassing to a minimum. The introduction of a by-pass tube

iii parallel with the regulator makes greater pumping speed availabhi during the

outgassing period. When the optimum vacuum in the x-ray tube has been reached

the by-pass tube may be dispensed with by closing a glass stopcock which is included

in the by-pass tube. The regulator will then take care of itself. By using a voltage

regulator and an air leak very constant voltage and current conditions can be main-

tained for an entire day without adjustment.

Focusing of the Cathode Beam.—The cathode beam must be properly

focused on a small area of the target if intense x-rays of uniform intensity

are to be passed through the several slit systems which may be mounted
outside the tube.

In the gas-discharge tube the focusing of the cathode ray depends on

the following factors: (1) radius of curvature of the cathode, (2) distance

between cathode and target, (3) pressure of the gas in the tube, and (4)

shape and material of the body of the x-ray tube and the electrostatic

fields produced thereby.

Clay® has experimented in some detail with the first three of these

factors in connection with the Shearer tube. With any type of tube it is

a matter of experimentation to determine the proper radius of curvature

and distance. Clay recommends a radius of curvature of 2 cm. and a

cathode-to-target distance of 3 to 4 cm. In the laboratory of G. L. Clark,

the optimum radius of curvature of the aluminum cathode of the smaller

Hadding-Siegbahn tube was found to be 3J^^ cm. when placed in the

x-ray tube so that it is inside of the cup of the porcelain insulator. In

the laboratory of the New Jersey Zinc Company, the optimum radius of

curvature of the aluminum cathode of the larger Hadding-Siegbahn-

type tube was found to be 5.4 cm. and the cathode-to-target distance
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approximately 12.6 cm. The general rule is that the radius of curvature

of the cathode is about one-half the distance between cathode and target.

Properly focused, the cathode ray will etch a spot about 2 mm. in diame-

ter on the face of the target after several days running.

In order to bring the focal spot to the center of the target face the

central radius of the concave cathode must be properly aligned with the

axis of the tube. In the Hadding tube this may be done conveniently

as follows: An arrangement is constructed to fit on the end of the porcelain

insulator, which holds three set screws bearing on the cathode-cooling

tube (which runs through the center of the porcelain insulator). The
cathode tube is free to move on the inside of the x-ray tube and pivoted

at the end of the porcelain insulator. The alignment of the cathode tube

can now be adjusted by the regulation of the set screws. When picein

wax is used to make the cathode-tube porcelain-insulator seal, this

adjustment can be made without destroying the seal since the wax is

soft enough to stand a small amount of movement. Test the focus as

follows: A pinhole in a lead plate is mounted about 1 cm. outside the

window of the x-ray tube. The image of the pinhole, viewed with a

fluorescent screen held about 5 to 10 cm. from this pinhole, should be of

symmetrical intensity with the brightest portion at the center if proper

focus has been obtained. An improperly focused tube will give an image

with a bright spot off to one side of the center.

Cooling of the Tube.—The wax joints, the target, and the cathode

require cooling. In the Hadding tube the wax joint from insulator to the

metal bowl of the tube, the aluminum window mounting, and the target

are cooled through suitable water-circulating chambers from the labora-

tory water supply.

The cooling of the cathode-tube-to-insulator wax joint and the cooling

of the cathode necessitate an insulated cooling system since these parts

are at high potential. The most commonly used system is that of the

circulation of water from an insulated reservoir through the cathode tube

and back to the reservoir. The flow from reservoir to x-ray tube is by
gravity and from x-ray tube to reservoir by a compressed-air lift. A
description of such a system has been published.^® In cases where an

elevated insulated reservoir cannot be installed, the cooling medium must
be circulated from reservoir to x-ray tube by a small insulated centrifugal

pump. The pump is connected by means of a bakelite shaft to a grounded
electric motor. If necessary, a coil of copper tubing is inserted between

the x-ray tube and the reservoir to dissipate the heat in the cooling

liquid.

Arrangement of Apparatus.—The disposition of the several units

comprising the gas-discharge tube set-up is a matter of considerable

flexibility and will depend upon the particular laboratory conditions

which have to be met. A*compact, electrically safe arrangement has been
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described by G. L. Clark. ^ The intended position of operation of the

Hadding-type tube is with the porcelain insulator and high-potential

cathode unpermost. The tube will function equally well, however, if it

is used with the high-potential end down. The latter arrangement is the

one used by Clark. The tube is mounted on a table top with the porcelain

insulator projecting underneath the table through an opening in the table

top. Underneath the table is the electrical apparatus. The advantages

of this arrangement are, first, compactness and, second, protection of

the operator from high-voltage shock. The high-voltage equipment is

out of the way and may be easily screened to avoid accident. The
alternative arrangement requires floor space for both the electrical power

Fig. 7.—Photograph of Hadding-Siegbahn-type tube set-up. {Courtesy of New Jersey

Zinc Company.)

plant and the x-ray-tube table, with a high-voltage overhead conductor

to connect the two units.

Figure 7 shows a photograph of the Hadding-Siegbahn-type unit in

.

the laboratory of the New Jersey Zinc Company. The arrangement

is the inverted-tube type. A rotating-switch rectifier mounted on top

of an oil-filled water-cooled transformer forms the high-voltage direct-

current power plant. This unit was installed in a pit 2 ft. below the floor

level. The electrical unit is enclosed in a sound-deadening cabinet

through the cover of which projects the high-potential post. On top

of the cabinet are mounted the insulated oil-cooling system for the

cathode, the milliammeter, and the sphere gap. Electrical connections

are made with copper tubing which prevents most of the corona

loss present when small-diameter-wire connectors are used. A grounded

iron table stands over the entire electrical unit. The open sides of the

table are encased in wire mesh. The wire mesh affords protection to
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the operator from contact with the high potential and prevents inter-

ference with local radio reception from the rotating-switch rectifier.

In Fig. 7 two of the wire screens are removed in order to show the equip-

ment below the table more clearly. All the high-voltage equipment

is thus enclosed, and everything on top of and around the iron table is at

ground potential. The air-leak device is on the left of the x-ray tube,

and the vacuum pumping equipment and voltage regulator are on the

right. An autotransformer control unit is used to regulate the primary

voltage.

D. TECHNIQUE OF ASSEMBLY AND DISASSEMBLY OF THE HADDING-
TYPE TUBE

The concave aluminum cathode becomes pitted after about 75 to

125 hr. of operation. This pitting seems to be unavoidable. A pitted

cathode is roughened over the entire surface, and in the center a deep,

crater-like pit is formed. The focus of the cathode ray is impaired by
the pitting, and exposure times become noticeably larger. In order to

replace the cathode with a new one, the porcelain insulator must be

removed. The porcelain insulator of the Hadding tube rests in an

annular channel at the rim of the metal bowl of the x-ray tube. The
joint is made mechanically rigid and vacuum-tight by filling the channel

with picein wax. The wax is most conveniently melted by passing steam

through the water jacket underneath the channel. The cathode is

threaded on to the end of the cathode cooling tube and may usually be

removed without moving the cooling tube. If removal of the cooling

tube becomes necessary another picein joint at the outer end of the

porcelain insulator must be melted.

The inside of the metal bowl of the tube and the inside of the porcelain

insulator should be cleaned whenever the tube is opened. There will

be deposited on these parts a powdered layer of sputtered metals (repre-

senting all the metals present in the x-ray tube) and carbonaceous matter

from stopcock grease and sealing wax. If allowed to accumulate, this

material becomes a constant source of gas. The production of gas in this

way may become so large that the vacuum pumps are not capable of

producing the optimum vacuum in the x-ray tube.

The target is mounted on a conical plug which is inserted in a corre-

sponding conical receiver at the end of the neck of the metal part of the

tube. The cones should not be lubricated with stopcock grease. The
outside of the cone joint should be sealed with picein wax to insure

vacuum tightness.

The openings in the neck of the tube from which the x-rays proceed

are 3 mm. in diameter. Thin aluminum foil about 0.01 mm. thick is

sealed over these openings. The seal is best made with picein wax.

Heat the neck of the"\ube by passing steam through the appropriate
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water jacket. Paint a thin ring of wax about 7 mm. inside diameter
and 10 mm. outside diameter around the 3-mm. opening. Then apply
a 12-mm. square of aluminum foil over the opening. A brass disk is

furnished with the tube to clamp the foil in place. This disk should not
be tightened until the wax is cool enough so that the wax will not run
into the opening of the x-ray tube. On the Hadding-type tube three

such windows, at angles of 75° with each other, are furnished.

E. FILAMENT-CATHODE METAL TUBES

The technique of operation of <^hese tii})es may be inferred from what
has already been said concerning therifi and from the discussions of the

operating technique of the Co<:»lidge-type and gas-discharge-type tubes.

The ilament-catliode metal tube must be continuously connected to a

vacUMn pumping gysteru. The vacuum should be as high as possible.

With sufficient Ij h gh vacuum the operation of this type of tube is

similar to that of the Coolidge-type tube. A discussion of the construc-

tion of this type of tube, the preparation of tungsten filaments, and
details of operation may be found in ^‘Spectroscopy of X-rays^' by
Mamie Siegbaim.

F. VOLTAGE AND CURRENT MEASUREMENTS

An exact determination of the voltage applied to the x-ray tube in

crystal-structure investigations is not necessary. Indeed the exact

determination is very difficult. A sphere-gap measurement is the usual

method of determining voltage. In the case of a self-rectifying Cooiidge-

type tube, a sphere gap placed in parallel with the tube will give an indi-

cation of the peak voltage of the inverse wave. The voltage of the

no-load inverse wave is of course much higher than the voltage of the

useful portion of the wave. In order to make a sphere-gap measurement

on a self-rectifying-tube set-up, an equivalent load, such as another

x-ray tube, must be placed in the circuit in such a way as to draw current

from the inverse wave, or a vacuum-tube rectifier must be placed in

series with the spark-gap so as to permit the gap to measure only the

useful half waves. Under such conditions an accurate measurement of

the peak voltage may be obtained. For crystal-structure determinations

it is usually sufficient to have a knowledge of the transformer ratio.

In a gas-discharge-tube circuit, a sphere gap for measuring peak voltage

will work quite satisfactorily because gas tubes will operate properly only

on unidirectional voltage. A sphere gap is indispensable as a guide to

the operating conditions of the gas type of tube.

Any sphere-gap voltage measurement of a wave form of fluctuating

voltage will be an indication of the peak voltage only. Of two voltage

waves having the same sphere-gap voltage, wide difference in wave
forms will make a large difference in ability to produce x-rays. Hence,
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two X-ray circuits operating at the same sphere-gap voltage may be very

different from the standpoint of the production of x-rays. Comparison

of such circuits must be based on oscillograph measurements. For

crystal-structure investigations, however, the sphere-gap measurements

are in general quite satisfactory. In any given circuit a reproducible

indication of operating voltage is sufficient rather than an absolute

knowledge of the voltage. Directions for the construction of sphere

gaps and calibration tables for their use may be found in handbooks

of electrical engineering.

Milliammeters for the measurement of x-ray-tube current must be

of a rugged, well shielded construction. They should be protected

against sudden surges. They may be connected in the high voltage or

in the grounded side of the circuit.

G. X-RAY PROTECTION

Harmful effects of x-ray exposure on operators of x-ray equipment

should be guarded against. Short exposures to intense x-ray beams may
produce an x-ray burn. An x-ray burn is very painful and has, in addi-

tion to the characteristics of ordinary burns, the property of penetrating

deeply into the burned member and of not making itself evident until

after many days have elapsed. Prolonged exposure to weak x-rays has

a cumulative effect which may result in a harmful decrease in the white

and red corpuscles in the blood. X-ray exposure may also cause sterility.

A few simple rules should be followed to avoid these harmful physio-

logical effects.

1. Do not expose any portion of the body to the direct beam from the x-ray tube.

2. When it is necessary to view a beam of x-rays with a fluorescent screen, a piece

of lead glass should be placed between the operator and the screen,

.3. X-ray diffraction apparatus not otherwise shielded should be shielded with

sheets of lead. This shielding protects those working near the apparatus from expo-

sure to scattered radiation.

4. The apparatus should be so shielded that sensitive photographic materials

may be stored in the same room. In fact, all unexposed photographic films should be

stored in a cool place near the x-ray apparatus, without any additional protection

beyond that used in connection with the apparatus itself.
-

'*// it isnH safe for a photographic fUm^ it isnH safe for you,**

Mutscheller [Am. J. Roentgenology, 13, 65 (1925)] has determined

that, on the basis of 200 working hours per month, the safe limit of

x-ray dosage is 1 X 10“® ‘V-units’' per second. At this rate it would

take 12 years to total a dose such that, if received at one sitting, a

reddening of the skin would appear three weeks after the exposure.

The English X-ray and Radium Protection Committee requires a

minimum of 1.5 mm. of lead shielding or equivalent for protection

against x-rays generated at 70 kv. For 100 kv. a minimum of 2.0 mm.
of lead is required.
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The United States Bureau of Standards has issued a 26-page booklet

entitled ‘‘X-ray Protection/’ Although it is written from the standpoint

of the medical practitioner rather than from the standpoint of the crystal

analyst, obvious changes in wording will make the rules apply to x-ray

diffraction work. The booklet may be obtained from the Superintendent

of Documents, Washington, D.C., for 10 cents.
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TABLES
THE 230 SPACE-GROUPS LISTED ACCORDING TO THE CRYSTAL SYSTEMS

TO WHICH THEY BELONG

Abbreviations

S Cr. space-grout.

S li., space-iattifc

V nuii'her of affynuiMaric molecules per unit-prism

i' periodicity o plniify (see Chap. Ill)

moUv'ular syinnielry. n/p is the number of molecules of symmetry p per

unit-prism

r cftptei' of symriK iiy

P plane of symmetry

2-

A 2-foid axis of symmetry

3-

d. 3-fold axis of symmetry

4-

d 4-fold axis of symmetry
6-d 6-fold axis of symmetry
4a-d 4-fold alternating axis of symmetry
Deriv. derivation of the space-group

A brief discussion of these tables is given in Chaps. VIII and XIX, to

which reference should be made. To avoid confusion with the various

parentheses necessary to the tabulations, braces are used around all

Miller indices irrespective of whether they refer to plane-families or to

forms of plane-families. This practice conforms to the tables of Astbury

and Yardley on which Tables I to XXXII are largely based. The
symbols used in showing the derivation of the space-groups conform to

those used by Wyckoff. The interpretation of the eighth column of

these tables to the case of atoms of elements and to the case of ions is

taken up in Chap. XIX.

615
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A. Tridinic System.

I. Triclinic hemihedry; Asymmetric

No. S.G. Deriv. S.L. n 8

1 Ci Cl, r„ Ytr 1 Always 1

II. Triclinic holohedry; Centrosymmetric

No. S.G. Deriv. S.L. n s

2 C} Ci» Y tr Ttr 2 Always 1

B. Monoclinic System.
*

For convenience of reference to Astbury and Yardley these tables for the nione-

clinic system follow the ordinary convention of crystallography which chooses the

Y-axis as the axis of symmetry and the (0 1 0) plane as the plane of symmetry. • This

places the Y-axis at right angles to the X-Z plane. This convention is different from

the one adopted in Chaps. II and III which chooses the Z-axis as the one perpendicular

to the plane of the other two. To make the portions of Chaps. II and III which deal

with the monoclinic lattice read in accordance with the ordinary convention,

Y-axis must be substituted for Z-axis

Z-axis must be substituted for Y-axis

l/C must be substituted for k

k must be substituted for l/C

fi must be substituted for y

V _ must be substituted for /x

III. Monoclinic hemihedry; Equatorial

No. S.G. Deriv. S.L. n s

3 Ci 2 Always 1

4 Ci Ym» ^hir) Tm 2 (a) K for {^OZ} if is odd
(h) yi lor {h0l\ if 1 is odd
(c) H for {h0l\ if (h + 1) is odd

5 Cl r„', s» VJ (c/. r/") 4 (a) for [hkl] if (h k 1) is odd

(q^. r,') 4 (6i) 3^ for \hkl\ if {Jk + 1) is odd

(c/. r.'X 4 (62) y2 for [hkl] if (h -h k) is odd

(qf. r,") 8 (c) y for [hkl] if (h + k) or (k -j- 1) or

(h -f 1) is odd

6 Cl r„', s»(t) r„' 4 (a) (61) (62) Same as CJ*; also y for all

{h0l\

8 (c) Same as C\{c) also for {ZiOZ) if

{h -f- 1) is odd, and K for {hQl\ if

(h H- 1) is even

* Thia is to be interpreted to mean '‘same aa C’ (a}(bi)(&s) respectively.”
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p Possible molecular symmetry No.

— None 1

p

1 1

I

Possible molecular symmetry

1 !

No.

1

2 C 2
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IV. Monoclinic hemimorphic hemihedry; Digonal polar

No. S.G. Deriv. S.L. n 8

D Tmt A{t) 2 Always 1

8 C| Tmt A(ir, T,) IIS 2 J^for 1010}

9 Cl r„', ilW = 4 (a) (hi) {hi) Same as C\

r„', A(,ir, T.)
Imu 8 (c) Same as C\

V. Monoclinic holohedry; Digonal equatorial

No. S.G. Deriv. S.L. n . 8

^\h c\,s. r„ 4 Always 1

. . 1 .

11 Cl, CIS, 4 for 10101

12 a Cl,s, 8

16

(a) (60(62) Same as C\

(c) Same as C\

r,„ 4 (a){bKc) Same as C|

14 Cl, Cl, Sh(t) 4 (a)(6)(c) Same as CJ; also }4 ior\ 010)

16 C|, S,{t) rj 8

16

(a) (hi) (hi) Same as C\

(c) Same as CJ

C. Orthorhombic System.

VI. Orthorhombic enantiomorphic hemihedry; Digonal holoaxial

No. S.G. Deriv. S.L. n s

16

or

Cl, Cl, C‘ Vo 4 Always 1

17 72 C‘, Cl, Cl Vo 4 M for 1001)

18 73 ri2 ^2 ril
1^21 ^a> ^2 Vo 4 M for 1100) and 10 10)

19 74 rii ri2 ri2
'-'2» Vo 4 M for 1100}, (0101 and |001}

rii rn
^2» '^2 !

r.'(o) 8 H for {0011; for [hkl] if {h + k) is

odd

rtz rti r»l
^2, t/2> ^2 r.'(o) 8 H for [hkl] if (A + fc) is odd

22 77 pz pz rtz
L-2» «.'2» ^2, To" 16 }4 for Ihkl] if (h + k) or (A; + 1) or

(h 4- 1) is odd
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VI. (Concluded)

No. S.G. Deriv. S.L. n s

23* F* pt r«'" 8 for {hkl\ if (A + * + f) is odd

/nfS riS fit
'^27 ^2

p ///
A 0 8 Same as F*

* These two space-groups differ in the distribution of their axes. For details see Wyckoff, “Ana-
lytical Expression of the Redults of the Theory of Space-groups."

VII. Orthorhombic hemimorphic hemihedry; Didigonal polar

No. S.G. Deriv. S.L. n 5

25 Cl, C‘, S = c'l, s, To 4 Always 1

26 Cf. C|, S = Cl, S,(r.) To 4 3^ for {OAjZj if Z is odd

27 C5. Cl, Sir.) To 4 for { h 0 Z
}

if Z is odd

)4 for {O^z
j

if 1 is odd

28 CU Cl, Sir.) To 4 yi for {h0l\ if h is odd

29 Cl Cl, Sir.) To 4 yi for jZiOZ) if h is odd

yi for lO/cZj if Z is odd

c?. Clf S(tx + Tg) To ' 4 yi for \hOl\ if (h + Z) is odd

yi for 1 0 A; Z
)

if Z is odd

31 Cl. C|, Sir. + r.) r. 4 yi for [hOl] if (h + Z) is odd

Cl, Cl, s„ir.) Vo 4 yi for {/iOZ| if h is odd

yi for {OfcZ) if k is odd

33 Cl, C|, S„(r,) To 4 yi for {/lOZ) if h is odd

yi for {OfcZl if (k + 1) is odd

34 /yio
V/2» CJ, Sm(Tx + Tg) To 4 yi for {hOl\ if (h -f Z) is odd

yi for {Ofczj if (k + 1) is odd

35 C}1 CJ,Si r,'(o) 8 yi for 1^A;Z1 if (h + k) is odd

36 Cll C|,S, r.'(o) 8 Same as also 3^ for all |0A;Z)

37 Cll Cl, s,ir.) r.'(a) 8 Same as CJJ; also for all {OifcZl and

I^OZ)

38 Cli Cl,S yi for {^A;Z} if (k -f Z) is odd
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VII. {Concluded)

No. ‘S.G. Deriv. S.L. n 8

39 /Tfl6
Cl, S(r.) r.'(6) 8 Same as CJJ; also for all {0A;Z}

cil C|, -S(rx) r.'(6) 8 Same as CJJ; also for all {hOl]

41 Cll 8 Same as CJJ; also ^ for all {0kl\ and

42 Cil 9 16 }4 for [hkl] if {h -h k) or (k + 1) or

(h 4* 1) is odd

43 Cll c|, r/' 16 Same as CiJ; also

Kfor {hOl] if (h+l) is odd

3^ for {/fcOZj if (h + 1) is even

)4 for {0A;/| if {k + 1) is odd

3^ for [Okl] if (k -f 1) is even

44 /nf20

'^2t» Cl, Sd To'" 8 3^ for {hkl] ii {h + k 1) is odd

46M Same as CH; also 3^ for all [hOl] and

{OfcZl

46 Cll Cl s,(r.) To'" 8 Same as CH; also 3^ for all [hOl]

VIII. Orthorhombic holohcdry; Didigonal equatorial

No. S.G. Deriv.* S,L. n s

47 Vk vs Sh

= VS /

To 8 Always 1

48 VI vs/™ r„ 8 M for {OfcZ} if {k + 1) is odd

}4 for [hOl] if (h + 1) is odd

3^ for i^fcO} if (h + k) is odd

49 To 8 3^ for {OfcZ} if 1 is odd
for \h0l} if 1 is odd

50 VS/, Fo 8 3i for [Okl] if k is odd

3^ for [hOl] if h is odd
for IhkO] a (h k) is odd

61 H V,/ Vo 8 yi for \h0l] if { is oddi
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VIII. (Coniinued)

CRYSTAL STRUCTURE
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p Possible molecular symmetry No.

2 2-A ± {1001 or 10101; C 52

2 2-A ± {1001 or {0101; P II {100| 53
4 2-A XP

II {1001

— Same as PJ 54

2 2-A 1 {0011; P II 10011 55

4 2-A Xl^ll 101)11

.

2 2-A 1 {0011; C 56

2 2-A ± {0011; P II {1001; C 57

— Same as V’J 58

2 P
II
{1001 or {0101; C 59

4 Two P’b
II {1001 and {0101 intersecting in 2-A

— Same as Fi” 60

2 C 61

2 P||{001|;C- 62

2 2-A JL {1001; P II {1001 or {001|;C 63

4 Two P’s
II
{100| and {0011 intersecting in 2-A; 2-A X P

11

{1001

2 2-A X {1001 or {0101; P || {1001; C 64

4 2-A XP
11
{1001

2 2-A ± 1001); P II {1001, {010}, or {OOl) 65

4 Two P's intersecting in 2-A; 2-A i. P || {001

)

8 Three P's intersecting in three 2-A's
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VIII. {Concluded)

No. S.G. Deriv.* S.L. n s

66 K V\ Im r.'(o) 16 Same as F*; also for all {0A;Z) and

{h0l\

r.'(a) 16 Same as F®; also 3^ for all {AA;0)

68 W n// r.'(a) 16 Same as F®; also for all {OAjZ}, {/tOZ},

and l/iA;0l

69 v»' V^,I To*' 32 Same as F^

70 vv V\ In. To" 32 Same as F^; also

34 for {0A;Z| if (fc + 1) is odd

34 for {Ofczj if (A; -f Z) is even

34 for [hOl] if (h + Z) is odd

34 for {ZiOZi if (/i + Z) is even

34 for [hkO] if {h + k) is odd

34 for
1
Zi 0

}
if (Zi -f- A;) is even

71 vv 1 Vo"' 16 Same as F®.

72 K In, To*" 16 Same as F®; also 34 ^or all {0A;Z} and

{ZiOZl

73 vv V\ I To'" 16 Same as V*; also

J^foraU {Qkl], {feOl}, and |feJfe01

16 Same as F®; also ^4 for all (ZiA;0}

* See Fig. 12, Ctiap. VIII.

D. Tetragonal System,*

IX. Tetragonal tetartohedry; Tetragonal polar

Deriv. S.L. n 8

75 C\ A(x/2), r, r, (r,) 4| 1) Always 1

(r.') 8 2) 34 lor {h k Z} if {h + A;) is odd

*Note that (lOO) includes both the (100) and (010) planes; similarly { 0 A; l)includes both the
(Oibl) and (AOl) planes. Therefor^, ^or {OA;/}*' means for (OArl) or (hOl)** (See p. 247.)
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p Possible molecular symmetry No.

2 2-A ± {loot, {0101, or {0011;P
|| {001) 66

4 Three mutually ± 2-A*s; 2-A ± P
||
1001}

2 2-A ± {loot, {0101, or {0011;P|| {1001 or {0101 67
4 Two P's

II 1 1 0 0 1
and {010} intersecting in 2-A

;

three mutually
±2-A’s;2-A XPII {1001; 2-A ± II

{0101

2 2-A ± {1001, 10101, or {001]; ( 68
4 Three mutually ± 2-A*h

f •

2 2-A X {1001, (0101, or {0011; Pl| {1001, {0101, or (0011 69

4 TwcP’jintertectingin2-A;2-A X P
II {1001, {0101, or {0011

8 Three P*| i itiirsecting in three 2-A's

2 2-A X {1001, {0101, or {0011; C 70

4 Three ihutuali.v ± 2-A's

2 P
II {100}, {010} or {001}; C 71

4 Two P's intersecting in 2-A

8 Three P's intersecting in three 2-i4'8

2 2-A X {1001, {0101, or {0011;P
|1
{OOl); C 72

4 Three mutually ± 2-A's; 2-A ± P
||
{001 } i

2 2-A X {1001, {0101, or {0011; C 73

2 2-A X {1001 or {0101; P II {1001 or {0101 74

4 2-A X P
II
{lOoj or {0101; two P’s

|| {1001 and {0101

_J
intersecting in 2-A

P Possible molecular symmetry* No.

2 2-A X {0011
' 76

4
1

4-A X {0011

* Applin to both oue 1 and oaM 2.
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IX. (Condvded)

n 8

76 c! t,/2), r, r. (r.)

(r.')

4

8
1) Mfor tool)

2) Hfor t001);>^for 1AA:J) if (fc + A)

is odd

77 c\ Ti (r.)

(r.O

4

8
1) Hfoi 1001)
2) J^for |001);Hfor {hkl]U(,h + k)

is odd

78 ci A(V2, 3r./2), r, Same as

identica

CJb
kl da

ut in th« opposite rotatory sense, therefore

ta

79 Cl A(.ir/2), r,' r/ (r,")

(r,'")

16

8

1) M for IAA;Z1 if (A + A), (A + Z), or

(A -h 1) is odd

2) for 1 A A /} if (A + A + Z) is odd

80 Cl A(V2, T./2), r,' r,' (r„")

(r.'")

16

8

1) Same as Cj 1); also for {001}

2) Same as CJ 2); also 34 f^r 10 0 1 j

X. Tetragonal tetartohedry of the second sort; Tetragonal alternating

No. S.G. Deriv. aL. n 8

81 SI cU r< (r„)

(I’o')

4

8
1) Always 1

2) Same as CJ, 2) t.e., for {AAZ} if

(A -h A) is odd

82 SI

1

I...

ci,J r,' (r,")

(r,'")

16

8

1) Same as CJ 1) i.e., J'2 {AAZ} if

(A + A), (A H- Z), or (A + Z) is odd

2) Same as CJ 2) i.e., 34 for {AAZ} if

(A + A -f Z) is odd

XI. Tetragonal enantiomorphic hemihedry; Tetragonal holoaxial

Deriv. S.L. n 8

83 Dl Cl, u. r. (Fo) 8 1) Always 1

(F.') 16 2) Same as S\ 2)

84 Dl Cl, u. F. (F,) 8 1) Hfor 1100)
(F,') 16 2) Same as SI 2); also 34 for {110)

85 Cl u. r. (F.) 8l 1) Hfor {001}
(F,') 16 2) Same as ^1 2); also H for {001)

86 Dl F. (F.) 8 1) 34 for 1001); Hfor (100)
(F.O 16 2) Same as /SJ 2); also 34 for {00 1 ) ; 34

V- for {110}
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Possible molecular symmetry'*'

None

2-A ± (001)

Same as C\

Same as C\

* Applies tv) both case 1 and case 2.

No.

76

77

78

79

80

Possible molecular symmetry* No.

2-A i. {0011
4a-A ± {0011

81

Same as S\ 82

* Applies to both case 1 and case 2.

p Possible molecular symmetry f No.

2 2-A ± 1100), 1110), or (001) 83

4 4-A X {OOlj; three intersecting 2-A's X 1100) and {00 1)

8 Four 2-A^s X {lOO} and {110} intersecting in 4-A X {001)

2 2-A X 1001) or (llO) 84

4 4-A X {001 }; three intersecting 2-A's X {110} and {001}

2 2-A X (100) or {110) 86

2 2-A X (110) 86

tThis column of the table applies only to case 1. Make the substitution {l 1 0) {l^00) whe
applying this column to case 2.
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XI. {Concluded)

No. *S.G. Deriv. S.L. n 8

C\,u. r. (r.)

(r.')

8

16

1) Hioi 10011

2) Same as SJ 2); also for 1001)

88 D\ CJ, u. r. (r.)

(r.')

8

16

1) H for 11001 and 10011

2) Same as SJ 2); also for {0011 and

11101

89 D\ Ci, u. Same as D\ but in opposite rotatory sense, therefore

identical data

90 ^>1 C‘, Uc. Same as D\ but in opposite rotatory sense, therefore

identical data

91 Cl. u. r,'

(r.'")

32

16

1) Same as »SJ 1)

2) Same as Si 2)

92
j

Cl u. r,' (r/o
(r.'")

32

16

1) Same as 1); also for |001}

2) Same as SI 2); also for |001 j

XII. Tetragonal paramorphic hemihedry; Tetragonal equatorial

Deriv. S.L. 8

93 ^\h Cl, I 1'< (r,) 8 1) Always 1

(r.') 16 2) Same as S\ 2)

C\h Cl I r, (r,) 8 1) Ji for {001

1

(IV) 16 2) Same as aSJ 2); also for {001 )

95 Cl c\,h r< (r„) 8 1) H for l^fcOl if {h + k) is odd

(r.O 16 2) Same as iSJ 2); also for all [hkO]

96 Cl Cl. h r, (r.) 8 1) J^for (001}; 3^ for \hk0] ii {h + k)

is odd

(r/) 16 2) Same as 2); also ^2 for all |001|
and \hk0\

97 Cl Cl I r,' (r.”) 32 1) Same as iSJ 1)

(r.'") 16 2) Same as Si 2)

98 Cl h r,' (r.") 32 1) Same as Si 1); also for {001}; %
for I^AjO} if {h k) is odd; for

{^A;0} if {h + k) is even

(r,'") 16 2) Same as 2); also H for {001};

\
for all {AA;0)
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Possible molecular symmetryf

2-A ± {100}, (1101, or {001}
Three intersecting 2-A% either!. {110} and {001} or

!. {100} and {001}

2-A ± {001} or {110}
Three intersecting 2-A ^s X {001} and {110}

2-A ± jaj, 1110}, or {001}
4-A X {001}; three intersecting 2-A*s X {110} and {001}

Four 2-A ^s X {100} and {110} intersecting in 4-A X {001}

2-A X {loot, {1101, or {001}
Three intersecting 2-A 's X {100} and {001}

No.

87

88

89

90

91

92

tThia column of the table applies only to case 1. Make the substitution (l lO} 7=^ {l^ 00} when
applying this column to case 2.

p Possible molecular symmetry* No.

2 2-A ± |001);/^
li
1001) 93

4 4-A ± (001); 2-A ± P
|1
|001|

8 4-A
II 1001)

2 2-A ± |001);P
11
1001) 94

4 2-A X P
11
1001)

2 2-A X {001}; C 95

4 4-A X 1001); 4o-A X |001)

2 2-AX 1001); C 96

4 4a-A X 1001)

— Same as 97

Same as 98

Applies to both case 1, and ease 2.
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XIII. Tetragonal hemimorphic hemihedry; Ditetragonal polar

Deriv. S.L. n s

09 CJ,S. r. (r.)

(r.O

8

16

1 ) Always 1

2) Same as >84 2)

100 cu CJ.S, r. (r.)

(r,')

8

16

1 ) for {OAjZI if A; is odd
2) Same as /SJ 2); also for {hhl\ if h

is odd

Cl Cl s. r, (r.)

(!’.')

8

16

1 ) Vi ior [Okl] if lis odd
2) Same as /8J 2); also 3^ for \hhl] if 1

is odd

102 Cl Cl Sc r< (r.;

(no
8

16

1 ) for
{ 0 A;/1 if (k -f 1) is odd

2) Same as S\ 2); also for {/i/il} if

{h 4-
1) is odd

103 Cl Cl s.{t.) r, (I'o)

(no
8

16

1 ) for {Okl] and \hhl] i{ 1 is odd

2) Same as aSJ 2); also for all jOfci)

for {hhl\ if Z is odd

104 Cl Cl Sc(t.) i'< (n)

(no

1) M for (O/jZ) if {k -f Z) is odd

Hfor \hhl\ if Zis odd
2) Same as 81 2); also for all {Okl]

Hfor [hhl] if Qi -f Z) is odd

105 Cl cis.(t.)
'

r, (n)

(no
8

16

1 ) Hfor [hhl] if Zis odd

2) Same as 81 2); also for all {OAjZ)

106 c;. C\,Sc{r.) r. (n)

(no

8

16

1 ) H for
{
0 A;Z} if A; is odd

H for [hhl] if Z is odd
2 ) Same as 81 2); also 3^ for all (OAiZ)

yi for [hhl] if is odd

107

,

Cl S. r/ (n'O
(n''0

32

16

1 ) Same as 81 1 )

2) Same as 81 2)

r/ (n'O
(n'")

32

16

1) Same as 81 1); also for all [hhl]

2) Same as 81 2); also yi for all {OfcZl

109 Cl
;

'

Cl Sc r,' (r«'o

(n"0

32

16

1) Same as 81 1); also

34 for {OfcZl if (A; 4-Z) is odd
for [Okl] if {k + Z) is even

2) Same as 81 2) ; also

34 for [hhl] if Zis odd

yi for [hhl] if 1 = 2x where x is even
or zero

1 for [hhl] if Z « 2x where x is odd
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Possible molecular symmetryt

P
II 1100) or (1101

Two P’s
II (1001 intersecting in 2-A

Four P’s
11 (100) and (1101 intersecting in 4-A

Pll {110}
4-A X (0011; 2P’s

||
|1 1 0| intersecting in 2-A

2-A X (001|;P
II (110)

Two P’s
II 1 1 1 0( intersecting in 2-A

iWo - m C]„

2-A X (001)
4-A X (001)

P|| 1100}
Two P’s

II (100} intersecting in 2-A

P
II
(100} or (110}

Two P’s
II {110} intersecting in 2-A

Four P’s
II (100} and (110) intersecting in 4-A

Pll 1100}
4-A X (001}; two P’s

|| {100} intersecting in 2-A

Pll {110}
Two P’s

II
{110} intersecting in 2-A

fThis column of the table applies only to case 1. Make the substitution (l lO) (lOO) whe
applyins this column to ease 2.
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XIIL {Concluded)

No. S.G. Deriv. S.L. n 8

no ci: CJ, S.(r.) r/ (r.'O

(r.'")

32

16

1 ) Same as ^4 1); also

M for {OAjZI if {k + 1) is odd

H for [Okl] if (A; + 1) is even

3^ for all [hhl\

2) Same as /S4 2); also

M for all {OfcZl

34 for [hhl] if Hs odd

34 for {hhl\ if Z = 2x where x is even

or zero

1 for {hhl\ ii 1 = 2aj where x is odd

XIV. Tetragonal hemihedry of the second sort; Ditetragonal alternating

No. S.G. Deriv. S.L. n s

Ill D\,

= Vi

V\ S^ r. (r.) 8 Always 1

112 Dl V\ S4r.) r. (r.) 8 34 for {hhl} if Z is odd

113 V\Si r, (r„) 8 for 11001

114 Dii V>, s^ir.) r. (r,) 8 H foV 1100 ); M for [hhl] if i is odd

116 v>, Si r. (r.o 16 Same as ^4 2 )

116 V, Si(T.) r, (r,') 16 Same as Si 2) ;
also J4 for [hhl] if 1 is odd

117

118 1 Di,
.

V,

&,( 2 + ^*)

r< (r.') 16 Same as S\ 2); also 34 for {hhl\ if {h -f 1)

is odd

119 DU

i

r,' (r,") 32 Same as 1)
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V Possible molecular symmetry f No

Same as C\^ no

1 1* is column of f '. e tabic appUen only tu case 1. Make the substitution {110} i=^ (100) when
appiyi# column to 2

! V Possible molecular symmetry No.

2 2-A X (1001 or 10011; P |1
{110)

4 Two P’s
II
1110} intersecting in 2-A;

Three mutually X 2-A's

8 Two P’s
11

|1 10} intersecting in 4a-A X {001}

2 2-A 1 11001 or 100 11 112

4 Three mutually X 2-A’s; 4o-A X {001

)

2 2-A ± |0011:P
11
11101 113

4 Two P’s
II

(1 101 interaecting in 2-A',

^a-A ± 10011

2 2-A ± 10011 114

4 4a-A ± 10011

R P|| 1110} 116H Two P’s
II
{110} intersecting in 2-A

B Two P’s
11
{110} intersecting in 4a-A X {001}

Same as

— Same as 117

1
Same as Dh 118

2

4

8

2-A ± |1001; P1| {110}

Two P's
II
{110} intersecting in 2-

A

Two P's
11
{110} intersecting in 4a-A X {001}

119
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XIV. (Concluded)

No. S.G. Deriv. S.L. n 8

120 i)}S n Siir.) r,' (r.") 32 Same as S] 1); also H for all {hhl]

VS Si T/ (r/'O 16 Same as iSj 2)

122 DU r,' (r„"') 16 Same as aSJ 2) ;
also

yi for [hhl] if Hs odd

% for [hhl] iil ** 2x where x is even or

zero

1 for [hhl] if / = 2a? where a? is odd

XV. Tetragonal holohedry; Ditetragonal equatorial

No. S.G. Deriv. S.L. n 8

123 DJ» D\,I r. (r.)

(r.')

16

32
1) Always 1

2) Same as 8\ 2)

124 DJ* D\,U r. (r.)

d',')

16

32

1) H for lOfc^l \il is odd

yi for [hhl] if 1 is odd

2) Same as 2) ;
also

3^ for all (0A;Z);Kfor \hhl] if Z is

odd

125 D*« Dll, r, (r.)

(r.O

16

32

1) M for [hkO] if (h + A?) is odd

3^ for {Qkl\ if k is odd

2) Same as S\ 2) ; also

for all [hkO]; H for [hhl] if h is

odd

126 DU Dlln, i'< (r.)

(r.')

16

32

1) H for {AfcO) if (A + A:) is odd

H for \0kl] if (k+l)is odd

^2 for lAAl) if J is odd

2) Same as SJ 2); also

M for all {AAOj and {OAll

Hfor lAAlj if (A + 1) is odd

127 DU Dll r« (r.)

(r.')

16

32
1) Kfor {0A;Z1 if Ajisodd

2) Same as aS>4 2) ; also

for [hhl] if /i is odd
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p Possible molecular symmetry No.

— Same as D\^ 120

2 2-A ± 1100} or {001);P
11
jllO} 121

4 Two P’s
II
{110} intersecting in 2-A

Three mutually X 2-A’8; 4a-A X {001}
8 Two P’s

II {110} intersecting in 4a-A X {001

}

2

4

2-A ± 1100} or {0011

4a-A ± 1001)

122

Possible molecular symmetry f

P
II 1100), {110}, or (001)

Two P’s
11 (100) intersecting in 2-A

Two P’s
11
{001 j

and {100) intersecting in 2-A

Two P’s
11 (001) and {110} intersecting in 2-A

Three P’s
|1 {100} and {001} intersecting in three 2-A’8

Four P’s
11 {100} and {110} intersecting in 4-A

Four P’s
11 {100} and {110} intersecting in 4-A; P

1|
{001}

2-A X {100}, {110} or {001}; P ||
{001}

4-A X {001}; three intersecting 2-A’s X {100} and {001};

2-A XP
II
{001}

4-A X P
II {001}; four 2-A’s X {100} and {110} intersecting

in 4-A X {001}

2 2-A X. 1100} or {110};P
11
1110} 125

4 4-A X (001); two P’s
|1
{110} intersecting in 2-A; 2-A X P

||

{110}

8 Four 2-A’s X {110} and {100} intersecting in 4-A X {001};

full symmetry (P
||
{110})

2 2-A ± 1100}, 1110} or 1001}; C 126

4 ! 4-A ± {001}; three intersecting 2-A’8 ± 1100) and {001};

4o-A ± 1001}

8 Four 2-A’s X {100) and 1110) intersecting in 4-A X 1001)

P
II
{110} or {001}

4-A ± {001}; two P’s
II {110} intersecting in 2-A; two P’s

||

{001} and {110} intersecting in 2-A

4-A X P
II {001}; three P’s

||
{110} and {001} intersecting in

three 2-A’s

tThis column of the table applies only to case 1» Make the substitution {l lO} {lOO} when

applying this column to case 2.
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XV. (Continued)

No. S.G. Deriv. S.L. n s

128 Dl, /„ r< (r.)

(r.')

16

32

1) K for {0A;Z1 if {k + 1) is odd

}4 for [h h 1] if 1 is odd

2) Same as S{ 2); also

^forall lOfci}

for {h h 1] if {h + 1) is odd

129 D\k Dl /, r. (r.)

(r.')

16

32

1) ^ for {/I A: 0) if (h + k) is odd

2) Same as S\ 2); also for all \h k 0\

130 K. D\,U i'( (r.)

(r«')

16

32

1) }4 for |/t Aj 0) if (h + k) is odd

}4 for |0 k /} and {h h 1] if 1 is odd

2) Same as >8J 2); also

for all {h k 0} and (0 k 1]

H for [h h 1] if 1 is odd

131 D\,I r< (r.)

(IV)

16

32

1) H for {h h 1} if 1 is odd

2) Same as /SJ 2) ;
also

H for all {0 k 1]

132 D'£ Iw r< (i-.)

(r/)

16

32

1) for 10 A; if / is odd

2) Same as S\ 2); also

Kfor [hhl] if lisodd

1

133 ^Ah D\, h r. (r.)

(r.')

16

32

1) for [hkO] if {h + k) is odd
for [Okl] if k is odd

^ for [hhl] if 1 is odd

2) Same as /SJ 2); also

3^ for all l^fcO] and |0A;f)

for [hhl] if h is odd

134 Dll dIk r< (r.)

(r.')

16

32

1) )4 for |k Jfc 0) if (A + A:) is odd
for |0 k l\ if (k + l) is odd

2) Same as iSJ 2); also

for all [h k 0)

H for [h kl]it(h+r) is odd
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p Possible molecular symmetry f No.

2 %-A ± {110} or |001);P1| jOOl) 128
4 4rA ± {001}; three intersecting 2-A’8 X {110} and {001};

2-4 XP
11 {001}

8 4-4 XPII {001}

2 2-4 X {110};P
II {1001 or {110} 129

4 Two P’s
II {100} intersecting in 2 4

2-4 XP
II {110}

- 8 Four -P*s !! {100} and (110) intersecting in 4-i4; full Did sym-
metry iP

j| (100})^ . _

2 2-4 X iO’ 1} or I110}:C 130

4 4-4 X {Coll; three intersecting 2-4 ’s

X {001' and |110};4a-4 X {001}

2 2-4 X {110};P
II
{100} or {001} 131

4 Two P's
II {100} intersecting in 2-A

Two P's
11 {001} and {100} intersecting in 2-A

8 Three P’s
||
{100} and {001} intersecting in three 2-A’8; full

D2d symmetry (PH {100})

2 2-A J. {100} or {001}

P
II
{110} or {001}

132

4 Two P^s
II {110} intersecting in 2-A

Two P’s
11 {001} and {110} intersecting in 2-A

2-A J.PII {001}

Three intersecting 2-A’s ± {100} and {001}

8 Three Fs
||
{110} and {001}

Full Did symmetry (P
|| {110})

2 2-4 X {100}, {001}, or {110}; C 133

4 Three intersecting 2-4 's X {100} and {001}

Three intersecting 2-4 's X {110} and {001}

4o-4 X {001}

2 2-A ± {100), {001} or {110);P
||
{110} 134

4 Three intersecting 2-A’s ± {100} and {001}

Three intersecting 2-A’s X (HO) and {001}

Two P’s
II
{110} intersecting in 2-A; 2-A X P

||
{110}

8 Full Did symmetry (PH {110})

tTbia column of the table applies only to case 1. Make the substitution {110| (lOO) when
applying this column to case 2.



640 CRYSTAL STRUCTURE

XV. {Continued)

S.L. . n 8

135 D\,I r. (r.)

(r.O

16

32

1) }4 for [Okl] if k is odd

}4 lor [hhl] if 1 is odd

2) Same as S\ 2); also

H for all (OifeZ}

}4 for {h hi] if hk odd

136 D\t d;,/« r« (r,)

(r.')

16

32

1) for {0 k 1] if (A; + 1) is odd

2) Same as S{ 2) ;
also

for [h h l\ if {h + 1) is odd

137 D\t Dll, i'< (r.)

(r.O

16

32

1) yi for {^A;0) if {h + k) is odd

yifor if Zis odd

2) Same as 2); also

3^ for all [hkO] and \0kl\

138 n DJ,/™ r« (r,)

(r„')

16

32

1) H for {^AjO) if {h + k) is odd

H for {0 A;^l if 1 is odd

2) Same as iSJ 2) ;
also

3^ for all (/lifcOl
•

yi for [hhl] if 1 is odd

139 DU DU r/ (r„")

(r/'O

64

32

1) Same as <SJ 1)

2) Same as S\ 2)

140 DU DJ,/, r/ (r.")

(r.'")

64

32

1) Same as SJ 1); also

i^foraU [hhl]

2) Same as 2); also

H for aU [Okl]
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p Possible molecular symmetryf No.

2-A ± 1001} or |110};P
II {0011 136

Three intersecting 2-il^s J. {110} and {001}
2-A±P||{001}
4a-A 1(001}

1

2 2.A 1 {001}; P II
{1101 or 1001) 136 I

4 Two P^s
II
{110} intersecting }n 2-

A

Two P*8
11 {001} and 1110} interjecting in 2-A

2-AlP!!{001}
4arA 1 1001 }

8 Th;ee P's
||
{1^0} and {001} intersecting in three 2-A'8

2 2.A 1 {M01;P
jj {100}; C 137

4 Two P's
li
{100} intersecting in 2-A

8 Full Did symiiietry (P
1| {100})

2 2-A 1 {001} or {110}; P II
{110} 138

4 Three intersecting 2-A 's 1 {110} and {001}

Two P’s
II
{110} intersecting in 2-A

2-A IP
II
{110};4a-A 1 {001}

2 P
II {100}, {110} or {001} 139

4 Two P’s
II
{110} intersecting in 2-A

Two P’s
11
{001} and {100} intersecting in 2-A

Two P’s
11
{001} and (110) intersecting in 2-A

8 Three P’s
1|
{110} and {001} intersecting in three 2-A’s

Four P’s
II
{100} and {110} intersecting in 4-A

Full Did symmetry (P
|i
{11 0})

16 Four P’s
II
{100} and {110} intersecting in 4-A

P|| {001}

2 2-A ± {100} or {110};P|| {100} or {001} 140

4 4-A ±{001}
Tw^ P’s

11
{100} intersecting in 2-A

Two P’s
11
{001} and (100) intersecting in 2-A

2-A ±Plj {100}

8 Four 2-A’s 1 {100} and {110} intersecting in 4-A 1 {001}
|

4-A ±P
II
{001}

Three P’s
||
{100} and {001} intersecting in three 2-A’8

Full 2>2 d symmetry (P
1|
{100})

t This column of the table applies only to case 1. Make the substitution {l 1 0) (l OO) when

applying this column to case 2.
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XV. (Conduded)

No. S.G. Deriv. S.L. n s

141 K. r/ (r.")

(r.'")

64

32

1) Same as Si 1); also

yi for {^/cO} if A;) is odd
for {AA;0j if (^ + A;) is even

yi for {0A;Z} if (A; + 1) is odd
for {0A;Z} if (A; + Z) is even

2) Same as 4S4 1); also

yi for all {ZiA;01

for \hhl\ if Z is odd

yi for [hhl] HI = 2a; where a: is even

or zero

1 for [hhl] H 1 ^ 2x where x is odd

142

1

r,' (r/')

(r.'")

64

1

32

1) Same as 1); also

34 for {hkO\ if (h + A;) is odd

34 for {/iA;oj if {k + k) \b even

34 for {0 A; Z} if (A; + Z) is odd

34 for {0 A; Z) if (A; -f Z) is even

34 for all {hhl\

2) Same as /S4 2); also

34 for all {/iAjO) and {0A;Z1

34 for {hhl\ if Zis odd

34 for [hhl] ii 1 = 2a; where x is even

or zero

1 for [hhl] if Z = 2x where x is odd

E. Cubic System.

XVI. Cubic tetartohedryj Tesseral polar

No. S.G. Deriv. S.L. n 8

143 yi V\ A, Tc 12 Always 1

\

144 y2 V’,Am r/ 48 M for {hkl\ if (h + k) or (k + 1) or

(ft + I) is odd

145 ys V»,At Tc" 24 34 for {AA;Zi if (A -f- A; 4- Z) is odd

146 y4 V*,A, Tc m HfoT 1100}

147 y» n A, r." 24 Same as
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V Possible molecular symmetry! No.

J

2

4

2-A X |100| or {110};P|| (1101
2-.1 XP

11 (1101
Two P’s

11 {1 10) intersecting in 2-

A

141

V

8 Full Dissymmetry (PH (1101)

2 2 A .'^|}O0|, (001) or (110); C 142

'I

4 Three ir.ersecting 2-A’s X (lOOj and (001)
4a-A X (0011

t This column of the table applies only to case 1. Make the substitution |l lO) ^ |l00) when
applying this column to case 2.

V Possible molecular symmetry No.

2 2-A X (100) 143

3 3-A X (111)
12 Three 2-A’8 X (100) intersecting in 3-A X (111) (i-e., full

symmetry of class T)

1
Same as 144

1 Same as 145

3 3-A X (111) 146

2 2-A X (100) 147

3 3-AX (111)



644 CRYSTAL STRUCTURE

XVIL Cubic enantiomorphic hemihedry; Tesseral holoaxial

No. S.G. Deriv.
.

S.L. n 8

148 O' TS U Tc 24 Always 1

149 0* T\ Tc 24 M for |100)

150 03 T\ U IV 96 Same as T*

151 0* T*, Un> IV 96 Same as T^; also }i for {100)

152 0» T\ U Tc" 48 Same as T*

153 0» Tc 24 for (1 0 0| ‘

T*, Ui Same as 0® but in opposite rotatory sense ,

155 08 t\ V Tc" 48 Same as T®; also for (100)

XVIIL Cubic paramorphic hemihedry; Tesseral central

Deriv. S.L. n 8

156 n T\ I Tc 24 Always 1

157 n Tc 24 K for liiAiO) if {h + k) is odd

m n T\ I 96 Same as T* *

II
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v I Possible molecular symmetry

2 2.AX{1101
3 3-A ± {1111
4 4-A ± {1001
24 Six 2-A*s JL {110} plus three 4-A*s ± {100} all intersecting

in a point through which pass four 3-A^s i. {Ill} (i.e., full

symmetry of class 0)

2 2-A ± {100} or {110;

3 3-A ± {111}
12 Full symmetry of class T

\

— S^me as 0*

Same as 0

therefore identical data

2 2-A JL {100} or {110}

3 3-A ± 1111}

p Possible molecular symmetry
|

2 P
II
{100}

3 3-A ± {111}

4 Two P's
II
{100} intersecting in 2-A

24 Three mutually ± P's
1| {100} with four 3-A's±{lll}

passing through point of intersection (i.e., full symmetry of

class Th)

2 2-A 1 {100}

3 3-A 1 {111}

6 3-A JL {in};C
12 Full symmetry of class T

2 2-A ± {100}; P II
{100}

3 3-A ± {111}

4 Two P’s
II
{100} intersecting in 2-A

24 Full symmetry of class Tk
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XVIII. (.Concluded)

No. S.G. Deriv. S.L. n 8

159 n T*,I„ r.' 96 Same as T^; also

for [hkO] if (h -|- k) is odd
for {AA;0} if (h + k) is even

160 n T\ I r," 48 Same as

161 n T\ I Vc 24 3^ for (/i AjO} if ^ is odd

162 Tl T\ I Fc" 48 Same as T*; also

H for all {A fcOt

XIX. Cubic hemimorphic hemihedry; Ditesseral polar

No. S.G. Deriv. S.L. n 8

163 T\Si 24 Always 1

164 Tl T*,Si IV 96 Same as T*

165 Tl T>,Si Tc" 48 Same as T®

166 Tl T\ &(t) Tc 24 H lor [hhl] if Z is odd

m T*, Si(r) T/ 96 Same as T*; also for all {hhl}

168 T\ Siir) T." 48 Same as T®; also

K for [hhl] if 1 is odd
for {hhl} itl == 2x where x is even or

zero

1 for if / = 2® where x is odd
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Possible molecular symmetry

2 P
II 1100}

3 3-A ± (lllj

4 Two P’s
II 1100} intersecting in 2-A

6 3-4 1 iniijc
24 Pull symmetry of class Tx

3 3-4 1 1111 }

6 34 1
I

2 2-Al,100!
3 a-A i 111 11

6 3-^ 1 {nil;C

Possible molecular symmetry

2 P|| 11101

4 Two P's
II
1110) intersecting in 2-

A

6 Three P's
|| { 1 1 0) intersecting in 3-A ± 1 1 1 1

1

24 Six P's
II
{110) intersecting in four 3-^4 's ± {1111 plus three

2-A's ± 1 100}, all intersecting in the same point (i.e., full

symmetry of class Td)

— Same as Pi

2-

41 1 (100!

3-

^ 1 1111}

Full symmetry of class T

Same as Ti

2.A ± {100}

i3-A ± jlll)
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XX. Cubic holohedry; Ditesseral central

No. S.G. Deriv. S.L. n 8

169 01 0\I r. 48 Always 1

170 01 Vc 48 K for {A A; 0} if (h -j- k) is odd

K for [hhl] ii 1 \a odd

1
0\I i\ 48 Hfor {hhl\ if Zis odd

172 Ot o«, /« Vc 48 for [hkO] if {h -h k) is odd

0\I Tc' Same as T^

174 o\ r Tc' 192 Same as T*; also

for all {hhl\

176 01 r/ 192 Same as T^; also

Hfor \hkO\ if (fe + fc)isodd

for {ZiAjO) if (h 4- k) is even

176 01 0*. /: Tc' 192 Same as T*; also

H for all \hhl]

K for {hk0\ if {h + k) is odd
for [hkO] if {h + k) is even

177

1

0^,1 Tc" 96 Same as T®
j
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V

8

48

2

3

4

6

24

2

3

4

24

2

4

6

12

24

2

3

4

24

2

3

6

12

2

4

6

8

12

48

Possible molecular symmetry No.

P
11 {1001 or 11101

Two P's
II {1001 and {110} intersecting ini 2-A ± {110}

Three P's
|| {110} intersecting in 3-A ±{1111

Four P's
11 {100} and {110} ihtersecting iii 4-il ± {100}

Full symmetry of class 0, plus C at point of intersection of axes

(i.e., full symmetry of class Oh)

,160
2-

A J. 1110}

3-

A ± {111]

4-

A X {100}
3-A X !Ui|;C
T’'ul’. sy'uimctrj of class 0

170

2-

A J ;1 iOjjPIl {100}

3-

A X (111)

Two P’a
li

f 1 00) intersecting in 2-A

Full symmetry of class Tk

171

P\\ {110}

Two P's
11 {110} intersecting in 2-A

Three P's
jl
{110} intersecting in 3-A ± {111}

Three P's
ij {

1 1 oj intersecting in 3-A ± {
1 1 1 j ;

C
Full symmetry of class Td

172

Same as OJ 173

2-

A X lllOjjPll (lOO)

3-

A X (nil

4-

A X |100|

Two P’s
11
1100} intersecting in 2-A

Full symmetry of class 0; full symmetry of class Tk

174

Same as 0{ 176

2-

A X {100} or {110}

3-

A X 111 1)

3-A X {
1 1 1 j 5 C

Full symmetry of class T

176

P
11
{100} or {110}

Two P's
II {100} and {110} intersecting in 2-A ± {llO}

Three P's
|| {110} intersecting in 3-A ± {HI}

Four P's
II {100} and {110} intersecting in 4-A X {100}

Three P's
|| {110} intersecting in 3-A X {

1 1

1

} ;
C

Full symmetry of class Oh
i

(

177
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XX. (Conclvded)

No. S.G. Deriv. S.L. n s

178 or 0»,/ Same as T^\ also

for all [hk(^\

for if Hsodd
H for \hhl\ if / = 2a? where x is even or

zero

1 for [hhl] \il = 2a; where x is odd

F. Hexagonal System,

(a) Rhombohedral division.

XXI. Rhombohedral tetartohcdry; Trigonal polar

No. S.G. Deriv. S.L. n s

179m A(2ir/3), r» Fa 3 Always 1

180 Cl A(2T/3,2T./3),r» Fa 3 M for {0001)

181 Cl A(2r/3,4T./3),r* Same as CJ but in opposite rotatory sense,

182 Ct F,a 3 Always 1

XXII. Rhombohedral enantiomorphic hemihedry; Trigonal holoaxial

Deriv. S.L. n s

183 Dl Cl u. Fa 6 Always 1

184 Dl CJ, u. Fa

1

Always 1

m Cl, u. Fa 0 H for {0001}

Cl, V, Fa 6 hfoT {0001)

187 Dl Ci, V. Same as DJ but in opposite rotatory sense,

188 o; C\, Ua Same as Dj but in opposite rotatory sense,

189 Dl C}, u. FrA 6 Always 1



2 2-A ± {100} or {110}
3 3-A ± {111}
6 3-A ± {111};C

Possible molecular symmetry

3-A ± {0001}

therefore identical data

3-A ± {111}

Possible molecular symmetry

2-

A JL {1010}

3-

A ± {0001}
Three 2-A's ± {1010} intersecting in 3-A ± {0001}

2-

A ± {1120}

3-

A ± {0001}
Three 2-A's ± {1120} intersecting in 3-A i. {0001}

2-A ± {1010}

2-A ± {1120}

therefore identical data

therefore identical data

2.A 1 {110}
3-A ±{111}
Three 2-A's ± {110} intersecting in 3-A ± {111}
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XXIII. Rhombohedral hemimorphic hemihedry; Ditrigonal polar

No. HQ Deriv. S.L. n 8

190 CJ. CJ, s. Tk 6 Always 1

191 Cl,Sa Vh 6 Always 1

192 Cl Cl,S.(r.) Tk 6 3^ for (mOm Z} if Z is odd

193 Cl C\, S.(r.) 1\ 6 34 for if Zis odd

194 Cl Ci,Sa
'

Trk 6 Always 1

195 Cl Cl s.(t.) Vrk 6 34 for {Zi/iZl if Hsodd

XXIV. Hexagonal tetartohiedry of the second sort; Hexagonal alternating

No. S.G. Deriv. S.L. n 8

196 Cl Cl I Tk 6 Always 1

197 Cl Cl I I'rA 6 Always 1

XXV. Rhombohedral holohedry; Dihcxagonal alternating

No. S.G Deriv. S.L. n 8

198 Dl Dll Vk 12 Always 1

Di r Vk 12 J4 for {mm2wZ} if 1 is odd

1

;
I
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Possible molecular symmetry

Pll {11201
Three P’s

||
|1 1 20) intersecting in Z-A

P|| IIOIOI
Z-A ± (0001) _
Three P’s

||
(lOlO) intersecting in 3-A

Z-A ± (0001)

Z-A X (0001}

P;iniO}
Thp-c P’s

II
(iTOl intersecting in 3-A

3-A X (111

p Possible molecular symmetry No.

2 c 196

3 3-A X (00011
6 3-A X (00011; C

1

C
3-A X 11111
3-A X (1111; C

P Possible molecular symmetry No.

2 2-A X 110T01;P|| (lOTO) 198

4 2-A XP
II
(lOlO)

6 Three P’s
||
(1010} intersecting in 3-A

Three 2-A ’s X (lOTO) intersecting in 3-A X (0001)

8 3-A X (00011
12 Three P’s

||
(1010} plus three 2-A ’s X (lOlO) all intersecting

in 3-A X (0001)

2 2-AXll0T0);C 199

3 3-A X (0001)

6 Three 2-A’s X (1010) intersecting in 3-A X (OOOll; 3-A X
10001);C
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XXV. (Concluded)

No .S.G. Deriv. S.L. n 8

Dll r* 12 Always 1

201 DU Di r Vk 12 34 for [mOrnl] if 1 is odd

202 DU D\, I Trh 12 Always 1

203 DU Dl r Trh 12 34 for \hhl] if 1 is odd

(b) Hexagonal division.

XXVI. Trigonal paramorphic hemihedry; Trigonal equatorial

No. S.G. Deriv. S.L.

—
n 8

204 cish n 6

i

Always 1

XXVII. Trigonal holohedry; Ditrigonal equatorial

No. S.G. Deriv. S.L. n 8

205

.

DU Dl, Sk Tk 12 Always 1

DU Dl, S* Th 12 34 for \m0ml] if 1 is odd
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p Possible molecular symmetry
1

No.

2 2-A A {11501;P
II {11201 200

4 2-A A P
II
{11201

6 Three P*&\\ { 1 1 2 0 1
intersecting in 3-A

12 Three P’s
|| {11201 pl'Js three 2-A’s A { 1 1 2 0 1 all intersecting

in3-AA{00011

2 2-A A {11201; C 201

3 3-A A {0001}
6 Three 2-A’s A {1120| intersecting in 3-A A {0001}

3-A A 10001}; C

2 ?-: A ii ro::P|| (iToi 202

4 2-A J P !l 101

6 Three P'.-
i| i 1 i 0 }

intersecting in 3-A

12 Three P’s
||
{iTO} plus three 2-A’s A 1110} all intersecting

in3-A A P i 11

2-

A 1 IllOli C
3 3-A 1 11111

6 Three 2-A’8 ± 1 1 1 0) intersecting in 3-A A 1 1 1 1

1

3-

A ± mil; C

P Possible molecular symmetry No.

2 P
II
(0001} 204

3 3-A A (0001}
6 3-A A PH (00011

Possible molecular symmetry

P
II (00011 or {1120}

Two P’s
II |0001| and {1120} intersecting in 2-A

Three P’s
|| {1 120| intersecting in 3-A

Three P’s
jj
{ll20| intersecting in 3-A ± P || {0001}

2-

A 1 |10T01;P
II
{00011

3-

A 1 {00011
3-A A P

II {0001)_
Three 2-A’s A {lOTO} intersecting in 3-A A {000 1|
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XXVII. (Concluded)

No. S.G. Deriv. S.L. n 8

207 % Dl, S, Th 12 Always 1

208 DU D\, Vk 12 H lor \mm2ml] if 1 is odd

XXVIII. Hexagonal tetartohedry; Hexagonal polar

Deriv. S.L. n 8

209 Cl A(,r/3), r» r* 6 Always 1

^W3,r./3), r* n 6 H for 1000 1|

211 Cl A(ir/3, Sr./3), r* Same as Cl but in opposite rotatory sense,

ci Tk 6 H for 100011

213 Cl A(r/3, 4r,/3), r» Same as Cl but in opposite rotatory sense,

214 Cl A(ir/3, T*), r* 6 M for 10001}

XXIX. Hexagonal enantiomorphic hemihedry; Hexagonal holoaxial

No. S.G. Deriv. S.L. n 8

215 i>j Cl, Ua 12 Always 1

216 Dl Cl, u. r* 12 for (00011

Same as D| but in opposite rotatory sense,
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Possible molecular symmetry

P
II {00011 or {1010}

3-A ± 10001)
Two P’s

II (0001) and |1010) intersecting in 2-A
3-A XP

II
(0001)

Three P’s
||
(1010) intersecting in 3-A

Three P’s
|| |1010) intersecting in 3-A X P

|1 {0001)

2-

A X {1150);P
II 10001)

3-

A X 10001)
3-A 1 P

II
{0001 )_

Three ‘/-A’s X (1120) intersecting in 3-A X |0001)

Possible molecular symmetry

2-

A X (0001)

3-

A X 10001)
6-A X 10001)

therefore identical data

therefore identical data

2-A X 10001)

3-A X 10001)

p Possible molecular symmetry No.

2
^

2-A X (0001), (1010), or (1120) 215

3 3-A X (0001)
4 Three mutually 1 2-A*8

6 6-A X |0001); three 2-A'8 ± {lOTO} intersecting in S-A X
10001)

12 Si5c2-A’s X (1010) and {1 iSO) intersecting in 6-A X (0001)

2 2-A X jlOTO) or (1120)

therefore identical data
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XXIX. {Concluded)

Deriv. S.L. n 8

218 Di C{, Ua r* 12 for {00011

Same as DJ but in opposite rotatory sense,

220

1
Cl Ua Th 12 Hfor (0001)

XXX. Hexagonal paramorphic hemihedry; Hexagona) equatorial

No. S.G. Deriv. S.L. n a

221 Cl CIS, Vh 12 Always 1

222 ^Ih Ct,S, Th 12 Mfor 10001}

XXXI. Hexagonal hemimorphic hemihedry; Dihexagonal polar

No. S.G. Deriv. S.L. n a

223 ClSa Tk 12 Always 1

224 Cl. Cl S.(r.) Th 12 3^ for {mOmZ) if Z is odd

H for {mm2ml] if Z is odd

225 ('Iv C|,s. Th 12 ^ for |m0mZ) if Z is odd

226 Cl CJ, S.{r.) Th 12 for (mm^Z) if Z is odd
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P Possible molecular symmetry No.

2 2-4 1 100011, llOTOl.or |1120) 218
4 Three mutually X 2-i4*s

therefore identical data 219

2 220
3

'

V Possible molecular symmetry No.

2

3

4

6

12

•-M 1 10001 |;f»
II
1000 11

3-4 X 100011
•2-4 I P II

100011
6-4 X i00011;3-4 X P

||
{00011

6-4 X P
11
{00011

221

2 P|| {00011;C 222

3 1 3-4 X {00011
6 3-4 X P

II
{00011; 3-4 X {00011; C

V Possible molecular symmetry No.

2 P
11
{lOlOl or {11201 223

4 Two P's
II |1010) and |1120) intersecting in 2-A

6 Three P’s
1|
(1120) intersecting in 3-A

12 Six P's
II
(1120) and (1010) intersecting in 6-A

2 2-4 X {00011 224

3 3-4 X {00011

6 6-4 X {00011

2 PIlllOlOl 226

3 3-4 X {00011 _
6 Three P’s

||
{101 01 intersecting in 3-4

2

6

P|| 111201
Three P^s

1|
{1 1201 intersecting in 3-A

226
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XXXII. Hexagonal holohedry; Dihexagonal equatorial

No. S.G. Deriv. S.L. n 8

227 Dl Di,I n 24 Always 1

24 ^ for {mO wZl if 1 is odd

yi for if 1 is odd
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Possible molecular symmetry

P
II {00011, {10101 or {n201

Two P’s
II {0001} and {1010} intersecting in 2-A

Two P’s
II {0001} and {1120} intersecting in 2~A

Two P’s
II {1010} and {1 120} intersecting in 2-A

Three P’s
1| {1120} intersecting in 3-A

Three mutually ± P’s
|| {0001}, {lOTO}, and {1120} inter-

secting in three 2‘-A*s

Three P’s
|| {1150} intersecting in 3-A JL P |1

{0001}
Six P’s

II
{1 Ol 01 and (1120} intersecting in 6-A

Six P’s
!|
{lOTOj and {11‘20; intersecting in 6-A ± P H

}2A1 iOOOl}, {lOTO} or {11201; P II (00011
3-yi . {0 0011
Three mutually ± 2-

A

’s

2-A .L P !! (00011
:(vA ± {00011; 3-A ±P

II
{0001}

Three 2-A ’d ± {1010} intersecting in 3-A ± (000 1}

0-A ± P
II (OOOJl

Six 2-A ’s ± (10101 and { 1 1 2 0 }
intersecting in 3-A ± (0001}

2-

A ± 110T01;P
II (00011 or {lOTO}

3-

A ± {0001}
Two P’s

II
(0001 1

and (1010} intersecting in 2-A

2-

A ± P
II
(lOTOl

3-

A ± P
11
(00011

Three P’s
||
{1010} intersecting in 3-A

Three P’s
|j
{lOToj intersecting in 3-A ± P

|1
{0001}

Three P’s
||
{lOTO} plus three 2-A ’s ± (lOTO) all intersecting

in 3-A ± (00011

2-A ± {11201;P
II
(OOOll or (11201

Two P’s
II
{0001} and {1120} intersecting in 2-A

2-A XP
II
(112 01

Three P’s
||
{1120} intersecting in 3-A

Three P’s
jj
(1120} intersecting in 3-A X P

|| (00011
Three P’s

1|
(11201 plus three 2-A’s X ( 1 1 20} all intersecting

in 3-A X (00011
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TABLES XXXIII TO XXXIX

Tables XXXIII to XXXIX give a summary of the kinds of configu-

rations of points which can be obtained from each of the space-groups and

give the number of each kind which can be obtained. In these tables

the numbers at the tops of the columns represent the number of possible

equivalent positions, and the numbers in the body of each column give

the number of possible configurations, followed in parentheses by the

number of variable parameters permitted. For instance, 1(0) indicates

a special case of only one possible configuration with no variable parame-

ters; 2(1) indicates that we have our choice of either (or both) of two

configurations each of which ha6 one variable parameter.

These tables are identical with those found at The end of Wyckoff^s

‘‘Analytical Expression of the Eesults of the Theory of Space-groups.”

The data given in these tables may be derived from Tables I to XXXII
in this Appendix, using the method outlined at the end of Chap. VIII.

Table XXXIII.—Triclinic System

S. G. 1 2

1. C} mBl 1(3)

Table XXXIV.—Monoclinic System
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Tabus XXXV.—Orthobhombic System

12(1) 1(3)

4(1) 1(3)

2(1) 1(3)

1(3)

2(1)

4(0) 7(1)

4(0^

4(0) 3(1)

3(1)

4(2) 1(3)

2(2) 1(3)

4(1) 1(3)

2(1): 1(2) 1(3)

1(3)

2(1) 1(3)

1(2) 1(3)

2(1) 1(3)

1(3)

2(1) 1(3)

2(1) 1(1): 2(2)

1(2)

3(1)

2(1) 3(2)

2(1); 1(2)

1(1); 1(2)

1(1)

1(1)

2(1) 2(2)

2(1)

1(1); 1(2)

12(1) 6(2)

4(0) 2(0); 6(1)

8(0) 8(1); 1(2)

4(0) 2(0); 6(1)

4(0); 2(1) 2(1); 3(2)

2(0); 2(1)

4(0) 3(1); 1(2)

2(0); 3(1)

4(0) 2(1); 2(2)

2(0); 2(1)

1(3)

1(3)

6(1)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1 ( 1 ); 2 (2 )

1 ( 1 )

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)

1(3)
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Table XXXV.—(Concluded)
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Table XXXVI.—(Co/JcJurfed)

Table XXXVII.—Cubic System
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Table XXXNll,—{Concluded)

Table XVIII.

—

Hexagonal System
Rhombohedral Division

S.G. 1

21 .

C\ 3(1)

Cl

2 3 6 12
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Table XXXYlll.—iCondvded)

S.G. 2 4 8 16 32

21. CoTdinued.

c\ 1(3)

ci 1(1) 1(3)

22.

D\ 6(0) 3(1) 2(1) 1(3)

D\ 2(0) 2(1) 2(1) 1(3)

D\ 2(1) 1(3)

D\ 2(1) 1(3)

D\ 2(1) 1(3)

D\ 2(1) 1(3)

D\ 2(0) 1(1) 2(1) 1(3)

23.

C}. 3(1) 1(2) 1(3)

Cl 1(1) 1(1) 1(2) 1(3)

C\, 3(1) 1(3)

Cl 2(1) 1(3)

Cl 1(1) 1(2) 1(3)

Cl i(i) 1(3)

24.

2(0) 2(1) 2(0) 1(3) ....

Cl 2(0) 1(1) 2(0) 1(3) —
25.

Dl 2(0) 2(0); 1(1) 2(0) 1(1) 2(1); 1(2) 1(3)

Dl 4(0) 2(1) 1(0); 1(1) 1(3)

Dl 2(0) 2(1) 2(0) .... 2(1); 1(2) 1(3)

Dl .... 2(0) 2(1) 1(0); 1(1) 1(3)

Dl 2(0) 1(1) 2(0) .... 2(1); 1(2) 1(3)

^Id 2(0) 1(1) 1(0); 1(1) 1(3)

.Table XXXIX.—Hexagonal System
Hexagonal Division
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Table XXXIX.

—

(Concluded)

Table XL.

—

The Symmetry Characteristics op the 32 Point-qroups

(The typical chemical examples are taken from Tutton, “The Natural History of

Crystals,” E. P. Dutton & Co., Inc., New York)

TricUnic system: a 9^ h c;\ 7^ ii ^ v,

1. Cl Hemihedry; Asymmetric.

No symmetry.

Calcium thiosulphate, CaS20t * 6H2O.

2. Ci Holohedry; Centrosymmetric.

One 2-fold axis ± plane of compound symmetry.

This is the equivalent of a center of symmetry.

Copper sulphate, GuSOi * 5H2O.
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Table XL.

—

{Continued)

MonocUnic system: = 90®; p ^ 90®*

X = y = 90®; M 90®t

3. C, Hemihedry; Equatorial.

One plane of symmetry.

Potassium tetrathionate, K 2S40 «.

4. C 2 Hemimorphic hemihedry; Digonal polar.

One 2-fold axis.

Tartaric acid, C4H 6O 6

6.

C2A Holohedry; Digonal equatorial.

One 2-fold axis J. plane of symmetry.

Potassium magnesium sulphate, K2Mg(S04)2 • 6HaO.

Orthorhombic system: a^b^c;\=^fx — p — 90®.

6. P = Q Enantiomorphic hemihedry; Digonal holoaxial

Three mutually ± 2-fold axes.

Magnesium sulphate, MgS04 • 7H 2O.

7. C2V Hemimorphic hemihedry; Didigonal polar.

One 2-fold axis
||
two mutually ± planes of symmetry.

Ammonium magnesium phosphate, NH4MgP04 • 6H2O.

8. Vh — Qh Holohedry; Didigonal equatorial.

Three mutually J, 2-fold axes, and three mutnallv i. planes of

symmetry.

Potassium sulphate, K 2SO4.

Tetragonal system: a = 6?^c;X=/x = i' = 90®.

9. Ca Tetartohedry; Tetragonal polar.

One 4-fold axis.

Lead molybdate, PbMo04 .

10. Si Tetartohedry of the second sort; Tetragonal alternating.

One 4-fold axis ± plane of compound symmetry.

Only example known, 2CaO • ALOs • Si02.

11. Di Enantiomorphic hemihedry; Tetragonal holoaxial.

One 4-fold axis ± plane containing four 2-fold axes.

Strychnine sulphate, (C21H22N2O2) * H2SO4 • 6H2O
12. Cih Paramorphic hemihedry; Tetragonal equatorial.

One 4-fold axis ± plane of symmetry.

Calcium tungstate, CaW04.

13. Cav Hemimorphic hemihedry; Ditetragonal polar.

One 4-fold axis at the intersection of four planes of symmetry,
lodosuccinimide, C4H4O2NI.

14. Vd — Qd Hemihedry of the second sort; Ditetragonal alternating.

One 4-fold axis ± plane of compound symmetry; two mutually ±
2-fold axes lying in the plane of compound symmetry; two planes

of symmetry intersecting in the 4-fold axis and bisecting the angles of

the two 2-fold axes.

Potassium dihydrogen phosphate, KH2PO4.
16. Dih Holohedry; Ditetragonal equatorial.

One 4-fold axis at the intersection of four planes of symmetry; one

* Convention of Chap. IF.

t Convention of Appendix III.
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Table XL.—{Cmtinued)

plane of symmetry and four 2-fold axes all ± the 4-fold axis.

Zircon, ZrSi04.

Cubic system: = 90°.

16. T Tetartohedry; Tesseral polar.

Three mutually i, 2-fold axes, and four 6-fold axes equally inclined to them.
Barium nitrate, Ba(N08)2.

17. 0 Enantiomorphic hemihedry; Tesi^eral holoaxial.

Three mutually ± 4-fold axes; four 3-fold axes equally inclined to them; six

2-fold axes bisecting the angles between the 4-fol(i axes. No planes of

symmetry.

Cuprite, CU2O.

18. Th Paramorphic hemihedry; Tesseral central.

Three mutually .L 2-fold axes; four 3-fold axes equally inclined to them;
three planea of symmetry J. the 2-fold axes.

Writes, PeiS'i.

19. T’ Hemimorphic herjiliedr>
;
Ditesseral polar.

Three mutually L 2-fold axes; four 3-fold axes equally inclined to them; six

planes of .symmetry }»isecting angles corresponding to the angles between

the 4-lc'ld axes of class 0 or of class Oa.

Tetrahedvlte, CuaSbSs.

20. Oh Holohedry; Ditesseral central.

Three mutually ± 4-fold axes; four 3-fold axes equally inclined to them; six

2-fold axes bisecting the angles between the 4-fold axes; three planes of

symmetry JL the 4-fold axes; six planes of symmetry bisecting the angles

between the 4-fold axes.

Calcium fluoride, CaFa; Sodium chloride, NaCl.

Hexagonal system:

Hexagonal axes:

a^b^c;\==ti^ 90°; 1/ = 120°.

Rhombohedral axes:

= 90°.

Rhoinbohed ral division

:

21. C3 Rhombohedral tetartohedry; Trigonal polar.

One 3-fold axis of symmetry.

Sodium periodate, NaI04 • 3H2O.

22. Dz Enantiomorphic hemihedry; Trigonal holoaxial.

One 3-fold axis ± plane containing three 2-fold axes.

Quartz (low temperature form), Si02.

23. Czv Hemimorphic hemihedry; Ditrigonal polar.

One 3-fold axis at intersection of three planes of symmetry.

Tourmaline, H6Na2Fe4BeAlsSii20o8.

24. Czi Hexagonal tetartohedry of the second sort; Hexagonal alternating.

One 34old axis which is also a 6-fold axis of compound symmetry.

Dioptese, CuH2Si04.

25. Dzd Rhombohedral holohedry; Dihexagonal alternating.

One 3-fold axis at intersection of three planes of symmetry; three 2-fold

axes in a plane ± 3-fold axes.

Calcite, CaCOs.
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Table XL.

—

(Concluded)

Hexagonal division:

26. Cth Trigonal paramorphic hemihedry; Trigonal equatorial.

One 3-fold axis ± plane of symmetry.

No example known.
27. Dzh Trigonal holohedry; Ditrigonal equatorial.

One 3-fold axis at intersection of three planes of symmetry; the 3-fold axis

is ± three 2-fold axes lying in a plane of symmetry.

Silver hydrogen phosphate, Ag2HP04.
28. Ce Hexagonal tetartohedry; Hexagonal polar.

One 6-fold axis.

Strontium antimonyl tartrate, Sr (Sb0)2(C4H406)2.

29. Dz Enantiomorphic hemihedry; Hexagonal holoaxial.

One 6-fold axis ± plane containing six 2-fold axos.

(C4H40«)2(St)0)2Ba • KNO,.
30. Cnh Paramorphic hemihedry

;
Hexagonal equatorial.

One 6-fold axis ± plane of symmetry.

Apatite, CaBF(P04) 8 .

31. Ctv Hemimorphic hemihedry; Dihexagonal polar.

One 6-fold axis at intersection of six planes of symmetry.
Greenockite, CdS.

32. Dzh Hexagonal holohedry; Dihexagonal equatorial.

One 6-fold axis at intersection of six planes of symmetry; the 6-fold axis is ±
six 2-fold axes lying in a plane of symmetry.

Beryl, Be3Al2(Si08)6.

Table XLI.—Two Hundred Thirty Space-groups According to the Zurich
Notations*

C\ PI
C} Pi

Cl Pm
Cl Pc

Cl Cm
CJ........ Cc

Cl P2
P2i

Cl C2

CJ* P2/m
Cl* P2ilm

C2/m
Ct,.. P2/c

C|* P2i/e

Cl C2/c

Cl. Pmm
Cl. Pmc
Cl
CJ. Pma
Cl Pea

CS, Pne
c;. Pmn
c|. Pba

Cl. Pna
cj; Pnn
cji

ci; Cmc
Cll Ccc

Clt

c;: Abm
riii ’

'^2w Ama
Cll Aba

Cll Fmm
ci: Fdd

Cll Imm
Cll Iba

Cll

Dl P222

Dl P222i

Dl P2,2,2

Di P2i2,2,

C222,

Dl C222

Dl F222

D\ 7222

Dl /2i2,2,

Dl
Dl Pnnn
Dl Peem

Dl Pban

Dl
Dl Pnna

Dl Pmna
Dl Pcca

Dl Pbam

OJJ

Dll Pbcm

Dll

oy Pmmn
DU
IHI Pbca

DU Pnma

Kryat., 1%, 642 (1931).
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on . Cmcm
on . Cmca
DU * 1

, Cmimn

on....... . Cccm

on . Cmma
on . Ccca

on . Fmmm
on . Fddd

on . Immm
on . Iham

on . Ibca

on.....

.

. Imma
Cl...: . C3

Ci...., fI3

-i C3t

US

a* C3
ifs

a C3m
Cl H3m
Cl CSc

Cl H3c

Cl R3m
Cl R3c

Dl H32
01 .. .. C32
0; H3i2
0; C3i2

o{ ^3,2

05 C3j2

Dl R32

Dl H3m
Dl H3c

on Cf3m

on C3c

on R3m
on

SI P4

SJ i?

1^4

CJ

Cl
Cl
Cl

Pi
F4,

P4,

Pi,

li

Table XLI.

—

(Continued)

Ci lii

Cl
Cl Pii/m

P4/n
Cl P4,/n

Cl Hi /a

on P42»n

on P42c

on #»42,m

on P42,c

on C42/n

on C42c

on C426

on C?42n

on F%2m
D]l ...:. P42c

on /42w

on Il2d

Cl P^mm
cn P46m
cn P4cm

Cl
cn P4cc

cn P4nc

cn P4mc

cn P46c

cn /4mm
/nflO

^Av /4cm

cli

cn I4tcd

01 P42

01 P42i

01 P4i2

01 P4j2i

01 P422

OJ P4,2i

01 P4s2

OJ P4,2,

OJ /42
Z)w /4i2

on....!.. Pilmmfn
on
on
on P^lnnc

on

^>5*

• •

DJ*' •

D\l..

D'J,...

Dit...

D\l..

DU...

Dil..

DT..
Dil-..

Cl...

CJ....

C\....

C{....

Cl...

Cl...

Cl...

Cl...

Cl...

Dl...

Dl...

K-.
D}j. .

.

a...
Cl...

Cl...

Cl. .

.

Dl...
Dl...
Dl...
D}....

Dl...
Dl...

Dl...

Dl...
Dl...

TK...

T*....

T*....

Pi(mne
Pifnmm
Pifncc

Pilmme
Pi/mom
P4/nic

Pilnnm
Pi/mbe
Pi/rnnm
Pi/nme
Pi/ncm
/4/mmm
lilmem
li/amd
lilacd

CS

C6
C6i ,

C6,

C64

C6,

C6,

C3/m
C6»/m

C5m2
C^2
H3m2
H6c2

C3mm
Cdce

C3em
C6me •

C62
C6,2

C6>2

C642

C6,2

C6,2

Cdfmmtn
C3/mec

C6lmcm
C6/mme

P23
F23
723
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r*.... P2,3

T* /2i3

Tl Pto3

rj Pn3

Tl Fm3
Tl FdZ

Tl 7m3

Tl Po3

Tl /a3

Tl Pi3m

CRYSTAL STRUCTURE

Table XLI.—(Concluded)

Tl F43m

Tl .... /43r»

Tl P43n

Tl .... P43c

Tl .... 743(J

P43
0* P423

F43
0* ... F4i3

0» .... 743

0« ... P4,3

0^ P4a3
0« /4i3

01

01 PnZn
OJ

Oi Pn3m
05 FmSm
01

01 FdSm
05 FdSc

05 ImZm
or Ia3d
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A GRAPHICAL PROJECTION METHOD OF DETERMINING THE
COORDINATES OF CERTAIN POINT-GROUPS*

The various symmetry operationsf for the 32 point-groups may be
visualised easily by means of appropriate projections, thus facilitating
the iidy of the point-groups by beginners. The scheme will be illus-

tratili( in terms of a few of the cubic, rhombohedral, and hexagonal
ppinHroups. The poirt- ^
grOujif symbols used are those

of reference (1).

CUBIC SYSTEM

Point-group T—This
point-group is arrived at by
means of a 3-fold axis which
is operated on by three 2-

fold axes. The 3-fold axis

corresponds to one of the

four body-diagonals of a cube.

The 2-fold axes correspond to

the principal axes of a cube.

The origin of coordinates is

taken at the center of the cube

and the three axes of reference

pass through the centers of

the cube faces. If the -Zf-axis Fig. l.—Cube showing axes of reference and 3-fold

of the cube is held vertical,

and, if the cube is rotated so that the positive direction of the rr-axis

points somewhat .diagonally toward the left of the observer, then the

cube is in such a position as to give, by our method, the same sequence
of coordinates as in reference (2). The cube in this position is shown
in Fig. 1.

If, now, the observer looks along the body-diagonal from A to A',

the cube will appear in projection on the (1 1 1) plane as in Fig. 2. That
is, in the plane of the paper, the projection of the origin of coordinates

* D. McLachlan and W. P. Davby, Jour. Chem. Edtu:,^ 9, J953 (1932).

t R. W. G. Wyckopf, The Analytical Expression of the Results of the Theory of
Space-groups, Carnegie Inst. Pub. 318.
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and of the points A and -4' will all coincide at the center of the plane

figure. The positive directions of the projections of the F-, and

2^-axes will be 120® to each other. These projections will be called X',

y', and Z', respectively. The projection of the edge AB falls on IT';

that ofjlC falls on 7'; that of

AD on Z\
Draw a template as in Fig.

3 on tracing cloth or semitrans-

parent paper showing, by dotted

lines, the projections X', 7', and
Z' in the positive directions of

the X-, 7-, and Z- axes. On
this template draw, in projec-

tion, the coordinates a:, y, and z

of the point P, and mark off the

distances x and 2a;, y and 2?/, z

and 2z along the X'-, 7'-, and
Fig. 2.—Projection of cube with (1 1 1) plane Z'-directionS, respectively. We

parallel to paper.
follow the USUal CUStom

of considering the lengths x, and z to represent distances only. The
sequence of the coordinates indicates the axes to which they refer. The
coordinates of the 12 points corresponding to the point-group T may
now be found as follows.

* 1, A{2ir/Z), A(4ir/3).—Place the template on Fig. 2, passing a pin

through the origin of coordinates of both the template and of Fig. 2.

Make X', 7', and Z' of the template register

with X', 7', and Z' of Fig. 2. Then, in projec-

tion on the (1 1 1) plane, the point P is in the

initial position 1. Obviously its coordinates

may be read off directly as x, y^ z. The
template in this position is shown in Fig. 4i

Rotate the template about the pin

counterclockwise through an angle 27r/3.

This is the equivalent, in projection, of

rotating the 3-fold axis AA^ through 27r/3.

The new position is shown in Fig. 6. The new
coordinates are, obviously, 2

,
x, y. They may be found most easily by

noting the path required to go from the pin at the origin of Fig. 2 to Q
and then along the original 7- and Z-coordinates of the point P. (When
negative directions of travel are found, they must be indicated by minus

signs in the usual way.) The resultant distances along the X'-, 7'-,

and Z'-directions must then be put in the proper sequence to show to

which coordinates they refer. This course will be followed in this

discussion.

Fig. 3.—Template for cubic

point-groups.
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Fiq. 4.—Template in initial

identity, 1,

position for the

Rotate the template counterclockwise about the pin through a seoond
angle of 27r/3. This is the equivalent, in the projection, of rotating the
3-fold axis AA' through a total angle of 47r/3 from the initial position.

The coordinates for the

A (4t/3) position of P are evi-

dently 2/, 2, X, The position

of the template is shown in

Fig. 6.

J7, Ai(27r/3), ^i(47r/3).—

We must now rotate our

original point x y z through

an <?i,Qgle tt about the X-axis

(Umklappung operation) and

theii repeat che %ft»ld^ c*l)er-

ati’iis of symn^Uy. I he

Um^felappung is dope, in pro-

jection, by placing the tem-

plate in the initial position

(Fig. 4), inserting the pin

through the point Q, and rotating the template 180®. This brings the

point O' above the projection of the origin of Fig. 2, as shown in Fig. 7.

We are now ready to find the coordinates of the point P in the three

positions f/, Ai(2t/3), and i4i(47r/3), corresponding to the operation of

the 3-fold axis. The template

is already in position for the first

of these. Using the type of pro-

cedure outlined under i4(27r/3),

and noting that the origin of the

cube is now as far on one side of

Q as the original origin 0 is. on

the other, we find at once that

the coordinates of the point P in

the U position are «, ff, 2.

By transferring the pin to

O' of the template (which lies

over the origin of coordinates of

Fig. 2), and rotating the tem-

plate counterclockwise through

2jr/3 and 4ir/3, we may com-

plete the operations of the 3-fold axes and find the coordinates of P for

the positions Ai(2ir/3) and ili(4ir/3), respectively. They are 2, x, g and

y,

V, i42(2ir/3), A2(^/3).—^To niake, in projection, the Umklappung
operation about the F-axis, restore the template to its original position

Fiq. 6.—Template at
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as in Fig. 4, put the pin through R which lies at a distance y from 0 along

the direction of Y'. Rotate the template 180® so that the point 0"

lies above the origin of coordinates of Fig. 2. Transfer the pin to the

point 0". We are now ready (see Fig. 8) to find the coordinates of F,

i42(27r/3), and -42(4x73). The origin of the cube is now as far on one side

of R as the original origin 0 of

the template is on the other, so

that the coordinates of the

point P for the position V are

X, 2y-y, z = x^y, z. A counter-

clockwise rotation of 2x/3 and

A/4«\ 4x/3 gives the coordinates of

P for the positions -42(2x/3)

and -42(4x/3), respectively.

They are 2, 5, 2y->y ^ 2, x, y
and 2y‘yy z, x y, z, x.

W, A3(2x/3), A,(47r/3).-

Restore the template to its

D original position as in Fig. 4,

Fig. 6.—Template at a

(

y). and make the Umklappung
operation about the 2-axis by

putting the pin through S and rotating the template 180® so that the

point O'" lies above the origin of coordinates of Fig. 2 (see Fig. 9). The
coordinates of P in the W position are read off as 5, 2Z‘Z = 5, y, z.

Transfer the pin to O'" and operate the 3-fold axis, in projection,

by counterclockwise rotations of 2x/3 and 4x/3. These give for the

coordinates of P in the

-43(2x/3) and -43(4x/3) posi-

tions, 2z-z, x,y = z, X, y, and

y, 2z~z, X = y, z, x, respec-

tively. This completes the

determination of the coordi-

nates of the point P in all 12

of the equivalent positions of

pointrgroup T.

Point-group 0.—^The oc-

tohedral group has four 3-

fold, three 4-fold, and six

2-fold axes arranged in the

same manner as the body-

diagonals, altitudes, and face- Yiq, 7.—The template after Umklappung about

diagonals, of a cube. The
theX-axis.

2-fold axes 17, F, W of point-group T are now 4-fold axes, so that to

the operations 1, U in point-group T we must now add B(ir/2) and
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S(3ir/2); to the operations 1, V we must add Bi(t/2) and 5i(3ir/2); and

Fiu; S.—The template after Umklappung about
the F-axis.

the origijual Doint for each of

the 24 operations of 0, it is

simpler, in projection, to build up the 12 points of point-group T and
then rotate IT, as a whole, 180®

about one of the 2-fold axes lying

in the (1 1 1) plane of projection.

The observer isnow looking along

the body-diagonal of the refer-

ence cube (Fig. 1) from .4' toward

A, In projection on the (1 1 1)

plane he sees the reference cube,

not as in Fig. 2, but with the X-
and F-axes interchanged and
with the positive directions of

all three axes reversed.

If now, keeping this change
Umklappung of axes and signs in mind, all

the operations of point-group T
are repeated, the additional coordinates of point-group 0 will be found.

They are:

Fiq.

ID

9.—The template after

about the Z-axis.

y, X, S; X, z, y\ S, y, x

y, X, z; X, z, y; z, y, X

-2y + y,x,z = y,x,z; x, z, -2y + y = x, z,y; z, -2y + y, x = z, ff, x

y,x, -2z + z = y,x,S; x, -2z + z,y = x,S,y; -2z + z,y,x = i,y,x

These 12 coordinates, together with the 12 found for point-group T,

complete the determination of' the coordinates of the point P in all 24

equivalent positions of point-group 0.
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The application of the above tecTinique to orthorhombic and tetrago-

nal point^roups is obvious.

HEXAGONAL SYSTEM

Rhombohedra may be referred either to rhombohedral (distorted

cubic) axes or to hexagonal axes. Figure 10 shows that, if a rhombo-

hedron is held so that the ob-

server looks along the trigonal

axis, it will appear in projec-

tion on the (1 1 1) plane, with

the projections X', F', J?' of

the rhombohedral axes 120°

apart as in the case of a cube.

At 30° to these projections may
be seen the actual X*-, F^-,

and Fhr hexagonal axes. The
hexagonal 2^A-axis lies perpen-

dicular to the paper; it is the

trigonal axis of the rhombohe-

dron. The changes in tech-

nique necessary to make the

procedure just described for cubic point-groups apply to rhombohedral
point-groups are caused by the use of the hexagonal axes in the

symmetry operations. These will be illustrated in terms of the

Cs, I>3, Czvj and Cat point-groups. The illustrations may be followed

more easily by making a sep-

arate drawing (Fig. 11) which

shows the X'-, F'-, and X'-

directions and the hexagonal

X^-axis.

Point-group Ca.—By using

the template of Fig. 12, and by
duplicating exactly the proced-

ure for 1, A(27r/3), i4.(4ir/3) of

point-group T, we arrive at the

rhombohedral coordinates of

Ca, namely:

Point-group Da.—This
point-group contains the three

points of Ca and, in addition, three others obtained by an Umklappung
operation (rotation of 180°) about one of the hexagonal axes X*, F*, or

Fh. Since all three of these hexagonal axes produce identical end results,

Fig. 11.—Projectioni^ for determining the coordi-
nates of rhombohedral point-groups.

Fig, 10.—A rhombohedroii projected along the
trigonal axis on the (1 1 1) plane.
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it is only necessary to illustrate the operation around one of them, say the
Xh* The Umklappung operation will turn the rhombohedron upside
down and will therefore present to the observer the projected axes X*, Y\
and Z' as shown in Fig. 13. ^

Applying the template of Fig. 12 to Fig. ( »
J

13, we obtain the coordinates \ \

Vy ^y ^y ^y V) Z, y, X
X \ /

These together with the three listed under \ \ / /
Cz are the coordinates of the poini P for /) j. \ /

Point-group Czv—This point-group
may be obtained by adding to Cz the opera- fio. i2.-Tempiate for rhombo-
tion 6f a vertical mirror passing through the hedrai point-groups,

hex^ronal axis Zh> ^ 'Th§Tr are two types of orientation possible for such a

> .2'
,

mirror: (a) it may pass through Xh, or

^ or (h) it may bisect the angle

between Xk and or Xk and Fa, or

Fa and Fa. It may be shown that all of

Xh these orientations lead to identical con-

figurations of points, and that those

^rom type (6) differ from those of type

(o) only in the viewpoint of the

observer. Alternative (6) may be

2' expressed by saying that the mirror

Fio. 13.-^:', Y\ and z' after the lies in the direction of T, T, or Z'.

rhombohedron has been rotated 180° The coordinates of the points produced
about the Jf*-axie (Umklappung). ^ obtained in the

order tabulated by Wyckoff if we orient the mirror in the direction of

Z\ The effect of such a mir-

ror on Fig. 11 is shown in

Fig. 14. The additional co-

ordinates of Czv may now be

found directly by placing the

template (Fig. 12) on Fig. 14

and repeating the operations

already outlined for Cz- The
coordinates thus found are

y,x,z; x,z,y] z,y,x

These together with the three

listed under Cz are the coordi-

nates of the point P for Czv Fig. 14.—The effect on Fig. 11 of a vertical mirror

Point-^roup Csi—The placed in the direction of 2'.

effect of the inversion operation may be found, in projection, by making
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a new template such as is shown in Fig. 15. This template is applied

to Fig. 11, and the procedure already outlined for Cz is repeated except

that it is necessary to write the

r

coordinates for P' as well as for

P. Such a procedure gives for

P:

Vy

and for P'

2, Xy y; Vy z, X

Fig. 15.—Template for use with inversions.

X, y, z\ z, X, y; y, z, 2

Point-group Dsd = Z>st.

—

This point-group may be found

by adding to the procedure

already described for Dz that

just described for the inversion.

Hexagonal Coordinates.

—

Those point-groups which are

expressed most naturally by
hexagonal coordinates (Ca, Dsa, Ce, Da, Ceh, Czv, Dzh) may be examined
in projection by imagining the observer to look along the hexagonal Zh-

axis. All sense of perspective

along the ^'A-axis is thus lost,

and the point-group is seen

projected in the plane of the

Xh" and F^-axes. It is easy

to keep track of whether the

point P lies above or below

the plane of the paper, t.6.,

whether the Zfr coordinate is

positive or negative. The
only difficulty which the

beginner has is in finding the

coordinates along the Xh- and

FA-axes. The Xh distances

which have to be used are x,

X~y, y, y, y-x, x; the Fa

distances are also x, x-y, y, y,

y-Xf X. These may be marked
off to scale on triangular

coordinate paper for the

Fig. 16.—Hexagonal coordinates marked out in the
Ek Fa plane.

values of x and y adopted for the point P. This gives a set of coordinates

such as is shown in Fig. 16. The use of this type of triangular coordinate

paper may be illustrated in terms of point-group De as follows.
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Imagine a template drawn to scale showing the point P at x, y, z.

(If desired the ^T^-coordinate may be thought of as a pin stuck vertically

into the template.) Clockwise rotation of this template in steps of 60°

places the pointP successively at x,y,z; y, y-x, z; y-x, X,z\2, z; x~y, z-,

x-y, x, z. Umklappung about the Xk- or Fj-axis produces the same result

as Umklappung about the y^-axis. Restore the imaginary template to

its original x, y, z position and perform the Umklappung operation about

the yji-axis. This will place the point P at x, y-x, z. Now rotate the

imaginary template in a clockwise direction in steps of 60°. The addi-

tional coordinates thus found are x, y-x, y, x, z; x, x-y, S; x-y, 2;

y, X, 2.

Tine coordinates of equivalent positions of P have thus been found

in the' order listed 1^ Wyckoff.

Th« applicative jto the other hexagonal point-groups will be obvious

fronVjihe above.
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Abbe diffraction theory, 316

Absolute intensity, 151

Absorption, by crystal, 206

by extraneous material, 1.6

law <pr x-rays, 87

of pvimary beam, 116'

Additjbt: of waves, 81, $8
Addi:Ve lavr of atomic radii, 430

Adjacent atomic centers, spacing of,

343, 396jf.

Air-lead, 686

Alkali halides, 138

ionic domains of, 416^., 468

Alkali metals, bulk moduli of, 464

Allotropy, 379

Alpha iron, structure of, 526

Alpha rubber, 481, 484

Alumina, 669

Aluminum in silver, 634

Ammonium halides, 102

Ammonium-oxy-fluoro-molybdate, 666

Amorphous diluting material, 168

Amorphous intercrystalline cement, 378

Amorphous jelly, 377

Amorphous material, diffraction by, 479

Amorphous state of matter, 471

Amplitude, 81, 287, 294, 295

of diffracted beam, 81, 143, 149

of resultant wave, 93

Angular distances, 123

Angular element, 260, 261

Apparatus, 676jJ^.

Bragg method, 86#.

Laue method, 67

powder method, 112#,

rotating-crystal method, 171#., 204

Application, structure factor method,

323#.

theory of space-groups, 266#.

Aragonite, optical constants of, 439#.

Arsenic, 147, 149

Assignment of indices, in powder method,

126#.

Assignment of indices, in rotating-crystal

method, 182, 186

Asyinraetric molecule, 240, 241, 260

Atomi.; coordinates, 146, 148

of cjJc-te, 280

of diopside, 346

generalized, 40, 63

of quartz, 145

of sodium chloride, 272

Atomic domains, 396#.

cubic, 400

spherical, 397

spheroidal, 397

tetrahedral, 402, 566

Atomic F curve, 306

Atomic influence, radius of, 167

Atomic number, 93, 98

Atomic refractivity, 444

Atomic structure, effect of, on intensity,

292, 306

Atomic Z p(z) curves, 367

Atoms, potential energy of, 463#.

Axes, conventional rhombohedral, 261

hexagonal, 33, 330

orthohexagonal, 34, 199

principal, 32, 214, 226

rhombohedral, 33, 230, 261

screw, 147, 212

secondary, 216, 226

Axial ratio, 22, 47, 128, 134, 147, 168, 184

Axis, crystallographic, 32, 176, 214, 225

cyclic, 211, 214, 223, 226

rotation, 176, 177

screw, 147, 212

zone, 31, 88, 176

B

Back reflection, 167, 169

Benzene (and derivatives), scattering of

x-rays by, 479

structure of, 663

Bernal, method of, 190

Bernal apparatus, 171

Beta rubber, 480
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Birefringence, 439
Bismuth, etching pits, 391

orientation of, 371

Bismuth-lead alloy, 529

Bivalent face-centered cubic element,

potential energy of, 462

Bjurstrom charts, 128

Body-centered cube, 23, 27

potential energy of, 462
powder pattern of, 126, 127

Body-centered monoclinic lattice, 242

Bohr atom, 492, 493
Boltzmann principle, 476
Bozorth^s method for orientation, 607,

610

Bragg apparatus, 87

Bragg method, 56, 87, 89, 91

Bragg plots, 91, 103

Bragg’s law, 2, 136

Brassidic acid, 660

Bravais-Miller indices, 33, 34, 268, 272

Bulk modulus, 464

Bums, x-ray, 90, 694

C

Cadmium, 128

Cadmium oxide, 161

Calcite, 97, 106

grating space of, 13

optical constants, 439

structure, 272

Calcium, atomic domain, 398

bulk modulus, 466

ionic domain, 422

ionic refractivity, 446

Calcium carbonates, 97, 106, 439Jf.

Calcium fluoride, 141, 143

Calcium selenide, 112

Calculation, of bulk modulus, 463, 464,

466

of index of refraction, 439^.

of integrated reflection, 296

of interplanar spacings, dSff.

of lattice energies, 463^.

of lattice parameters^

of periodicity of planes, 40jy.

of photoelectric effect, 466, 467

Calibrating substances, 168, 169, 161

Camera, Davey-Hull type, 113

Seemann-Bohlin, 121

Weissenberg, 206

Carbon, atomic domain of, 402, 566

Carbonates, 107

Cassette (see Camera)

Cathode stream, focusing technique, 689

Cellulose, 664

Center of symmetry, 213, 241

Cesium halides, 102, 141

Chaotic state, 474

Characteristic x-rays, 66, 66, 86, 87, 136

Charts for powder method, Bjurstrom,

128

correction, 209

Davey, 128

Ewalci, 134

Owen and Preston, 134

semilogarithmic, 128, 168, 169, 696Jf.

Wilhelm, 128

Charts for reciprocal lattice, 192, 193, 194

Chemical combination, types of, 543Jf.

Chemical information from structure,

543Jf.

Chemical molecule, 147, 643

Cleavage rhombohedron of calcite, 274

Cobalt, 626

Code, Schoenflies, for space-groups, 240

Coefficient, of expansion, 412

of maximum diffraction, 97

Cologarithms of structure constants, 164

Combination, chemical, 543^.

dihedral, 214, 217

of symmetry machines, 214

Compressibility, 464J^.

data on, for ionic domains, 427

degree of, 632

of elements, 463

Conductivity copper, 162

Constant intensity, lines of, 209

Constant of structure, 163

Contact difference of potential, 466
Control units, 583

Conventional rhombohedral axes, 261

Coolidge tubes, 675, 584

Cooling of tube, 690

Coordinates, arsenic, 148

body-centered cubic, 24
cubic system, 24, 25, 227

derivation, 261

diamond cubic, 26
diopside, 346

equivalent points, 223Jf.

face-centered cubic, 26
generalized, 24

hexagonal, 28, 230, 231, 234
mbnoclinic, 21^
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Coordinates, orthohexagonal, 34, 199
orthorhombic system, 224

reciprocal lattice, 192

rhombohedral, 29, 231

simple cubic, 24

tetragonal system, 226

of the 32 point-groups, 222

topaz, 354

triclinic system, 223

undetermined, 263

Coordination theory, 660

Copper, characteristic wave lengths, 136

growth of cr3^tals, 373, 376
lattice parameter, 14, 162

strUfHure, 526

Copp^>palladium Jloy^ 526
Comi^pch, 117

Cor^’^tion, for extinction, 360

Corty^ition chart (rota^ing-crystal me-
thod), 209

Corrci tion 43Ufve (^powder method), 162

Cotton, .120

Coulomb inverse-square law, 454

Criteria for solid solution, 524

Crushing of specimen, 115

Crystal, absorption of, 206

analysis, 64, 86, 111, 171, 265, 323, 487

density of, 35

growth of, in iron, 379

from melt, 369

from solid, 377

from solution, 374

from vapor, 363

holder, 88, 89

imperfection in, 16, 96, 363Jf.

ionic, 147

nuclei, 369J^., 472 •

optimum thickness, 116

orthogonal, 195

perfection of, 16, 206, 363#.

precision measurements of parameter,

166

seed, 370
strains in, 115

unit, 10

Crystal structure, elements, 398, 399,

401, 402, 626

organic compounds, 556#.

salts, etc., 416#.

Crystal systems, 21, 22, 27, 47, 61, 616

cubic, 38, 642

hexagonal, 650, 654

monoclinic, 616

Crystal systems, orthorhombic, 618
rhombohedral, 650

tetragonal, 626

triclinic, 616

Crystallization, critical temperature of,

363

of hypo, 372

Crystallographic axes, 32, 33, 34, 176,

214, 226, 230, 330,

Cubic atomic domains, 400
Cubic crystal, charts for, 126#., 696#.

. ince T)lanar spacings of, 38
powder method, 135

Cubic lattices, 264

Cubic system, 22, 38, 227#., 568#.,

642#., 675#
Current, ionization, 87

measurements, 593

Cybotactic state, 471

Cyclic axis, 211, 223

D

Davey charts, 128, 696#.

Debye factor, 14, 307

Debye-Scherrer-Hull method. 111

Decline of intensity, 92, 96

Degree, of compressibility^ 632

of symmetry, 664, 616#
Dendrites, 373

Density, of crystal, 36

distribution of, 319, 476#
of solid solutions, 526

Derivation of coordinates, 261

Devitrification, 486

Dextro- and laevotartaric acids, 662

Diagonal mirror, 217, 226, 229

Diagram for projection, 58

Diamond, cube, 23, 126, 127

structure of. 102, 141, 570

Diedergruppen, 214

Diffracted beams, direction of, 3#.

images due to, 315

intensity of, 14, 92, 307

Diffracting centers, 17

Diffracting power, 84, 85, 149, 301#.

Diffraction, by amorphous materials,

471#
amplitude, 81, 143, 149

angle of, 3#
coefficient of maximum,' 97
from a crystallite, 6

efficiency of, 301
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Diffraction, by gases, 489

intensity of, 14, 84, 85, 92, 307

by powdered crystals, 304

of a quantum, 7

from a reciprocal lattice, 189

by single crystal, 54Jf., 86^^., 302
sphere of, 190, 200

of a spreading wave, 3

Diffraction pattern, interpretation of, 68,

91, 122Jf., 194, 199, 206Jf., 309Jf.

Diffusion of hydrogen, 531

Dihedral combination, 214, 217

Dihedral group, 214, 221

Dilution of powdered crystals, 117

Diopside, atomic coordinates of, 345

Displacement in atom, 440

Distances, angular, 123

of closest approach, 397^^., 418^.

fictitious, 125

interplanar, 38#.

Distribution, of electrons in atom, 309,

425, 498

of molecules, 475

of spacings, 411, 478

Domains, atomic, 396#.

ionic, 396, 415#.

E

Electric doublet, 440

Electric polarization, 440, 445

Electrolysis of alloys, 529

Electron, atmosphere, 311

density in alkali halides, 424, 425

as diffracting center, 17

distribution, 309, 425, 498

potential energy of, 456

Electron-sharing compounds, 415

Elements, compressibility of, 463

Empirical dilution of powdered crystal,

118, 158

Empirical equation, method of, 310

Energy, of diffracted beam, 300

of lattice, 428

transfer of, in solution, 527

Equatorial line, 180, 194, 203, 207

Equipoints, variate, 554

Equivalent points, 224, 262, 267

Erucic acid, structure of, 560

Etch figures, 241

Etching reagents, action of, 391

Ewald charts, 134

Extinction, correction for, 350

Extinction, effect of, 306

primary, 16

secondary, 16

F

F curve, for alkali halides, 424; 425

from Fourier analysis, 319

from Hartree atom, 314

from Thomas atom, 311, 312, 314

Fhki data for diopside, 326#., 355#.

Face-centered cube, 23

powder pattern of, 126, 140

Face-centered cubic metals, expansion

and strength of, 412

Face-centered lattices, 237

Family of planes, 29

Ferrous carbonate, 107

Fiber, cotton, 120

effect in gels, 480

in rubber, 480

in wood, 120

Fictitious distances, 125

Fictitious planes, 140

Figures, etch, 241

Filament, cathode, 578, 593

Filling specimen tubes, 113

Filters, 87

Flour, as a diluent, 117

Fluorite, 102, 141

Focusing, of camera, Seemann-Bohlin,

121, 122, 169

of cathode beam, 589

Form, plane, 31

Fourier analysis, 315#., 356, 476

Fourier series, 493
«

G

Gas-discharge tube, 576

accessories for, 585

Gels, 479

Generalized coordinates, 24, 40, 53
Geometrical compounds, 546
Glasses, 479

diffraction effects from, 486
lead, 118

Lindemann, 87
Glide-mirror, 213, 241, 245, 247

Glycol, heat of vaporization, 528
Gnomonic projection, 60, 65, 68
Gnomonic rotation net, 74, 75, 76
Gnomonic ruler, 69
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Gold) lattice parameter of, 14, 169

Goniometer, optical, 176

Weissenburg, 203

Graphical methods, Bernal, 186, 192, 196

Bjurstrcim, 128

Bragg, 103

Davey, 128

Ewald, 134

Owen and Preston, 134

Wilhelm, 128

Graphite, 136

Grating space, cadmium oxide, 13

calcite, 13

copper, 14

gold 44, 169

sodii.m; chloride*, ^3 ^

tun^ien, 14, 169 «

Gratjhgs, linear, 5

Grot^v dihedral, 214, 221

’octahedral^ 216

poipt, 2i l

quadratic, 216

space, 211, 236

tetrahedral, 216

Growth of crystals, from melt, 369

from solid, 377

from solution, 374

from vapor, 363

H

Habit, crystal, 268

Hadding-Siegbahn tube, 689, 692

Halides, alkali, 99, 138, 266

Halogens, ionic domains of, 416

Haworth voltage regulator, 687

Heat of solid solution, 637

Helium, scattering of x-rays, 496

Hermann-Mauguin symbols, 239, 672

Heteropolar compounds, 645

Hexagonal axes, 33, 230

Hexagonal close-packed structure, 134

Hexagonal division, 234

Hexagonal lattice indices, 268

Hexagonal system, 21, 22, 230, 264, 268,

696, 650Jf., mff.
Holder, crystal, 88, 89

Homogeneous radiation, 144

Homopolar compounds, 643

Horizontal glide-mirror, 241, 246

Horizontal mirror, 213, 217, 223

Hull-Debye-Scherrer method, 111

Hull ring, 608

Hume-Rothery ratios, 647, 648
Hume-Rothery rule, M7
Hydration of sugar molecules, 627

Hydrogen, mechanism of diffusion of,

631

scattering of x-rays by, 496

H3rpo, crystallization of, 372

I

Ideally imperfect crystals, 302, 360, 373

ldea11> perfect crystals, 16, 17

Iihago^ due to diffraction, 316

Impe rfection of crystals, 96, 363^^.

Impurities, 138, 166, 390

Indices, assignment by graphical methods,

128, 134, 168, 169, 192, 194, 696#.

Bravais-Miller, 33, 272

Miller, 6, 30, 179, 184, 200, 272

orthohexagonal, 34

refractive, 9, 440, 442, 443, 446

rotation method, 182, 186

zone, 32

Inert gases, scattering by, 489

Inorganic radicals, nature of, 644

Inorganic salts, structure of, 646

Integrated reflection, calculation of, 296#.

definition of, 301

true and apparent, 309, 323

Intensity, absolute, 161

of diffracted beam, 14, 81, 92, 270, 287

normal rate of decline, 84, 92, 96, 107

order of, 161

ratio, 96

relative, 161, 207, 209

of rotation photograph, 206, 207

variation, 206, 207

Tnteraxial angle, 273

Intercepts, Weiss, 30

Interference, constructive, 3#., 160

Interionic spacings, 419, 461

Interplanar spacings, calculation of, for

cubic crystals, 38

for tetragonal and orthorhombic

crystals, 46

fictitious, 126, 140

general equation, 47

table of, for cadmium oxide, 161

for cubic crystals, 46

for sodium chloride, 160

for tungsten, 162

Interpretation, of Bragg pattern, 91
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Interpretation, graphical methods of, 103,

126, 134, 137, 186, 192, 194

of Laue pattern, 78

of powder pattern, 122, 126

of rotation pattern, 182, 187, 192, 199

Interrelations between lattices, 34

Inverse-cube law, 456

Inversion, 213, 246

rotary, 222

Invertor, 213, 223

Iodides, effect on flour, 117

Ionic birefringence of oxygen, 461

Ionic compounds, 416, 646

lattice potentials of, 468

Ionic crystal, 147

Ionic domain, 396

Ionic number, 140, 144

Ionic refraction, 446, 446

Ionization chamber, 87

Ionization current, 87
Iron, strain-free, 116

use as source of x-rays, 136

Isotropic substances, 439, 440

K

K rays, of copper, 177

of molybdenum, 86, 167

L

Labile shower, 376

Lattice, cubic, 22, 23, 264

energy, 423, 463

' interrelation between, 34

parameters, 13, 166, 166, 410, 624, 533

points, 236

reciprocal, 136, 187, 189, 200

space, 27, 237

Laue diffraction pattern, 66, 67, 68, 71,

78, 266, 272, 606

Laue method, 64, 67, 261, 606

Law, Bragg’s, 2jf.

Layer lines, 180, 193, 198, 203

Lead glass, 118

Length of paraffin chains, 472

Limiting sphere, 192

Lindemann glass, S7

Line, equatorial, 180, 194, 203, 207

grating, 6

layer, 180, 193, 199

row, 166, 198

zero, 123, 13P.

Lineages, crystal, 387

Lines, of constant intensity in rotation

method, 209

number required in powd pattern,

136

Liquids, diffraction from, 471

Lithium ferrite, diffraction pattern of,

656

Lithium halides, 102

‘‘Low” quartz, 669

M
Machines, symmetry, 211

Magnesium carbonate, 107

Magnesium oxide, 426

Mass of unit of atomic weight, 11

Mauguin-Hermann symbols, 239, 672

Maximum diffraction, coefficient of, 97

Measurements, current and voltage, 593

precision, of parameters, 156, 168

radii, of atomic domains, 398J’.

of ionic domains, 418^.

true intensity, 298

Mechanism, of crystal growth, 363^^.

of diffusion, 631, 539

Metal foil, powder pattern of, 119

Metal x-ray tubes, 593

Method, atomic structure, 406

atomic volumes, 406

Bernal, 190

Bragg,

empirical equation, 310

equation of state, 406

Fourier series, 316

graphical, 68, 76, 91, 103, 128, 134, 186,

192, 196

Hull-Debye-Scherrer, lllff.

ionizing potentials, 406

Laue, 54^.

powder, lllff,

rotating-crystal, 171/.

trial and error, 312

viscosity of gases, 404

Micellae, size of, 479, 480
Miller indices, 6, 30, 126, 132, 140, 179,

184, 200, 272

Milliammeters, 694
Minimum excitation potentials, 680
Mirror, 212, 229

diagonal, 226, 229

diagonal vertical, 217
gUde, 213

horizontal, 213, 223, 229
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Mirror, vertical, 224
Mischkristalh', 636
Mix-crystals, 636
Mixe' Ti*c compounds, 663

Molal Uf at of vaporization, 628

Molecular birefringence, 461

Molecular compounds, 416, 643

Molecular crystal, 147

Molecular distribution, 476

Molecular refractivity, 442

Molecular symmetry, 240, 260, 266,

664#., 615#.

Molecules, chemical, 147

MoKbdenum K rays, 86, 167

.^ohromatic method of finding

dentation, ^02

Me ov. ‘hro|ifMitic x-iavs, *6, 8/

R 'm '
( iinl^ c^' /s lal, cf» .-.v, o i

,
j n rotation

Uifthod, 1^8

Mtwoclinic lattice. 21
, 27, *^1

,
242

Morocll: ic 3yst( m, 21, 233, 241, 616#.

Mosaic structu;*c,, 92, 363#.

N

Nickel, crystallization of, 363

Non-isotropic media, index of refraction,

443

Non-polar compounds, 434, 543

Non-rectifying x-ray tubes, 580

Normal decline of intensity, 84, 92, 96,

107

Normal paraffin, length of chain, 472

Normal state of strain, 373

Number, of lines required in jfcwder

pattern, 136

serial, of space-group, 240

symmetry, (p), 240

O

Observed intensities, 206

Octahedral group, 216

Operations of symmetrj’', 223#.

Optical constants of calcite and aragonite,

439

Optical goniometer, 176

Optical methods, of finding ionic radii, 428

of finding orientation, 601

Optical properties of crystals, 439

Optimum thickness of sample, 116

Orchard analogy, 128

Order, of diffraction, 4
of intensities, 161

Orientation, of melted materials, 371'

methods of,

monochromatic, 602

optical, 601

preferred, 506

white x-ray, 606

Orthogonal crystals, 195

Orthohexagonal axes, 34

Orthorhombic lattice, 45, 47, 61

reciprocal, 189

Orthorhombic system, 21, 128, 133, 224.

243, 665, 606#., 618#.

Oscillating table, 602

Oficillstion photograph, 174, 176, 199, 201

Osmotic pressure of cane sugar, 627

Owen and Preston charts, 134, 137

Oxygen, ionic birefringence, 461

ionic radius, 343, 421, 426

P

P-plancs, 386

Packing dimensions, 284, 396, 415

Packing shapes, 396, 415

Palladium, lattice parameter, 631

solid solution in copper, 525, 663

Palladium-hydrogen system, 630

Paper, probability, 166, 168

Para-dichlorobenzene, 206

Paraffin crystals, in melt, 371

Paraffin series, 667

Parameter, data on lattice, 13, 14, 145,

153#., 169, 184, 282, 323, 347, 422

{See also 398, 399, 402, 419, 421)

precision measurements of axial ratio,

168

of effect of impurities, 166, 167

of probability paper, 163

of sources of error, 167, 168, 166

of use of calibrating substance, 166,

163

Parametral plane, 268, 260

Particle size, effect on diffraction, 6

of micellae, 479, 480

Pattern, interpretation of, Bragg method,

91

Laue method, 78

powder method, 122, 126

rotation method, 182, 187, 192, 199

Perfection of crystals, 206, 363, 505

Periodicity, 41#., 52, 63, 124, 241, 243

Permeability to hydrogen, 413

Phase angle, 81, 334

Phase coordinates, 339, 349
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Photoelectric effect, 466

Pi-crevices pi-planes, 386, 386

Plane, family, 29

fictitious, 140

form, 31

parametral, 268, 260

of projection, 68, 60, 66, 66

of symmetry, 176, 213

Plot, Bjurstrom, 128

Bragg, 91

Davey, 128, 696J^.

Ewald, 134

Owen and Preston, 134

Wilhelm, 128, 606jf.

Plotting paper, probability, 166, 168

Point-groups, 214

Points, coordinates of equivalent,

lattice, 236

Polar compounds, 646

Polarized x-ray beam, 206, 300, 441

Pole figures, 610, 616, 618

Positive ion, potential energy of, 460

Potassium chloride, 92, 99, 138, 139

Potassium chloroplatinate, 661

Potassium cyanate, 666

Potassium halides, 99, 100, 102, 138, 419,

424

Potential energy, of atom, 463, 466

of positive ion, 460

of sound wave, 476

of unit-crystal, 463

of valence electron, 466

Powder method. 111, 241

accuracy, 138, 167

determination of orientation, 606

sources of error, 167

technique, 112

Powdered crystals, diffraction by, 304

dilution of, 117, 118, 168

Power, diffracting, 149

Precipitation of intermetallic compound,

634

Precision measurements, 166, 168

Preferential etching, feoi

Preferred orientation, 50Qff.

Primary extinction, 16, 307

Primary halo, 472

Primary standards, 10, 107

Primary valence forces, 661

Primitive translations, 26, 237, 240

Principal axes, 32, 214, 226

Prism, trigonal, 268

Probability curve, 163, 411

Probability paper, 166, 168

Probable orbital radii of electrons, 309,

498

Projection, general equation for, 61

<

gnomonic, 60, 66, 68

plane of, 60

stereographic, 60, 66

Propyl butyrate, 669

Protection from x-rays, 694

Pseudo-graphite, 136

Pyramid, trigonal, 268

Q

Quadratic group, 215

Quantum, diffraction of, 7

Quantum equation, 64

Quartz, coordinates of ion caters, 1,1^ .

.

low-temperat\ire form, 143

parameters of, 146

structure of, 146, 644

R

r-units, 694

Radiation, homogeneous, 144

Radii, of atomic domains, 397#.

of ionic domains, 416#.

in molecular combination, 434, 436

Ratio, axial, 22, 128, 168, 169, 184

of intensities, 96

Reciprocal lattice, 136, 187, 189, 192, 200

Rectifying x-ray tubes, 680

Refleejion, back, 167, 169

of light by crystals, 601

sphere of, 190

Refraction, of light by crystals, 439#.

of x-rays, 9

Regulator, voltage, 687

Resultant wave, 93, 143, 287

Rhodium iiT radiation, 324

Rhodochrosite, 71

Rhombohedral axes, 33, 134, 230

Rhombohedral division of hexagonal

system, 231, 264, 660

Rhombohedral lattice, 134

Rhombohedral unit-crystal, 10

Rotating-crystal method, apparatus, 171

assignment of indices, 182^, 186

technique, 171

Rotating switch, 682

Rotation method, 171#.
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Rotation net, gnomonic, 74^^.

Rotation photograph, .206

Row line, 186, 198

Rutifeer, fiber structure of, 664

fibering effect in, 480

Rubidium halides, 102, 419

Ruler, gnomonic, 69

Rutile, 71

S

Scattering of x-rayp, by benzene, 479

by helium, 496

hydrogen, 496
^ b inoil gases. 489

ScKo nfi^ cod(
,

2> 9 2^i(l

ufMi symbols, 2/ .'

enlis t ants, 482

Seifw tssm, 147. 212

SccoimI.**”^ 215, 225

^condary crystal structure, 381

Secondary extinction, 16

Secondary halo, 472

Secondary standards, 10, 114, 161, 162

Secondary-valence compounds, 649

Secondary-valence forcres, 660

Seemann-Bohlin camera, 121, 169

Seemann slit, 120

Scmilogarithmic charts, 128, 168, 169,

696jf.

Serial number of space-groups, 240

Shapes of domains, atomic, 397Jf.

ionic, 415jJ^.

Shearer tube, 689

Silicates, interatomic distances in, 343

Silver, 138

Single crystal, diffraction by, 64/.,

86/., 302

Sirk^s method, 408

Size, of atomic domains, 397/.

of crystals, 376

of ionic domains, 416/.

Skeletal structure, 382

Slide rule, application to powder method,

126, 127

Slip bands, 388

Slit, Seemann, 120

Sodalite, 666

Sodium amalgam, 629

Sodium chloride, electron distribution

in, 426

lattice parameter, 13

'

rotation photograph, l82

Sodium chloride, secondary caUbfation

standard, 12, 114, 15B

structure, 99, 138, 266

Sodium halides, 102, 114, 419, 426'

Sodium-potassium alloy, 629

Solid solutions, compressibility of, 632

criteria for, 623/.

den.sity of, 626

diffusion in, 539

lattice parameters of, 624, 633

Soli i solvent, definition of, 626

Solution, definition of, 623

oiieigy transfer in, 627

Sound waves, energy of, 476

Sources of error, 167

Spaco-gitjups, 211/.

Space-lattices, 21, 27, 237

Spacings, interplanar, 38/., 47, 162

Sphere, limiting, 190, 191, 192, 200

Sphere-gap, 693

Spherical atomic domains, 397, 398

Spheroidal atomic domains, 399

Spicgclung, 212

Spinel structure, 664

Spontaneous nuclei, 369, 370

Stability of crystal lattices, 469

Stabilizers, 683

Standard, primary, 10, 117

secondary, 10, 114, 161, 162

Standard radii of Pauling, 429

Static atom, 461, 489

Stereo formulas, 662

Stereographic net, 606, 618

Stereographic projection, 60, 66, 616, 618

Straight-chain compounds, 471, 472

Strain in crystals, 116, 116, 363/.

Structural angular elements, 261

Structural axes, 261

Structural constant, 163, 164

Stnictural iormulas for paraffins, 567

Structure, of alkali halides, 99/., ite,

, 266/.

of alkali-eairth compounds, 422

of aluminum oxide, 669

of ammonium-oxy-fluoro-molybdate,

666

of aragonite, 444

of arsenic, 147

of benzene and its derivatives, 662/.

of brassidic acid, 660

of cadmium oxide,
.
13

of calcite, 272

of cellulose, 664
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Structure, of .cesium dichloriodide, 562

of copper aluminide, 647

of copper stannide, 647

of copper zincide, 547

of diamond, 23, 103, 141, 670

of diopside, 323

of elements, 396j(r.

of erucic acid, 560

of fluorite, 106, 141.^.

of kauyne, 566

of lithium ferrite, 665

of ^‘low'' quartz, 143, 644, 669

of naphthalene, 562

of noselite, 655

of paraffin series, 557.^".

of potassium cyanate, 556

of potassium hexachloroplateate, 551

{See also Alkali halides)

of quartz, ‘‘low,^* 143, 544, 569

of rubber, 564

of sodalite, 556

of sodium chloride, 266.0^.

(See also Alkali halides')

of spinels, 654

of topaz, 347

of tricalcium aluminate, 282, 563

of zinc blende, 104, 141

Structure factor, 97, 292ff., Z2Zff.

Supercrevices, 386

Supersolubility curve, 375

Surface energy, 383

Symbols, space-group, Hcrmann-Mau-
guin, 239, 672

Schoenflies, 220, 222, 239, 240

Wyckoff, 222, 239

Symmetry, center of, 213, 241

external, 241

glide plane of, 213, 247

molecular, 266

operations of, 22Zff.

plane of, 176, 213

of topaz, 347

Symmetry machines, 211, 214

Symmetry number (~p), 240,

System of crystallization, cubic, 22,

227, 642#., 676#.

hexagonal, 22, 230, 254, 258, 596#.,

660#., 680#.

monoclinic, 21, 223, 241, 616#.

orthorhombic, 21, 128, 133, 224,

243, 666, 606#., 618#.

tetragonal, 22, 226, 247, 603^^., 626#.

triclinic, 21, 223, 240, 616#.

T

Targets, 680

Technique, Bragg method, 86#.

Laue method, 66#.

powder method, 112#.

rotation method, 171#.

Temperature, effect on intensity, 14, 307

Temperature-concentration diagram, 374,

375

Temporary nuclei, 472

Tensile strength of metals, 412

Tetrahedral atomic domains, 402

Tetrahedral groups, 216

Textile fibers, 119

Theory, of rotation photograph, 177#.

of solid solutions, 527

of space-groups, 211

Thermodynamic probability, 476

Thickness of specimen, 116

Thomas* atom, 312

Topaz, coordinates, 364

Fourier analysis, 366

symmetry, 347

Torus, 191, 200

Transformers, 679

Translation, primitive, 25, 237, 240

Transmission pattern, 520

Transparency, to light, 488

to x-rays, 168

Trial-and-error method, 312

Tricalcium aluminate, 282#., 663

Triclinic system, 21, 223, 240, 616#.

Trigonal crystals, 169

Trigonal lattices, 45, 61

Trigonal prisms, 268

Trigonal pyramids, 258

Trigonal system (see Hexagonal system)

True intensity, measurements of, 298

Tungsten, 14, 116, 138, 169

Two-component system, 526

Types of chemical combination, 643#.

U

Umklappung, 214, 227

Undetermined coordinates, 263

Unit-crystal, definition, 10

dimensions of, 166, 180

potential energy of, 463

Unit-vector, 187, 196

Unpolarized beam, 300

Urea, 174, 184, 186, 196
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V

Vacuum-tube rectification, 680

Values of Fhki for diopside, 346

Variate atom equipoints, 654

Vectors, unit, 187, 195

Vertical mirror, 224

Vierergruppe, 215

Voltage, measurements of, 693

vacuum regulator, 587

W
Wave, resultant, 93, 143

Wave -'cchanics, 498

Wwei t amplitude, 294

Weiss jtercepts, 30

Weitt; Mr erg^mera, 215

goi.lometer, -203

Wern^^nan compounds,
'

Vbite t-rays, 55

Widmanstatten structure, 392

Wood fiber, 120

Wyckoff symbols, 222, 239

X

X-ray, characteristic, 66

diffraction of, by crystals, 2^.

X-ray, diffraction of, by gases, 489

by gels, 486

by liquids, 471

theory of,

goniometer, 203

methods of determining orientation,

502

monochromatic, 86, 87

polarization of, 206

power units, 679

pro b'action against, 594

tubes, 676

white, 55

Z

Zero line, 123, 180

Zinc, structure of, 526

Zinc-antimony alloy, 629

Zinc blende, 67, 95, 102, 103, 141, 142

Zinc carbonate, 108

Zinc oxide, 168, 169

Zinc sulphide, 96, 102, 103, 141, 142

Zone axis, 31, 88, 175, 602

Zone indices, 32

Zwicky pi planes, 382






